
algorithms

Article

IOb-Cache: A High-Performance Configurable Open-Source Cache

João V. Roque 1, João D. Lopes 2 , Mário P. Véstias 2,3,4 and José T. de Sousa 2,5,*

����������
�������

Citation: Roque, J.V.; Lopes, J.D.;

Véstias, M.P.; de Sousa, J.T.

IOb-Cache: A High-Performance

Configurable Open-Source Cache.

Algorithms 2021, 14, 218.

https://doi.org/10.3390/a14080218

Academic Editor: Gagan Agrawal

Received: 30 June 2021

Accepted: 20 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IObundle, Lda., 1000-158 Lisbon, Portugal; joao.v.roque@tecnico.ulisboa.pt
2 INESC-ID, 1000-029 Lisbon, Portugal; joao.d.lopes@tecnico.ulisboa.pt (J.D.L.); mario.vestias@isel.pt (M.P.V.)
3 Instituto Superior de Engenharia de Lisboa, 1959-007 Lisbon, Portugal
4 Instituto Politécnico de Lisboa, 1549-003 Lisbon, Portugal
5 Instituto Superior Técnico, Universidade de Lisboa, 1649-004 Lisbon, Portugal
* Correspondence: jose.desousa@inesc-id.pt

Abstract: Open-source processors are increasingly being adopted by the industry, which requires all
sorts of open-source implementations of peripherals and other system-on-chip modules. Despite the
recent advent of open-source hardware, the available open-source caches have low configurability,
limited lack of support for single-cycle pipelined memory accesses, and use non-standard hardware
interfaces. In this paper, the IObundle cache (IOb-Cache), a high-performance configurable open-
source cache is proposed, developed and deployed. The cache has front-end and back-end modules
for fast integration with processors and memory controllers. The front-end module supports the
native interface, and the back-end module supports the native interface and the standard Advanced
eXtensible Interface (AXI). The cache is highly configurable in structure and access policies. The
back-end can be configured to read bursts of multiple words per transfer to take advantage of
the available memory bandwidth. To the best of our knowledge, IOb-Cache is currently the only
configurable cache that supports pipelined Central Processing Unit (CPU) interfaces and AXI memory
bus interface. Additionally, it has a write-through buffer and an independent controller for fast, most
of the time 1-cycle writing together with 1-cycle reading, while previous works only support 1-cycle
reading. This allows the best clocks-per-Instruction (CPI) to be close to one (1.055). IOb-Cache is
integrated into IOb System-on-Chip (IOb-SoC) Github repository, which has 29 stars and is already
being used in 50 projects (forks).

Keywords: open-source; cache; pipeline; AXI; FPGA

1. Introduction

Open-source processors such as the RISC-V architecture are gradually becoming
adopted by the industry, and compete with commercial solutions such as ARM. Thus,
the community is rushing towards creating the ecosystem for these CPUs to thrive on.
These include different CPU architectures with different performance, size, and power
and efficient memory systems, peripherals, and interfaces of all sorts. One such key
component is an open-source truly configurable cache module, able to support multiple
architectural trade-offs.

Data and instruction caches are important units of a system-on-chip (SoC) since they
partially hide the latency between the processor and the main memory. There may be
multiple levels of cache whose configuration determines the hit-rate of the first cache
level. For high-performance, it is important to have a pipelined cache for both reading and
writing operations. The hit-rate is determined by the replacement policies, the size of the
cache, the associativity, cache buffers, etc. Different performance/area tradeoffs exist for
different cache configurations. The best configuration depends on the target application
and device, as well as the constraints of the SoC design. Configurable caches are therefore
necessary for designing efficient SoCs.

The performance of caches is a well investigated subject, where cache features, like
size, associativity, replacement policy, and other features are explored [1,2]. Memory cache

Algorithms 2021, 14, 218. https://doi.org/10.3390/a14080218 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8903-9715
https://orcid.org/0000-0001-8556-4507
https://orcid.org/0000-0001-7525-7546
https://doi.org/10.3390/a14080218
https://doi.org/10.3390/a14080218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14080218
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14080218?type=check_update&version=1

Algorithms 2021, 14, 218 2 of 20

analysis was also investigated in the context of multicore systems [3], and for various
instruction set architectures [4]. In [5], the authors explore the size of level-1 (L1) caches,
ranging from 4 KB to 1 MB with 64 B blocks and associativities of 1, 2, 4, 8 and full. All
configurations were tested with selected benchmarks from SPEC CPU2000.

The most explored aspect of cache is the replacement mechanism, like least-recently
used (LRU), pseudo-LRU (PLRU), round-robin, random and first-in-first-out (FIFO). The
LRU algorithm has the most expensive hardware design [6], while the random replace-
ment mechanism is the least expensive, but has the lowest performance [7]. To avoid the
complexity of LRU and improve the hit ratio of the random replacement approach, PLRU
considers an approximation of the LRU algorithm with two variants: PLRUm, based on
the most-recently used (MRU) mechanism and the tree-based (PLTUt) [6]. Both are good
approximations of LRU, with PLRUm slightly better than PLRUt [6]. Predictive replace-
ment policies [8] and victim cache [9,10] also reduce cache miss rate and reduce misses of
direct-mapping caches with a small extra area. Cache miss improvements with a victim
cache technique were also considered in a multi-core platform [11]. Recently, a real-time
adaptive reconfigurable cache based on the decision tree algorithm was proposed [12]. The
cache monitors the application state and the cache associativity is periodically tuned for
best cache hits.

The most relevant configurable open-source cache designs are found on the Github
platform. The airin711 Verilog-caches repository [13] houses three different set-associative
caches: 4-way with LRU replacement policy; 8-way with PLRU and a run-time configurable
2-to-8-way with PLRU replacement policy. All caches have four words per line and only
allow configuring the number of lines.

The prasadp4009 Verilog cache repository [14] is a 2-way set-associative cache that
uses the LRU replacement policy. It allows configuration of the number of cache lines and
words per line and the width of both address and data.

Both caches use write-back write-allocate policy, but only support a native memory
interface and cannot either invalidate or flush a cache line. The most significant difference
between the two is that airin711 caches require the data memory to be 128-bit wide so that
the entire line or memory block can be accessed in a single word transfer. The prasadp4009
cache requires the data memory width to be word-sized. The significant disadvantage of
these two caches is that they need at least two clock cycles to process requests

PoC.cache [15] is a highly configurable cache that allows one read-access per clock
cycle. It allows direct, set-associative, and full-associative mapping. However, it uses
LRU, an effective but costly policy, and only supports a native memory interface. During a
read-access, the PoC.cache requires the hit to be checked in the same cycle a request is made.
The tag and valid memories are therefore implemented with distributed Random Access
Memory (RAM) and registers, respectively. PoC.cache allows one read per clock cycle. On
the other hand, write accesses require a minimum of two clock cycles per write. The cache
uses a write-through write-not-allocate policy, but does not have a write-through buffer.
Instead, it accesses the main memory directly. Hence, each write-access depends on the
memory interface controller writing-access time, which is a big issue. The write-through
policy is expected to generate significant traffic.

