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Abstract: Recently, deep learning has enabled a huge leap forward in image inpainting. However,
due to the memory and computational limitation, most existing methods are able to handle only
low-resolution inputs, typically less than 1 K. With the improvement of Internet transmission capacity
and mobile device cameras, the resolution of image and video sources available to users via the
cloud or locally is increasing. For high-resolution images, the common inpainting methods simply
upsample the inpainted result of the shrinked image to yield a blurry result. In recent years, there
is an urgent need to reconstruct the missing high-frequency information in high-resolution images
and generate sharp texture details. Hence, we propose a general deep learning framework for high-
resolution image inpainting, which first hallucinates a semantically continuous blurred result using
low-resolution inpainting and suppresses computational overhead. Then the sharp high-frequency
details with original resolution are reconstructed using super-resolution refinement. Experimentally,
our method achieves inspiring inpainting quality on 2K and 4K resolution images, ahead of the
state-of-the-art high-resolution inpainting technique. This framework is expected to be popularized
for high-resolution image editing tasks on personal computers and mobile devices in the future.

Keywords: deep learning; image inpainting; super-resolution; high-resolution; high-frequency
information reconstruction

1. Introduction

Image inpainting or image completion, which involves the automatic recovery of
missing pixels of an image according to the known information within the image, is
an important research area in computer vision. With the rapid development of digital
image editing technology, image inpainting has been widely applied to damaged photo
restoration, occlusion removal, intelligent aesthetics and other graphics fields. Inpainting
has been an active research area in the past few decades and many studies have been
devoted to achieving visual realism and vividness [1–16]. However, due to the complexity
of damaged images and the inherent ambiguity of methods, the semantics-continuous and
texture-clear inpainting remains a major challenge, especially for High-Resolution (HR)
images [17]. Hence, our work is motivated by the issue that most existing image inpainting
techniques cannot realize high quality completion of damaged HR images.

Early inpainting methods can be broadly divided into the diffusion methods based
on pixel propagation [1–3] and the patching methods based on texture borrowing [4–8],
which do a poor job of reconstructing complex details [9]. In recent years, deep learning
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approaches have achieved promising success in inpainting. A stream of these methods
hallucinates missing pixels using learned data distribution [9–11,18]. Another stream fills
the hole using a data-driven manner with the external image sources [12–16]. Though these
methods can yield meaningful structure in missing regions, the generated regions are
often blurred and accompanied by artifacts. In addition, with the improvement of Internet
transmission capacity and mobile device cameras, the resolution of image and video
sources available to users via the cloud or locally is increasing [17]. However, for HR
images, general image inpainting methods often yield a limited result. In addition the
input is even rejected due to the memory limitation [17]. Now, there is an urgent need for
methods that can reconstruct the missing high-frequency information in HR images and
generate sharp texture details.

Therefore, several inpainting strategies have been proposed for the high-resolution
reconstruction of high-frequency information. For example, Ikehata et al. [19] proposed a
combined framework of patch-based inpainting and super-resolution to generate a dense
high-resolution depth map from a corrupted low-resolution depth map and its corre-
sponding high-resolution texture image. Kim et al. [20] proposed a method called “Zoom-
to-Inpaint”, which enhances the high-frequency details of the inpainted area through a
zoom-in, refine and zoom-out strategy, combines with high-resolution supervision and
progressive learning. These frameworks improve the high-frequency reconstruction of the
missing regions in general images. However, for HR images, these methods are not yet
perfectly applicable and still face problems such as computational limitation. On the other
hand, Yi et al. [17] proposed an HR image inpainting algorithm, which upsamples the
Low-Resolution (LR) inpainted result and adds a high-frequency residual image into the
blurred image to generate a sharp result through a contextual residual aggregation mech-
anism. The method effectively suppresses the cost of memory and computing power as
well as achieves compelling quality in natural photographs with a monotonic background.
However, the realism and semantic continuity of the inpainted results for the images with
complex compositions or textures need to be further improved. For now, the visually real-
istic recovery of high-frequency information for the HR images with complex backgrounds
is still a tricky task.

To this end, we propose a novel deep learning framework for HR image inpaint-
ing. The framework mainly consists of two deep learning modules: (1) a low-resolution
inpainting module for the reconstruction of high-frequency information in the missing
region, and (2) a super-resolution module for the enhancement of the resolution of the
inpainted region. We input the HR images to the inpainting network by downsampling,
hallucinating an LR map with high semantic continuity and coherence, then sending it
to the super-resolution network for refinement, and finally obtaining a visually realistic
inpainted result at high-resolution. Our method is capable of entering 2K and 4K resolution
images and generating results at the same resolution, while ensuring the structural and
semantic coherence, which is ahead of the state-of-the-art technology. In summary, our
contributions are four-fold:

• A novel deep learning framework for high-resolution inpainting, which allows the
input of 2K and 4K resolution images to yield equally sharp results.