Another drawback of PoC.cache is that its main memory interface is limited to the
size of the cache line. This results in a severe limitation when implementing a multi-level
cache, as the higher-level cache needs to have a word-size of the lower-level line width.
The lack of a write-through buffer is also a significant limitation since this cache needs
to stall during a write-access while the higher-level cache is fulfilling another request.
Compared to the proposed IOb-Cache system, PoC.cache also lacks: (1) a front-end module;
(2) a configurable back-end module to control the communication with the main memory;
(3) and a universally adapted memory interface like AXI.

The proposed cache overcomes all these limitations with the following features:

• Support for pipeline architectures—the cache fulfills one request per clock cycle while
keeping stalls to a bare minimum;

Algorithms 2021, 14, 218 3 of 20

• Modular design—the cache is composed of three independent modules: front-end,
cache core and back-end. This makes it easy to replace the interfaces while keeping
the core functionality intact;

• Support for native and AXI interface in the back-end—the back-end interface can be
connected to higher-level caches using a native interface or to third party memory
controllers which are likely to be using an AXI interface;

• Asymmetric interfaces data-width—the back-end may be configured with a dif-
ferent data-width from that of the front-end to take advantage of the available
memory bandwidth.

2. IOb-Cache

IOb-Cache is a configurable Intellectual Property (IP) core with multiple configuration
options. It offers two different interfaces for the back-end memory, Native and AXI (4th
generation), whose width can differ from that of the front end (asymmetric implementa-
tion). It can also be implemented as direct mapping or K-way set-associative. There are
multiple line replacement policies to choose from, depending on the performance-resources
requirement. It uses a fixed write-through not-allocate policy. Performance-wise, it allows
one request per clock-cycle.

The following parameters are used to configure the cache:

• FE_ADDR_W (Front-End Address Width)—number of bytes accessible in the
main memory;

• FE_DATA_W (Front-End Data Width)—cache word-size (multiple of 8 bytes);
• N_WAYS—number of ways (power of 2). One for direct-mapping;
• LINE_OFF_W (Line Offset Width)—number of cache lines;
• WORD_OFF_W (Word Offset Width)—number of words per cache line;
• REP_POLICY (replacement policy)—replacement policy: LRU, PLRUm, and PLRUt;
• WTBUF_DEPTH_W (Write-Through-Buffer Depth Width)—number of positions in

the write-through buffer FIFO;
• BE_ADDR_W (Back-End Address Width)—width of the back-end address port;
• BE_DATA_W (Back-End Data Width)—back-end memory word-size. Needs to be

multiple of FE_DATA_W;
• CTRL_CACHE—include Cache-Control module;
• CTRL_CNT—include Cache-Control counters for performance measurement.

Each of the following sections describes the proposed cache in detail.

2.1. Architecture of the IOb-Cache

The top-level of the architecture integrates all the IOb-Cache modules (see Figure 1).
The Front-End connects the cache to a master processor. The ports always use the

Native Interface, using a valid-ready protocol. The Back-End connects the cache (master)
to the main-memory (slave). Its interface (Native or AXI) depends on the choice of the
top-level module. The Cache-Memory is shown in between the Front-End and Back-End
and contains all the cache memories and its main-controller. Cache-Control is an optional
module for an L1 cache that allows performing tasks such as invalidating a data cache,
requesting the status of its Write-Through Buffer, or analyzing its hit/miss performance.

2.2. Front-End

The Front-End module interfaces the processor (master) and the cache (slave). The
current design splits the processor bus to access the cache memory itself or the Cache-
Control module (if present). It also registers some bus signals needed by the cache
memory. The data prefix signals are sent to Cache-Memory, and the ctrl signals are sent
to Cache-Control.

Algorithms 2021, 14, 218 4 of 20

data_wdata_reg

valid

addr

wdata

wstrb

rdata

ready

data_valid

data_valid_reg

data_addr

data_addr_reg

data_wstrb_reg

data_rdata

data_ready

ctrl_valid

ctrl_addr

ctrl_rdata

ctrl_ready

write_valid

write_addr

write_wdata

write_wstrb

write_ready

replace_valid

replace_addr

replace

read_valid

read_addr

read_rdata

Front-End

Cache-Memory
Back-End

Cache-Control

read_hit
write_hit
read_miss
write_miss

wtbuf_full

wtbuf_empty invalidate

mem_valid (Native)

mem_addr (Native)

mem_wdata (Native)

mem_wstrb (Native)

mem_rdata (Native)

mem_ready (Native)

axi_ar* (AXI)

axi_aw* (AXI)

axi_r* (AXI)

axi_w* (AXI)

Native Interface (iob-cache)

AXI4 Interface (iob-cache-axi)

AXI Write-Channel

AXI Read-Channel

IOb-Cache

Data-Memory

Write-Through
Buffer

CTRL_CACHE(1)

axi_b* (AXI)

Figure 1. IOb-Cache top-level module diagram.

The cache always returns entire words since it is word-aligned. Therefore, the access is
word-addressable, so the byte-offset of the CPU address signal (last log2(

FE_DATA_W
8) bits)

is not connected to the cache. In a system with a different CPU interface, only this module
requires modification to allow compatibility. If the optional Cache-Control is implemented,
this module also works as a memory-map decoder to select which unit is accessed.

2.3. Cache-Memory

Cache-Memory is a module that contains the cache controller and memories. The
available memories are the Tag, the Valid, the Data, the Write-Through-Buffer, and, if
applicable, the Replacement-Policy memory (see Figure 2).

The cache can be configured as direct-mapped or set-associative based on the number
of ways given by parameter N_WAYS.

There is one Tag memory per cache way. Each of these has tag-sized width, and
depth equal to the total number of cache lines. The Tag memory has one clock-cycle
read latency. The Valid memory is composed of an array of 1-bit registers (register-file),
one for each way. Each array length equals the number of cache lines. This choice of
implementation is a simple design choice to set its contents to zero during either a system
reset or a cache-invalidate.

The Data memory is implemented with one RAM for each way and (word) offset. Each
RAM has a width FE_DATA_W (cache word-size) and a depth of 2LINE_OFF_W (number
of cache lines). Since the write-strobe signal selects which bytes are stored, each RAM
requires a write enable for each byte. The Write-Though Buffer is implemented using a
synchronous FIFO [16]. It requires the data to be available on its output a clock cycle after
being read.

The input address signals are segmented as tag : index : o f f set. The address is only
used for the initial addressing (indexing) of the main memories: Valid, Tag, and Data. The
stored address will be checked to see if a “cache hit” occurred to identify it within the cache
line. Each of its bits indicates a hit in a separate way. The hit is the result of a tag match.
If any bit of the “data_wstrb_reg” signal is enabled, it is a write-request; otherwise, it is
a read-request.

Algorithms 2021, 14, 218 5 of 20

data_wdata_reg

data_valid

data_valid_reg

data_addr

data_addr_reg

data_wstrb_reg

data_rdata

data_ready

write_valid

write_addr

write_wdata

write_wstrb

write_ready

replace_valid

replace_addr

replace

read_valid

read_addr

read_rdata

read_hit
write_hit
read_miss
write_miss

wtbuf_full

wtbuf_empty invalidate

Data-Memory

Write-Through Buffer

Cache-Memory

Data-Memory
Data-Memory

Data-Memory

Tag
Memory

Tag
Memory

Tag
Memory

Tag
Memory

Valid
Memory

Valid
Memory
Valid

Memory
Valid

Memory
Valid

Memory

Replacement
Policy

CTRL_CTRL(1)

N_WAYS > 1

combinational
path

Figure 2. Cache-Memory module diagram.