• A “degradation and refinement” strategy is proposed to suppress suppressing mem-
ory and computational overhead while guaranteeing a high inpainting quality at
high-resolution.

• The structural coherence and visual fidelity of the inpainted results are enhanced to
be ahead of the state-of-art technology.

• A general high-resolution inpainting pipeline consisting of an independent inpainter
and refiner in series that can be trained and modified separately.
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2. Related Work
2.1. Image Inpainting

Image inpainting is the fundamental and long-standing problem in computer vision.
Traditional inpainting methods can be broadly classified into two categories: (1) diffu-
sion methods [1–3], which propagate neighboring pixels; (2) patch methods [4–8,21,22],
which explicitly borrow textures from surroundings. These methods are limited to locally
available information and cannot recover meaningful structures in the missing regions, let
alone complex details. The development of the image processing field including image
synthesis, image super-resolution and image inpainting have been greatly facilitated with
the proposal of deep learning and Convolutional Neural Networks (CNN), especially
Generative Adversarial Networks (GAN) [15,18,23–28]. For example, Pathak et al. [15]
proposed a context encoder that makes a reasonable assumption about the hole in the
picture by training a CNN. Furthermore, Yang et al. [18] proposed an optimization method
based on GAN that produces more realistic and coherent results. In GAN, higher-order
semantic acquisition is trained together with low-order pixel synthesis, which effectively
compensates the shortcomings of traditional algorithms. However, due to the complexity
and diversity of natural images, it is not enough to only generate new pixels, but also to
ensure the visual fidelity and vividness of the inpainted results [15]. Classical single-stage
GAN will lead to discontinuities, blurring, artifacts and excessive smoothing defects. There-
fore, researchers have improved and innovated the framework based on GAN, such as
Iizuka et al. [12] who used global and local two-stage discriminators to judge the semantics
of the generated images and improve the consistency of the generated pixels with the
original pixels. EdgeConnect [9] is an effective GAN-based inpainting framework inspired
by the idea of “lines first, color next” in art creation, which generates complex details
through a two-stage GAN, adhering well to the principles of structure-first. The result
is impressive. However, general inpainting methods still struggle to remove its inherent
blurriness, which is more obvious after zooming in. Hence, the high-resolution recovery of
the missing high-frequency information in HR images is a non-negligible problem for HR
image inpainting.

2.2. High-Frequency Image Content Reconstruction

For complex HR images, although some current methods can inpaint meaningful
contents, they will lead to severe high-frequency information loss due to the input res-
olution limitation and the inherent ambiguity. For this reason, Yi et al. [17] proposed a
contextual residual aggregation mechanism to produce high-frequency residuals for the
missing content by weighted aggregating residuals from contextual patches, then add
them to the blurry image to yield high-resolution result. However, this mechanism is
difficult to ensure the structural and semantic consistency of the inpainted results. If we
want to take full advantage of the existing semantic continuous inpainting, we can only
downsample the input and thus obtain a low-resolution result. Hence, we propose to solve
this contradiction using Super-Resolution (SR) techniques. SR reconstruction allows an
HR image to be extrapolated from an LR image and to recover as much high-frequency
information as possible, such as texture details. Early SR algorithms were based on image
processing in the frequency or space domain, such as the Multiframe Image Restoration
proposed by Tsai et al. [29] and Projection onto Convex Sets (POCS) proposed by Stark
et al. [30]. In 2014, Dong et al. pioneered the application of deep learning to the super-
resolution reconstruction. Since then, a large number of super-resolution models based
on deep learning have been proposed, from CNN to GAN. The SRCNN proposed by
Dong et al. [31] uses a three-layer CNN, each layer corresponding to the feature extraction,
nonlinear mapping, and high-quality reconstruction of the image, respectively. However,
the network is too shallow leading to too small perceptual field of the generated images.
Compared with the Deep Neural Networks (DNN), the SRCNN has weaker fitting ability
and does poor job in complex details. The most direct solution is to increase the network
depth. A deeper network inevitably leads to a larger perceptual field [32], which allows the
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network to utilize more contextual information and have a more reflective global mapping.
For example, Reuben et al. [33] proposed a spatial light field super-resolution method,
using deep CNN to restore the entire light field with consistency across all angular views.
Kim et al. [34] proposed a very deep network (VDSR) that improves the SR performance
in terms of both PSNR and SSIM. However, both SRCNN and VDSR input the LR image
to the network by bicubic interpolation, resulting in low efficiency. For this reason, FS-
RCNN [35] and ESPCN [36] operate the LR input directly and upsample at the end of
the network. Although great success has been achieved in high-frequency recovery with
bicubic degradation [37–39], for arbitrary blur caused by LR inpainting, these methods
perform poorly due to the mismatch of degradation models. Zhang et al. [40] proposed a
Plug-and-Play deep framework (DPSR) with a new degradation model that can handle
LR images for arbitrary blur kernels, achieving promising results in synthetic and real LR
images. Hence, we migrated this framework to HR inpainting task for high-frequency
information reconstruction from LR to HR inpainted images.