If a read request produces a hit, the respective word is already available at the output
of Data-Memory so that the request can be acknowledged.

The Data memory allows input data from both the Front-End and the Back-End. This
selection is made using the signal replace, which indicates if the replacement on a cache
line is in action. When replace is not asserted, all accesses are from the Front-End. During
a read-miss, the signal replace is asserted, which will start the Back-End Read-Channel
controller, responsible for line-replacement.

Both Tag and Valid memories are updated when the replace_valid signal is high (read
miss), forcing a hit in the selected way. Hence, the replacement process acts similarly
to a regular write hit access. The replaced data (read_data) is validated (read_valid) and
positioned in the cache line (read_addr). This process depends on the size of the line and
the back-end word-size. The replacement can only start if there are currently no write
transfers to the main-memory.

The signals “write_valid” and “write_ready” constitute a handshaking pair for Cache-
Memory to write to the Back-End Write-Channel. The former indicates that the Write-
Through Buffer is not empty, validating the transfer. The latter indicates that the Back-End
Write-Channel is idle and thus enables reading the Write-Through Buffer. The requirement
that the replacement only starts after the write transfer is to avoid coherency issues.Write
requests do not depend on the data being available in the cache, since it follows the write-
not-allocate policy. Instead, it depends on the space available on the Writing-Through
Buffer, which stores the address, write-data, and write-strobe array. During a write-hit, to
avoid stalling, the Data memory uses the registered input signals to store the data so that
the cache can receive a new request.

If a read-access follows a write-access, Read-After Write (RAW) hazards can become an
issue. The requested word may not be available at the memory output, since it was written
just the cycle before. This word will only be available in the following clock-cycle, therefore
the cache needs to stall. Stalling on every read-request that follows a write hit-access
can become costly performance-wise. Hence, to avoid this cost, a simple technique has
been employed: the cache stalls only if one wants to read from the same way and word
offset written before. Thus, the RAW hazard is only signaled when the same Data memory
(byte-wide) RAMs are accessed.

Algorithms 2021, 14, 218 6 of 20

2.4. Replacement Policy

The line replacement policy in a k-way set-associative cache is implemented by this
module. Different available replacement policies can be selected using the “REP_POLICY”
synthesis parameter. The module has three main components: the Policy Info Memory
(PIM), the Policy Info Updater (PIU) datapath, and the Way Select Decoder (WSD).

The PIM stores information of the implemented policy. Note that replacement policies
are dynamic and use data from the past, so memory is needed. The PIM has as many
positions as the number of cache sets, addressed by the index part of the main memory
address. The width of the PIM depends on the chosen policy. The PIM is implemented
using a register-file so that during a system reset or cache invalidation, it can be set to
default initial values.

When a cache hit is detected, the information stored in the PIM is updated based on
the information previously stored for the respective set and the newly selected way. This
function is performed by the PIU. When a cache miss is detected, the information for the
respective cache set is read from the PIM and analyzed by the WSD to choose the way
where the cache line will be replaced.

The currently implemented policies are the least-recently-used (LRU) and the pseudo-
least-recently-used (tree and MRU-based).

2.4.1. Least-Recently-Used

The LRU policy needs to store, for each set, a word that has N_WAYS fields of
log2(N_WAYS) bits each. Each field, named “mru[i]”, represents how recently the way has
been used by storing a number between 0 (least recently used) and N_WAYS-1 (most re-
cently used), thus requiring log2(N_WAYS) bits. In total, it requires N_WAYSlog2(N_WAYS)
bits per cache set.

The way each mru[i] is updated is represented in Figure 3. Summarizing, when a
way is accessed either by being hit or replaced, it becomes the most recently used and is
assigned. The other ways with higher mru values than the accessed way get decremented.
The ones with lower mru values are unchanged. The selected way for replacement is
the one with the lowest “mru” index. This can be achieved by NORing each index, as
implemented in Equation (1).

way_select [i] = !OR(mru[i]) . (1)

for each mru

[i]

way_hit [i]

mru[i] > mru[hit] ?

mru[i] = mru[i] -1mru[i] = mru[i] mru[i] = N-1

1 (Yes)

1 (Yes)0 (No)

0 (No)

Figure 3. LRU Encoder datapath flowchart.

Algorithms 2021, 14, 218 7 of 20

2.4.2. Pseudo-Least-Recently-Used: MRU-Based

The PLRUm is simpler than the LRU replacement and needs to store, for each set,
a word that has N_WAYS bits only. Each bit mru[i] represents how recently the way
has been used, storing a 0 (least recently used) or 1 (most recently used), thus requiring
log2(N_WAYS) bits.

The way each mru[i] is updated is represented in Figure 4. Summarizing, when a way
is accessed either by being hit or replaced, the respective bit is assigned 1, meaning it has
been recently used. When all ways have been recently used, the most recently assigned
remains are asserted and the others are reset. This is done by simply ORing the way_hit
signal and the stored bits, or storing the way_hit signal if all have been recently used. To
select a way for replacement, the not recently used way (mru[i] = 0) with the lowest index
is selected. This can be implemented by the following logic equation, Equation (2).

way_select [i] = !mru[i] AND (AND(mru[i − 1:0]) (2)

mru = mru OR way_hit

all bits “1” ?

mru = mru mru = way_hit

1 (Yes)0 (No)

Figure 4. PLRUm Updater datapath flowchart.

2.4.3. Pseudo-Least-Recently-Used: Binary Tree-Based

The PLRUt needs to store, for each set, a binary tree with log2(N_WAYS) levels and
N_WAYS leaves, each representing a cache way. Each level divides the space to find the
way in two, creating a path from the root node to the chosen way, when traversed by the
WSD. Each node is represented by a bit b[i] where 0 selects the lower half and 1 selects the
upper half of the space. For a 8-way example, the binary tree is represented in Figure 5.

b[0]

b[1]

b[4]b[3] b[6]b[5]

b[2]

7 6 5 4 3 2 1 0way select

1 0

0

0000 0

01 1

1 1 1 1

111 110 101110 100 011 010 001 000

level 0

level 1

level 2

Figure 5. PLRU binary tree.

Algorithms 2021, 14, 218 8 of 20

To update each node b[i], the first step is to get the slice way_hit[i] from the vector
way_hit, relevant for computing b[i]. Figure 6 shows how to compute way_hit[i] for the
first 3 notes, b[2:0]. After computing slice way_hit[i], the algorithm shown in Figure 7 is
followed. The process is straightforward. If the slice is not hit (all its bits are 0), then b[i]
remains unchanged. Otherwise, b[i] is set to 0 if the hit happens in the upper part of the
slice and to 1 if the hit happens in the lower part.

way_hit_upper [0]

N_WAYS/2 -1N_WAYS - 1 N_WAYS/2

way_hit_lower [0]

0

N_WAYS/2 -1N_WAYS - 1 N_WAYS/2

way_hit_upper [1] way_hit_lower [1] way_hit_upper [2] way_hit_lower [2]

0

way_hit [0]

way_hit

way_hit [1] way_hit [2]

way_hit

...