3. Method
3.1. Framework and Flow

We divide the HR inpainting task into two distinct problems: HR image inpainting
and high-frequency information reconstruction. Hence, we propose a novel HR inpaint-
ing framework that first downsamples the HR input into a nLR network for inpainting,
and the preliminary inpainted result is fed into a SR network for detail refinement. Finally,
the inpainted HR result with high-frequency details can be obtained.

The entire framework is depicted in Figure 1. It mainly consists of two networks
in series: (1) an LR inpainting network and (2) an SR network. As shown in Figure 1,
a damaged HR image (2K or 4K) with a mask are used as input. Firstly, the input image and
mask are bicubicly degraded in the input layer to obtain the LR map, avoiding the memory
overflow caused by a too large input size. Next, the LR maps are fed into the LR inpainting
network to yield a structure-coherent and detail-rich result in the LR field-of-view. The LR
inpainted map is then sent to the SR network and scaled up to the original resolution by
nonlinear mapping. This process realizes the high frequency information reconstruction
at high resolution. Finally, the generated content is fused with the remaining part of the
ground-truth image to obtain the HR inpainted image. The algorithm flowchart of our
HR image inpainting method is shown in Figure 2. The following subsections depict the
technical details of the deep learning networks used in our method.

3.2. LR Inpainting Network

The LR inpainting network aims to characterize variations across the entire image in
the LR field-of-view and to recover missing information. As the fundamental quality of
HR reconstruction, LR inpainting must ensure structural consistency, semantic continuity,
and sufficient details of filling content in the LR field-of-view. Hence, we adopt a two-stage
GAN framework [9] to realize high-quality image inpainting in LR field-of-view. The LR
inpainting network consists of an edge generator and an image completion network, each
stage of which follows an adversarial model consisting of a pair of generator–discriminator.
Specifically, the generator follows the architecture proposed by Johnson et al. [41] and
consists of two downsampling encoders, eight residual blocks [42], and two upsampling
decoders. The discriminator uses the 70 × 70 PatchGAN [43,44] architecture, which dis-
criminates whether the 70 × 70 overlapping blocks are true or not.



Algorithms 2021, 14, 236 5 of 13

Figure 1. The overall pipeline of our method (SR-Inpaint): (top) the pipeline of SR-Inpaint, (bottom)
the architectures of networks.

Figure 2. Algorithm flowchart of SR-inpaint.
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The core task of edge generator is to predict the edge map for the masked region,
as shown in Equation (1). Let Igt be the ground truth image. Cgt and Igray denote its edge
map and grayscale counterpart respectively. In this stage, we use the masked grayscale
image Ĩgray = Igray � (1−M) as input. Its edge map and image mask are denoted as
C̃gt = Cgt � (1−M) and M, respectively, and used as pre-condition. Here, � denotes the
Hadamard product.

Cpred = G1
(
Ĩgray , C̃gt, M

)
(1)

The network is trained with both the adversarial loss Ladv,1 and feature-matching
loss LFM, as shown in Equation (2), where λadv,1 and λFM are regularization parameters.
The feature-matching loss is very similar to perceptual loss, and compare the activation
maps in the intermediate layers of the discriminator, which further stabilize the training
process by forcing the similarities of both the results of the generator and the real images.

min
G1

max
D1
LG1 = min

G1

(
λadv,1 max

D1
(Ladv,1) + λFMLFM

)
(2)

For the second stage, i.e., the image completion network, the incomplete color image
Ĩgt = Igt � (1−M) are used as input, conditioned using a composite edge map Ccomp,
which is constructed by combining the edges inferred with the first stage and ground truth
edges in the remaining part of the original image, i.e., Ccomp = Cgt � (1−M) + Cpred �M.
The network infers a color image Ipred, with missing regions inpainted. This procedure is
denoted as Equation (3).