Figure 6. Computing way_hit slices.

get way_hit [i]

way_hit_lower [i]

b [i] = 1

1 (Yes)

1 (Yes)

0 (No)

b [i] = b [i]b [i] = 0

0 (No)

way_hit_upper [i]

Figure 7. PLRU way updater.

To select the way for doing the replacement, the binary tree needs to be decoded. This
can be done by iterating from the tree levels, from root to leaves, using the b[i] values to
point to the next node until the leaf is reached. As explained before the leaf index is the
chosen way.

2.5. Back-End

The Back-End module is the interface between the cache and the main memory.
There are currently two available main memory interfaces: Native and AXI. The native
interface follows a pipelined valid-ready protocol. The AXI interface implements the AXI4
protocol [17].

Although the AXI interface has independent write and read buses, the native interface
only has a single bus available. In the native interface, the difference between a write and
read access depends on the write-strobe signal (mem_wstrb) being active or not. This
requires additional logic to select which controller accesses the main memory. There is no

Algorithms 2021, 14, 218 9 of 20

risk of conflict between the read and write channels: reading for line replacement can only
occur after all pending writes are done.

The Back-End module has two controllers, the Write-Channel controller and the Read-
Channel controller. The Write-Channel controller reads data from the Write-Through Buffer
and writes data to the main memory while the buffer is not empty. The Read-Channel
controller fetches lines from the main memory and writes them to the cache during a cache
line replacement.

2.5.1. Write-Channel Controller

The controller of the native interface follows the control flow displayed in Figure 8.
The controller stays in the initial state while waiting for the write-through buffer to have
data. The write-through buffer uses a FIFO, and the FIFO starts the controller when it is
not empty. When that happens, signal write_valid asserts, and the FIFO gets read.

S
0
: waits for write-thought buffer

write_ready = write_valid

S
1
: transfers data to back-end memory

mem_valid = 1
write_ready = mem_ready & write_valid

write_valid = 0
(buffer empty)

write_valid = 1
(buffer not empty)

mem_ready = 0
(waiting for memory)

mem_ready = 1
&

write_valid = 1
(transfer done, buffer not empty)

mem_ready = 1
&

write_valid = 0
(transfer done, buffer empty)

reset

Figure 8. Back-End write-channel native control-flow.

In the following clock cycle, the required data is available in FIFO output and the
transfer can occur. After each transfer, the FIFO is checked, and if it is not empty, it is read
again so the data can be transferred in the following clock cycle. The process repeats until
there are no more available data in the write-through buffer, and the controller goes back
to its initial state.

The write-through buffer can only be read after each transfer is completed (mem_ready
received). Currently, there is no way to pipeline these transfers, which are limited to one
word per every two clock cycles. While the controller is in the initial state, the memory
write-strobe signal is 0 to not disturb the Read-Channel controller.

The AXI-Interface has similar behavior but follows the AXI4 protocol. The address
valid-read handshake needs to happen before any data can be transferred. After the data
is transferred, it is checked to see if it was successful through the response channel (B
channel): if axi_bresp does not have the OKAY value (an AXI code), then the transfer was
unsuccessful and the data is transferred again.

If the Back-End data width (BE_DATA_W) is larger than the front-end (FE_DATA_W),
the data buses require alignment. The address signal becomes word-aligned, discarding
the back-end’s byte offset bits. These discarded bits are used to align both the write data
and strobe.

This results in Narrow transfers [17], allowing the smaller words to be transferred to
a larger bus. The Write-Channel data width is, therefore, limited to the cache front-end
word-size. For example, in a 32-bit system, connected to a 256-bit wide memory, each
transfer will be limited to 32-bit anyway.

Algorithms 2021, 14, 218 10 of 20

2.5.2. Read-Channel Controller

The controller of the native interface follows the control flow displayed in Figure 9.
The controller stays in the initial state S0 while waiting for the request of a line replacement.
When signal “replace” is asserted, the controller goes to state S1 requests a word block
from the memory and writes it to the cache line at one word per cycle after it arrives at the
back-end. It requests the base address of the main memory block and uses a word counter
to count the received words. After the last word is received the controller goes to state S2
for a single cycle to compensate for the memory read latency. Afterward, it goes back to its
state S0, de-asserting signal “replace”.

S
0
: waits for line-replacement ack.

replace = 0

replace_valid = 0
(no replacement requested)

replace_valid = 1
(replacement requested)

reset

S
1
: Data transfer/Load cache-line

--
mem_valid = 1
word_counter += mem_ready
replace = 1

S
2
: Read latency compensation

replace = 1

mem_ready = 0
or

mem_ready = 1
&

word_counter != 1...11
(waiting for data or complete replacement)

mem_ready = 1
&

word_counter = 1...11
(entire line replaced)

Figure 9. Back-End read-channel native control-flow.

If the back-end data width (BE_DATA_W) is multiple the front-end (FE_DATA_W),
the number of words counted is proportionally shorter. If the back-end data width is the
same size as the entire cache line, the burst length is one, and therefore the word counter is
not used.

The AXI Interface controller has a similar behavior, but uses AXI4 burst transfers. The
AXI burst parameters are derived for synthesis, using the front-end and back-end data
widths, and the cache line offset width. Instead of using a word counter, the signal axi_rlast
is used to know when the line has been fully replaced. During the burst, each beat (transfer)
increments signal read_addr automatically.

Unlike the Write-Channel controller, the response signal, “axi_rresp”, is sent during
each beat (transfer) of the burst. This requires the use of a register which sets in the case at
least one of the beats was unsuccessful. After the transfers, the verification of this register
can be done at the same time as the read latency compensation.

2.6. Cache-Control

The Cache-Control module can optionally be implemented using the synthesis param-
eter “CTRL_CACHE”. It is used to measure the cache performance, analyze the state of its
write-through buffer, or invalidate its contents. Additionally, the parameter “CTRL_CNT”
implements counters for cache hits and misses, for both read and write accesses.

The Cache-Control functions are controlled by memory-mapped registers, selected
through ctrl_addr. The addresses of the software accessible can be found in the cache’s
Verilog and C header files.

Algorithms 2021, 14, 218 11 of 20

The ports write_hit, write_miss, read_hit, and read_miss work as enables that cause
the respective counters to increment. The counters can be reset by hardware (global system
reset) or by software.

3. Results

This chapter presents results on IOb-Cache performance. A qualitative comparison
between IOb-Cache and PoC.cache is also presented.

3.1. IOb-System-on-Chip

IOb-Cache has been integrated in IOb-SoC [18], an open-source synthesizable system
developed by IObundle in Verilog. Its design can be seen in Figure 10.

CPU

i
n
t
e
r
c
o
n
n
e
c
t

Cache

UART

RISC-V
CPU

wrapper

external Memory

soft-reset

Boot ROM

RAM

internal Memories

instr bus

data bus

IOb-SoC

AXI

*
additional peripherials

AXI4 bus

UART Rx
UART Tx

Figure 10. IOb-SoC module diagram.

The system is designed to allow the integration of multiple user peripherals, accessed
through memory-mapping. Each individual peripheral device is given a specific address
range to be accessed.

The interconnect is implemented with “split” [19] units, which is the module respon-
sible for connecting the processor (master) to the remaining peripherals (slaves). The
connection is established through memory-mapping, where the most significant bit (MSB)
or the MSB-1 bit of the address selects all peripherals, depending on whether a secondary
memory is present in the system.

This system is controlled by a RISC-V processor. A CPU wrapper converts the CPU
interface signals to the Native interface used internally throughout the system for intercon-
necting the different modules. Currently, a simple 2-stage machine (PicoRV32 [20,21]), or a
more complex super-scalar multi-issue processor (SSRV [22,23]) are supported.

For communications between the system and the host, a UART module (IOb-UART [24])
is integrated. It uses the universal asynchronous receiver/transmitter protocol (UART) for
transmitting and receiving serial data.

A synchronous RAM (SRAM) memory and a boot read-only memory (ROM) are inte-
grated into a module called Internal Memory, which also contains a soft reset mechanism
for transitioning from the bootloader to the main program and vice-versa.

The External Memory module allows access to an external and larger DRAM memory
(DDR3 or DDR4), and is where the IOb-Cache modules are placed. External Memory
module connects the system to an external DDR memory soft controller provided by the

Algorithms 2021, 14, 218 12 of 20

FPGA vendor and using the AXI4 interface. This explains why AXI4 interfaces have been
implemented for the cache back-end.

IOb-Cache modules can be connected to each other to form multi-level cache systems.
A two-level cache system, composed of an L1-Instruction cache and an L1-Data cache,
both connected to a larger L2-cache, is represented in Figure 11. The two L1 caches access
different types of data, one accesses instructions, and the other accesses data. The L2
cache merges the accesses of the instruction and data caches and thus may contain both
instructions and data.

L1-Instruction

IOb-Cache
(Native)

L1-Data

IOb-Cache
(Native

L2-Unified

IOb-Cache
(AXI)

Merge

2-to-1

(Native)

CTRL
cache-control signals

External Memory (Multi-level Cache)

Instruction
bus

Data
bus

AXI4

Figure 11. External Memory: two-level cache system implementation.

The back-end of the L1 instruction and data caches use the Native Interface and are
connected to a 2-to-1 interconnect called “merge” [19]. The merge unit connects several
masters to a slave interface using a fixed and sequential priority encoder. A master remains
connected to a slave until the request is acknowledged. The back-end of the merge block is
connected to the front-end of the L2 cache which also uses the Native interface. The L2
back-end uses the AXI4 interface and is connected to the memory controller.

The Cache-Control optional module can only be implemented in the L1-Data cache
since it is the only cache directly accessed by the processor, and the instruction L1 cache
does not need one. To access the L2-cache, either for a cache invalidation or checking of
the status of the write-through buffer, the CTRL_IO pins are used instead. The CRL_IO
interface supports multi-cache systems, so accessing the Cache-Control module for status
verification, shows the status of the downstream connected caches. This is necessary during
the IOb-SoC booting procedure, to check if the entire firmware has already been written to
the main memory before restarting the system to run it.

The IOb-SoC system has been implemented in an XCKU040-1FBVA676 FPGA [25],
which is part of the Xilinx’s Ultrascale FPGA family.

3.2. Performance

The cache was evaluated with the Dhrystone [26] benchmark using the cycles per
instruction (CPI) metric. The cache was initially simulated with different configurations
and then tested in a field-programmable gate array (FPGA) device. The simulation results
are displayed in Table 1, with the cache connected to an AXI4 RAM.

The minimum possible size for 2-level configuration is 48 Bytes, 16 Bytes for each of
the three caches. This is the worst possible scenario performance-wise. If the L1 does not
have the requested word, neither does the L2. The large delay in between instructions
is caused by the high miss rate, causing accesses to the main memory, as well as traffic
congestion between the L1 and L2 accesses.

Using 2 KB caches, one can see there is no performance difference between the replace-
ment policies in a 2-way set-associative cache. The way selected is the one that was not the
most recently used in all cases. It also shows the difference in performance between the

Algorithms 2021, 14, 218 13 of 20

set-associative and directly mapped cache. Using a set-associative in the L2-Unified cache
represents the largest improvement in performance (up to 0.315 CPI). If the three caches
only use direct mapping, the performance drops by 25.8%.

Table 1. Simulation Dhrystone SSRV (IOb-SoC) 32-bit. 100 runs using gcc -O1 optimization. Parame-
ters: number of ways (repl. policy), lines, words per line.

L1-Instr L1-Data L2-Unified Clock Cycles CPI

48 B—Minimum size

1, 2, 2 1, 2, 2 1, 2, 2 319,580 8.066

2 KB

2 (LRU), 8, 8 2 (LRU), 8, 8 4 (PLRUm), 8, 8 162,147 4.092

2 (PLRUm), 8, 8 2 (PLRUm), 8, 8 4 (PLRUm), 8, 8 162,147 4.092

2 (PLRUt), 8, 8 2 (PLRUt), 8, 8 4 (PLRUm), 8, 8 162,147 4.092

1, 16, 8 1, 16, 8 4 (PLRUm), 8, 8 174,620 4.407

1, 16, 8 1, 16, 8 1, 16, 16 204,016 5.149

4 KB

4 (LRU), 8, 8 4 (LRU), 8, 8 8 (LRU), 8, 8 95,331 2.406

4 (LRU), 8, 8 4 (LRU), 8, 8 8 (PLRUm), 8, 8 87,031 2.196

4 (LRU), 8, 8 4 (LRU), 8, 8 8 (PLRUt), 8, 8 90,417 2.282

4 (PLRUm), 8, 8 4 (LRU), 8, 8 8 (PLRUm), 8, 8 79,310 2.001

4 (PLRUt), 8, 8 4 (LRU), 8, 8 8 (PLRUm), 8, 8 84,854 2.141

4 (PLRUm), 8, 8 4 (PLRUm), 8, 8 8 (PLRUm), 8, 8 79,310 2.001

4 (PLRUm), 8, 8 4 (PLRUt), 8, 8 8 (PLRUm), 8, 8 79,310 2.001

1, 64, 4 1, 64, 4 1, 64, 8 107,668 2.717

8 KB

2, 16, 16 2, 16, 16 4 (LRU), 16, 16 50,758 1.281

2, 16, 16 2, 16, 16 4 (PLRUm), 16, 16 50,751 1.281

2, 16, 16 2, 16, 16 4 (PLRUt), 16, 16 50,758 1.281

1, 32, 16 1, 32, 16 1, 64, 16 77,306 1.951

1, 64, 8 1, 64, 8 1, 128, 8 71,543 1.805

16 KB

4, 16, 16 4, 16, 16 8, 16, 16 41,837 1.055

4, 32, 8 4, 32, 8 8, 32, 8 41,762 1.055

2, 64, 8 2, 64, 8 4, 64, 8 41,886 1.057

1, 64,16 1, 64, 16 1, 128, 16 56,848 1.434

1, 128, 8 1, 128, 8 1, 128, 16 54,986 1.387

32 KB

8, 16, 16 8, 16, 16 16, 16, 16 41,837 1.055

2, 128, 8 2, 128, 8 4, 128, 8 41,762 1.054

1, 256, 8 1, 256, 8 1, 256, 16 41,811 1.055

2, 64, 16 2, 64, 16 4, 64, 16 41,837 1.055

Using 4 KB caches highlights the differences in performance of the different replace-
ment policies. The PLRUm policy displays the highest performance in all three caches,

Algorithms 2021, 14, 218 14 of 20

while the LRU policy gives the worst performance. The reduced size of the L1-Instruction
(1 KB), and the firmware instruction loops constitute an environment where replacing the
least recently used is not effective, due to low time locality. The PLRU policies lack memory
compared to the LRU and are worse at identifying the most recently used line. However,
this ends up not being a handicap as there is no time locality to exploit. The L2-Unified is
more likely to see a performance improvement with PLRU policies [6,27]. This results from
the fact L2 is accessing different memory blocks (instructions and data) with inherently
low time locality.