Ipred = G2
(
Ĩgt, Ccomp

)
(3)

This network is trained over a joint loss representation, as shown in Equation (4),
containing `1 loss L`1 , adversarial loss Ladv,2, perceptual loss Lperc and style loss Lstyle.
λ`1 , λadv,2, λp and λs are all regularization parameters.

min
G2

max
D2
LG2 = min

G2

(
λ`1L`1 + λadv,2 max

D2
(Ladv,2) + λpLperc + λsLstyle

)
(4)

3.3. SR Network

Since only LR inpainted results can be obtained from LR inpainting network, in addi-
tion to the unavoidable blur and noise in the inpainting process, it is necessary to address
the problem of high-frequency information reconstruction at high resolution. Hence, the SR
network aims to recover the missing high-frequency information in the HR field-of-view
and enhance the resolution of LR inpainted results. Since the blurring pattern of the gener-
ated LR content is unknown, we adopt a deep plug-and-play SR framework for arbitrary
blur kernels (DPSR) [40].

Most existing SR methods assume some degradation model. A widely used general
degradation model for SR is depicted as Equation (5).

y = (x⊗ k) ↓s +n (5)

where x ⊗ k means the convolution between blur kernel k and HR image x. ↓s is a
subsequent downsampling operation with scale factor s, and n is additive white Gaussian
noise (AWGN).

However, DPSR employs a new degradation model that supports blur kernel esti-
mation using existing deblurring methods. As shown in Equation (6), the degradation
model of DPSR made a modification to the general degradation model by first bicubic
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downsample the full size image and then convolution with kernel K, rather than the
convolution-downsample order, which is effective in dealing with blurry LR image.

y = (x ↓s)⊗ k + n (6)

Both models are then plus a noise term n. Once the model is defined, an energy func-
tion is formulated according to Maximum A Posteriori (MAP) probability, which contains
two terms: data fidelity (likelihood) term and a regularization term. This optimization
problem is solved with a quadratic splitting (HQS) algorithm.

Later, a super-resolver needs to be specified, which should also take the noise level as
input. Here, we only need to modify the existing DNN-based super-resolver by adding a
noise map as input. Methods such as SRMD can also be adopted as they already contain
the noise level map.

4. Training Configuration and Strategy

We train both the Egde-Connect and DPSR model on a single NVidia Geforce GTX
1080 Ti GPU, with the PyTorch framework.

For the Edge-Connect model, the size of input image is 256 × 256. The batch size is
set to 8. An Adam algorithm is adopted to optimize the model. The parameter β1 is set
to 0 and β2 is set to 0.9. First, the Generator G1 and Generator G2 are trained separately
using Canny edges. The learnings rate are set to 10−4 until the training reaches the plateau.
Then, the learning rate is reduced to 10−5. Generator G1 and Generator G2 continue to
train until convergence. Finally, the networks are fine-tuned by removing D1. Generator
G1 and Generator G2 are trained end-to-end with learning rate 10−6 until convergence.
The learning rate for the training of Discriminators are 1

10 of the generators.
For the DPSR model, we trained an enhanced version of SRResNet, namely SRResNet+

as Zhang el al. [40]. The Adam algorithm [45] is again adopted to optimize the SRResNet+
model. The learning rate is first set to 10−4. Then, for every 5× 105 iterations, the learning
rate decreases by half and finally be fixed when reach 10−7. The batch size for training
procedure is 16. The patch size of LR input is 48 × 48. Data augmentation is performed,
by image rotation and flip.

5. Experimental Results and Discussion

Our proposed method (SR-Inpaint) is evaluated on the DIV2K dataset [46] and 200
2K-images as well as 200 4K-images of people, animals, nature, cities, objects, etc. Re-
sults are compared against the state-of-the-art HR image inpainting technology (HiFill
by Yi et al. [17], CVPR 2020) both qualitatively and quantitatively. In the experiment,
the damaged pixels were 10.612% of the total pixels for the 2K-image test set, and the
damaged pixels were 12.799% of the total pixels for the 4K-image test set.