Using 16 KB and 32 KB caches, the size is large enough to fit the program. There is no
change in performance between the different replacement policies. Despite the program
being 25 KB in size and the L1-Instruction caches 4 KB and 8 KB, respectively, the program
is not required to fit entirely in these memories. As the program is executed, the only
misses that occur are the initial compulsory misses, followed by capacity misses that replace
the previous non-looping instructions. As the caches are big enough to store all recently
looping code, conflict misses becoming nonexistent.

The real tests in FPGA are run in IOb-SoC [18], using the SSRV [22,23] multi-issue
superscalar RISC-V processor. Despite being multi-issue, the processor was limited to one
instruction per clock cycle in the tests, which is the optimal configuration for testing the
cache. Connected to the IOb-SoC internal memory (RAM only and no cache), it achieved
CPI = 1.02, running for 40445 clock cycles. The cache was implemented following a 2-level
cache system: L1-Instruction and L1-Data caches connected to an L2-Unified cache (all
implemented with IOb-Cache).

The FPGA system was implemented in the XCKU040 FPGA with a frequency of
50 MHz. Results with different cache sizes are presented in Table 2.

Table 2. FPGA emulation of Dhrystone SSRV (IOb-SoC) 32-bit at 50 MHz. 100 runs. 2-level cache
system, sizes are for L1-Instr + L1-Data + L2-Unified.

Cache Size (L1 + L1 + L2) Clock Cycles CPI

no cache 594,345 15.017

48 B (16 + 16 + 16) 513,926 12.971

2 KB (0.5 + 0.5 + 1) 185,163 4.673

8 KB (2 + 2 + 4) 51,298 1.294

32 KB (8 + 8 + 16) 42,397 1.070

During the tests, some results were observed, such as in a 2-way set-associative
cache, PLRUt is the best choice since it requires less stored bits while offering the same
performance. Additionally, using a set-associative in the L2-Unified cache represents the
most considerable performance improvement. The PLRUm policy displays the highest
performance in all three caches, while the LRU policy gives the worst performance. This
poor performance occurs because of the cache limited size.

3.3. Resources and Timing

In this section, the cache’s synthesis results are analyzed. First the resource utilization
for different replacement policies is checked, followed by the resources consumed by the
entire cache.

The synthesis tool used is Vivado Design Suite 2019 from Xilinx. Despite being able to
change the cache’s word size with the parameter FE_DATA_W, it was left to 32-bit, since
the cache was only tested in 32-bit systems.

The cache submodules are synthesized using a 100 MHz clock for the resources
presented in the next subsections. The entire cache is synthesized at 100 and 250 MHz clock
frequency and respective resources presented.

Algorithms 2021, 14, 218 15 of 20

3.4. Replacement Policy

The Replacement Policy module is analyzed before the Cache-Memory module since
the former is implemented in the latter. The results of the analysis are available in Table 3.

Table 3. Replacement Policy resources.

R.Policy Ways Lines LUT FF

Single cache line

LRU 2 1 3 2

PLRUm 2 1 3 2

PLRUt 2 1 3 1

LRU 4 1 20 8

PLRUm 4 1 8 4

PLRUt 4 1 6 3

LRU 8 1 81 24

PLRUm 8 1 22 8

PLRUt 8 1 13 7

Multiple cache lines

LRU 2 16 26 32

PLRUm 2 16 26 32

PLRUt 2 16 28 16

LRU 4 16 70 128

PLRUm 4 16 42 64

PLRUt 4 16 33 48

LRU 8 16 196 384

PLRUm 8 16 77 128

PLRUt 8 16 56 112

LRU 2 128 343 512

PLRUm 2 128 222 256

PLRUt 2 128 212 128

LRU 4 128 445 1024

PLRUm 4 128 297 512

PLRUt 4 128 259 384

LRU 8 128 1076 3072

PLRUm 8 128 452 1024

PLRUt 8 128 403 896

The test is divided into 2 sections: single cache line and multiple cache lines. It is not
possible to synthesize the entire cache with a single cache line, so this is only valid for the
analysis of this module.

The single cache line results show how many LUTs are required to implement the
Policy Info Updater and Way Select Decoder. The number of FFs represents the number of
bits the Policy Info Memory module needs to store for each set.

The multiple cache lines results show the current actual amount of resources required
to implement each replacement policy. The current implementation of the Policy Info
Module (PIM) is register-based, so it requires additional logic (LUTs) to address each set.
The number of LUTs is proportional to the total number of bits in the PIM.

Algorithms 2021, 14, 218 16 of 20

Since the LRU requires N_WAYS × log2(N_WAYS) bits per set, initially its size grows
fast with the number of ways. In an 8-way set-associative cache with 128 lines, the LRU
requires more than twice the amount of LUTs and at least thrice the amount of FFs compared
with the PLRU policies. In a 2-way set-associative cache, the replacement policies had the
same performance, but the PLRUt’s PIM requires half the number of FFs compared to the
other two.

3.5. Cache-Memory

Cache-Memory is the module that contains the majority of the cache’s resources. It
contains all the RAM memories and, if configured, the Replacement Policy module too.
The synthesis results are available in Table 4.

Table 4. Cache-Memory resources.

Ways R.Policy Lines Words/Line LUT LUTRAM FF RAMB36 RAMB18

1 KB

1 16 16 496 534 599 1 0

1 64 4 292 128 239 1 1

1 128 2 300 0 174 1 9

2 KB

1 32 16 548 533 614 1 0

1 128 4 341 0 175 1 17

2 PLRUt 16 16 950 1068 1167 1 0

4 KB

1 32 32 995 1044 1126 1 0

1 128 8 405 0 176 1 33

2 PLRUt 128 4 819 0 433 1 34

8 KB

1 128 16 551 0 177 1 65

2 LRU 128 8 1037 0 562 1 66

2 PLRUm 128 8 1037 0 562 1 66

2 PLRUt 128 8 1003 0 434 1 66

16 KB

1 128 32 957 0 178 1 129

1 512 8 933 0 560 1 33

4 LRU 128 8 2055 0 1590 1 132

4 PLRUm 128 8 1913 0 1078 1 132

4 PLRUt 128 8 1877 0 950 1 132

4 PLRUt 64 16 2282 0 1845 1 68

32 KB

1 128 64 1760 0 179 1 257

1 1024 8 1616 0 1072 1 33

8 LRU 128 8 3935 0 4158 1 264

8 PLRUm 128 8 3341 0 2110 1 264

8 PLRUt 128 8 3293 0 1982 1 264

In the configurations with 128 lines or lower, the cache is implemented with LUTRAMs
plus output registers. With 128 lines or more, RAMB18 is used. RAMB36 blocks are never
inferred because these have a 36-bit width. The Write-Through Buffer, which is 64-bit
wide, is implemented with LUTRAMs plus output registers if its depth is 32 or lower, or is

Algorithms 2021, 14, 218 17 of 20

implemented with RAMB36 if the depth is higher than 32. Note that RAMB36 blocks can
be configured for 64-bit width and RAMB18 blocks can not.

In general, looking at the results in Table 4, the memory resources increase with both
the width and depth of the cache memory. Increasing the number of ways, increases mem-
ory, and logic. The logic increases significantly to combine multiple ways and implement
the Replacement Policy module.

3.6. IOb-Cache

Table 5 displays the synthesis and timing results of IOb-Cache using the Native
interface for two different clock frequencies: 100 and 250 MHz. The results for IOb-Cache
with AXI Back-End are similar and differ only in 15 LUTs and two FFs.

Table 5. IOb-Cache (Native) resource and timing analysis.

Ways R.Policy Lines Words/Line LUT LUTRAM FF RAMB36 RAMB18

100 MHz (10 ns)

4 KB

1 128 8 431 0 249 1 33

4 PLRUm 16 16 1727 1068 2407 1 0

8 KB

2 PLRUt 128 8 1025 0 509 1 66

16 KB

4 PLRUm 128 8 1940 0 1154 1 132

32 KB

4 PLRUm 256 8 2961 0 2187 1 132

1 1024 8 1638 0 1145 1 33

250 MHz (4 ns)

4 KB

1 128 8 510 40 269 1 32

4 PLRUm 16 16 1730 1068 2407 1 0

8 KB

2 PLRUt 128 8 1084 80 549 1 64

16 KB

4 PLRUm 128 8 1974 160 1234 1 128

32 KB

1 1024 8 1714 272 1162 1 32

4 PLRUm 256 8 2981 304 2289 1 128

The implementation differs for the two clock frequencies. The used memory is enough
for BRAMs to be inferred for both the Tag and Data memories. For 100 MHz, the critical-
path is from Tag memory output to a Data memory write-enable signal.

For 250 MHz the synthesis tool implements the Tag-Memory with LUTRAMs, with a
register at the output, to meet the timing constraint.

3.7. Open-Source Caches

The IOb-Cache was compared with the configurable PoC.cache design included in
the PoC-Library [15] library of open-source cores. PoC.cache is the most competitive
open-source cache one could find, so the other caches are not evaluated here; clearly, they
cannot compete with IOb-Cache or PoC.cache. The comparison between the two caches is
available in Table 6.

Algorithms 2021, 14, 218 18 of 20

Table 6. Comparison between PoC.cache and IOb-Cache.

PoC.Cache [15] IOb-Cache

HDL VHDL Verilog

Configurability

n. ways, lines, words Yes Yes

back-end width No Yes

Mapping

Direct Yes Yes

Set-Assoc. Yes Yes

Full-Assoc. Yes No

Policies

Write write-through write-through

W.T. Buffer No Yes

Replacement LRU LRU, PLRUs

Back-End Connectivity

Native Yes Yes

AXI No AXI4

Implementation

Main-control FSM Data-path

Data-Memory BRAM BRAM

Tag-Memory LUTRAM BRAM

Valid-Memory Register Register

Rep-Pol. Mem Register Register

Invalidate Yes Yes

Performance

clk/read (hit) 1 1

clk/write 2 1

Ready during valid after valid req.

Read-Data avail. after ready during ready

New req. after ready during ready

In addition to the information in Table 6, the following remarks are important. The
PoC.cache back-end data-width is fixed to the cache line size, and therefore not configurable
to be smaller such as in IOb-Cache.

The PoC.cache tag and valid memories are always implemented with distributed
LUTRAM and registers, respectively, to combinatorially check for a hit and achieve one
read per clock cycle. Lastly, despite using the Write-Though policy, PoC.cache does not have
a buffer and accesses the main memory for write transfers, which is comparatively slower.

Based on the information in Table 6, there are two main points where PoC.cache is
better than IOb-cache: (1) the cache invalidate function and (2) the support for a fully-
associative cache. PoC.cache can invalidate individual lines, whereas IOb-Cache can only
invalidate the entire cache. PoC.cache can be configured as fully associative (single set)
cache and IOb-Cache needs at least two sets. However, besides its theoretical interest, fully
associative caches are seldom used in practice.

In the remaining features, IOb-Cache is better than PoC.cache: configurable back-end
size with AXI4 interface as an option; write-through buffer and independent controller for

Algorithms 2021, 14, 218 19 of 20

fast, most of the time one-cycle writing (PoC.cache only supports one clock cycle for reads);
more replacement policies to choose from; a modular design that allows changing both
front and back-ends without affecting the cache core functionality.

Both PoC.cache and IOb-cache have the same issue of implementing the Tag-Memory
and Policy Info Module using registers, and thus consuming more silicon area than neces-
sary. However, because IOb-Cache is designed to work with the one-cycle read latency of
RAM, it can easily be upgraded to replace these memories with RAMs, while PoC.cache
needs more drastic design changes.

4. Conclusions

In this paper, IOb-Cache, a high-performance configurable open-source cache was
described. IOb-Cache is being used in dozens of projects. It is currently integrated into the
IOb-SoC Github repository, which has 29 stars and is being used in 50 projects (forks). The
Github cloud community is currently the only Verilog cache found by its search tool, with
this level of configurability, that supports pipelined CPU architectures, and the popular
AXI4 bus interface. Results running the cache integrated into a SoC show the proposed
cache efficiency with a CPI of 1.06. This is possible because the proposed cache has a
write-through buffer and an independent controller for fast 1-cycle writing.

Despite the promising results, there are some further improvements: (1) Implementa-
tion of the Write-Back Write-Allocate policy, the Write-Through policy limits the write-bus
capacity to the cache word width. Ideally, these two policies should be configurable; (2) im-
prove the Cache-Control module to allow invalidating of a single selected cache line; and
(3) support for Cache Coherency for multi-processor systems.

Author Contributions: Conceptualization, J.V.R., J.D.L., M.P.V. and J.T.d.S.; Methodology, J.V.R.,
J.D.L., M.P.V. and J.T.d.S.; Software, J.V.R. and J.D.L.; Validation, M.P.V. and J.T.d.S.; Formal analysis,
M.P.V. and J.T.d.S.; Investigation, J.V.R. and J.D.L.; Resources, M.P.V. and J.T.d.S.; Writing—original
draft preparation, J.V.R.; Writing—review and editing, M.P.V. and J.T.d.S.; Supervision, J.T.d.S.; Project
administration, J.T.d.S.; Funding acquisition, J.T.d.S. and M.P.V. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by national funds through Fundação para a Ciência e a Tecnologia
(FCT) with reference UIDB/50021/2020 and by the project PTDC/EEI-HAC/30848/2017, through
INESC-ID.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akula, R.; Jain, K.; Kotecha, D.J. System Performance with varying L1 Instruction and Data Cache Sizes: An Empirical Analysis.

arXiv 2019, arXiv:1911.11642.
2. Ullah, Z.; Minallah, N.; Marwat, S.N.K.; Hafeez, A.; Fouzder, T. Performance Analysis of Cache Size and Set-Associativity using

simpleScalar Benchmark. In Proceedings of the 2019 5th International Conference on Advances in Electrical Engineering (ICAEE),
Dhaka, Bangladesh, 26–28 September 2019; pp. 440–447. [CrossRef]

3. Ramasubramaniam, N.; Srinivas, V.V.; Kumar, P.P. Understanding the Impact of Cache Performance on Multi-core Architectures.
In Information Technology and Mobile Communication; Das, V.V., Thomas, G., Lumban Gaol, F., Eds.; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 403–406.

4. Ramasubramanian, N.; Srinivas, V.; Ammasai Gounden, N. Performance of Cache Memory Subsystems for Multicore Architec-
tures. arXiv 2011, arXiv:1111.3056.

5. Cantin, J.; Hill, M. Cache performance for selected SPECCPU2000 benchmarks. ACM Sigarch Comput. Archit. News 2001, 29, 13–18.
[CrossRef]

6. Al-Zoubi, H.; Milenkovic, A.; Milenkovic, M. Performance Evaluation of Cache Replacement Policies for the SPEC CPU2000
Benchmark Suite. In Proceedings of the 42nd Annual Southeast Regional Conference (ACM-SE 42), Huntsville, AL, USA,
2–3 April 2004; Association for Computing Machinery: New York, NY, USA, 2004; pp. 267–272. [CrossRef]

7. Lentz, M.; Franklin, M. Performance of Private Cache Replacement Policies for Multicore Processors. In Proceedings of the 4th
International Conference on Computer Science, Engineering and Applications, Dubai, United Arab Emirates, 7–8 March 2014;
Volume 4, pp. 1–7. [CrossRef]

http://doi.org/10.1109/ICAEE48663.2019.8975563
http://dx.doi.org/10.1145/563519.563522
http://dx.doi.org/10.1145/986537.986601
http://dx.doi.org/10.5121/csit.2014.4708

Algorithms 2021, 14, 218 20 of 20

8. Mirbagher Ajorpaz, S.; Garza, E.; Jindal, S.; Jiménez, D.A. Exploring Predictive Replacement Policies for Instruction Cache and
Branch Target Buffer. In Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture
(ISCA), Los Angeles, CA, USA, 2–6 June 2018; pp. 519–532. [CrossRef]

9. Stiliadis, D.; Varma, A. Selective victim caching: A method to improve the performance of direct-mapped caches. IEEE Trans.
Comput. 1997, 46, 603–610. [CrossRef]

10. Shukla, S.; Chaudhuri, M. Sharing-Aware Efficient Private Caching in Many-Core Server Processors. In Proceedings of the 2017
IEEE International Conference on Computer Design (ICCD), Boston, MA, USA, 5–8 November 2017; pp. 485–492. [CrossRef]

11. Asaduzzaman, A.; Mahgoub, I.; Sibai, F.N. Evaluation of the impact of Miss Table and victim caches in parallel embedded
systems. In Proceedings of the 2010 International Conference on Microelectronics, Cairo, Egypt, 19–22 December 2010; pp. 144–147.
[CrossRef]

12. Zhu, W.; Zeng, X. Decision Tree-Based Adaptive Reconfigurable Cache Scheme. Algorithms 2021, 14, 176. [CrossRef]
13. airin711: Verilog Caches. 2016. Available online: https://github.com/airin711/Verilog-caches (accessed on 30 June 2021).
14. prasadp4009: 2-Way-Set-Associative-Cache-Controller. 2016. Available online: https://github.com/prasadp4009/2-way-Set-

Associative-Cache-Controller (accessed on 30 June 2021).
15. PoC—Pile-of-Cores. Available online: https://github.com/VLSI-EDA/PoC (accessed on 30 June 2021).
16. IOb-Memories. 2020. Available online: https://github.com/IObundle/iob-mem (accessed on 30 June 2021).
17. AMBA AXI and ACE Protocol Specification. 2020. Available online: https://github.com/IObundle/iob-soc (accessed on 30

June 2021).
18. IOb-SoC. 2020. Available online: https://github.com/IObundle/iob-soc (accessed on 30 June 2021).
19. IOb-Interconnect. 2020. Available online: https://github.com/IObundle/iob-interconnect (accessed on 30 June 2021).
20. Wolf, C. PicoRV32—A Size-Optimized RISC-V CPU. 2020. Available online: https://github.com/cliffordwolf/picorv32 (accessed

on 30 June 2021).
21. IOb-PicoRV32. Available online: https://github.com/IObundle/iob-picorv32 (accessed on 30 June 2021).
22. Risclite. SuperScalar-RISCV-CPU. 2018. Available online: https://github.com/risclite/SuperScalar-RISCV-CPU (accessed on 30

June 2021).
23. IOb-SSRV. 2020. Available online: https://github.com/IObundle/iob-ssrv (accessed on 30 June 2021).
24. IOb-UART. 2020. Available online: https://github.com/IObundle/iob-uart (accessed on 30 June 2021).
25. Avnet, Inc. Kintex UltraScale KU040 Development Board, Version 1.0. 2015. Available online: https://www.avnet.com/

opasdata/d120001/medias/docus/13/aes-AES-KU040-DB-G-User-Guide.pdf (accessed on 20 July 2021)
26. Weiss, A.R. Dhrystone Benchmark: History, Analysis, “Scores” and Recommendations, White Paper, 2002. Available online:

https://www.eembc.org/techlit/datasheets/dhrystone_wp.pdf (accessed on 20 July 2021)
27. Damien, G. Study of Different Cache Line Replacement Algorithms in Embedded Systems. Master’s Thesis, KHT—Royal

Institute of Technology in Stockholm, Stockholm, Sweden, 2007

http://dx.doi.org/10.1109/ISCA.2018.00050
http://dx.doi.org/10.1109/12.589235
http://dx.doi.org/10.1109/ICCD.2017.85
http://dx.doi.org/10.1109/ICM.2010.5696100
http://dx.doi.org/10.3390/a14060176
https://github.com/airin711/Verilog-caches
https://github.com/prasadp4009/2-way-Set-Associative-Cache-Controller
https://github.com/prasadp4009/2-way-Set-Associative-Cache-Controller
https://github.com/VLSI-EDA/PoC
https://github.com/IObundle/iob-mem
https://github.com/IObundle/iob-soc
https://github.com/IObundle/iob-soc
https://github.com/IObundle/iob-interconnect
https://github.com/cliffordwolf/picorv32
https://github.com/IObundle/iob-picorv32
https://github.com/risclite/SuperScalar-RISCV-CPU
https://github.com/IObundle/iob-ssrv
https://github.com/IObundle/iob-uart
https://www.avnet.com/opasdata/d120001/medias/docus/13/aes-AES-KU040-DB-G-User-Guide.pdf
https://www.avnet.com/opasdata/d120001/medias/docus/13/aes-AES-KU040-DB-G-User-Guide.pdf
https://www.eembc.org/techlit/datasheets/dhrystone_wp.pdf

	Introduction
	IOb-Cache
	Architecture of the IOb-Cache
	Front-End
	Cache-Memory
	Replacement Policy
	Least-Recently-Used
	Pseudo-Least-Recently-Used: MRU-Based
	Pseudo-Least-Recently-Used: Binary Tree-Based

	Back-End
	Write-Channel Controller
	Read-Channel Controller

	Cache-Control

	Results
	IOb-System-on-Chip
	Performance
	Resources and Timing
	Replacement Policy
	Cache-Memory
	IOb-Cache
	Open-Source Caches

	Conclusions
	References