5.1. Implementation Details

Figure 3 displays the HR image inpainting pipeline in our framework. Firstly, the dam-
aged image with mask is bicubicly downsampled to 1K resolution. The LR damaged map is
then fed to the LR inpainting network for inpainting to yield an LR inpainted map. Subse-
quently, the LR inpainted map is fed into the SR network for frame inference to reconstruct
the high frequency details at high resolution. Notice that a gate exists here to match the
corresponding SR networks for input images of different resolutions. For 2K input, the “×2”
network is matched to recover the original resolution; for 4K input, the “×4” network is
matched to recover the original resolution. Finally, the SR-enhanced generated content is
fused with the real background by masking to obtain the completed HR inpainting result.
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Figure 3. Implementation diagram of our high-resolution inpainting pipeline.

5.2. Qualitative Evaluation

Firstly, our approach is compared with the state-of-the-art technology in terms of
visual results. Figures 4 and 5 show the examples of the images generated by the our
model and the comparison model under 2K and 4K inputs. For visualization, we replace
the damaged area with black color. It is clearly visible that our model is able to generate
semantically continuous results that are closer to ground-truth. In addition, most of the
image structures remain coordinated. In contrast, the HiFill model does a poor job in terms
of structure and semantics. Particularly, for complex background, the results of the HiFill
model suffer from deformation and semantic incoherence.

We think it is explained by the fact that the HiFill algorithm borrows the surrounding
texture to fill the holes. If the structure and semantics of the missing region are completely
different from the surrounding, then it is difficult to guarantee a meaningful structure.
In contrast, our inpainting is based on edge connection, following the principle of “lines
first, color next”, generating coherent structures through a two-stage GAN to achieve
visual realism.

Figure 4. Example of inpainting results for 2K resolution: (left to right) ground-truth, input damaged
image, inpainted image by our method, inpainted image by state-of-the-art technology.
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Figure 5. Example of inpainting results for 4K resolution: (left to right) ground-truth, input damaged
image, inpainted image by our method, inpainted image by state-of-the-art technology.

Compared to general image inpainting, for HR inpainting, the sharpness of the
inpainted area is as important as the global picture coherence. Therefore, Figure 6 shows a
zoomed-in comparison of the inpainting results. It can be seen that the areas generated
after bicubicly upsampling and Gaussian pyramid-up are blurred and low resolution.
The areas enhanced by the wavelet method have a non-negligible color difference with the
original images. Meanwhile, the areas enhanced by the Super-Resolution (SR) enhancement
mechanism show minimized ambiguity. Compared with the traditional techniques, the
SR enhancement mechanism based on deep learning achieves the reconstruction of high
frequency details at high resolution, which significantly improves the sharpness of the
generated image.

Although the HiFill model can also generate high frequency details at high resolution
through the Contextual Residual Aggregation (CRA) mechanism. The CRA mechanism
aggregates high-frequency details using background residuals. However, if the high-
frequency information in the background is not relevant to the high-frequency information
in the missing region, then the generated high-frequency details are meaningless. Com-
pared with the CRA mechanism, SR enhancement mechanism generates high-frequency
details through global picture inference based on deep learning of big-data, which is
guaranteed to be meaningful in most cases.
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Figure 6. Zoomed-in comparison of 2K and 4K inpainted details: (left to right) input image, local
details of ground-truth, local details of LR inpainting with bicubicly upsampling, local details of LR
inpainting upsampled on Gaussian pyramid, local details of LR inpainting with wavelet enhancement,
local details of LR inpainting with SR enhancement, local details of state-of-the-art technology.

In summary, although both generate HR results, our method does significantly better
than the current state-of-the-art HR inpainting method in terms of semantic consistency as
well as structural continuity. Our strategy maximizes the visual realism of the inpainting.

5.3. Quantitative Evaluation

For a more objective comparison between our method and state-of-the-art method in
terms of high-resolution inpainting, we tested our method against state-of-the-art method
on 2K and 4K image testsets and calculated the numerical metrics. The quality of our results
are evaluated using the following metrics: Peak Signal-to-Noise Ratio (PSNR) [47], Struc-
tural SIMilarity (SSIM) [48], Normalized Root Mean Square Error (NRMSE), and Fréchet
Inception Distance (FID) [49]. Among them, PSNR is used to measure the degree of defor-
mation and noise; SSIM is used to describe the degree of similarity of the graphics structure;
NRMSE is used to measure the pixel error; FID is used to measure the perceptual error
based on deep features, using a pre-trained Inception-V3 model [50].

Table 1 presents the numerical results of our model and current state-of-the-art model
on the 2K and 4K image testsets. It can be seen that our model performs better on both 2K
and 4K testsets for all numerical metrics. It indicates that our framework is ahead of the
state-of-the-art method in the quality of inpainting at 2K and 4K resolutions, better adding
pixel-level details, better recovering the global structure, and obtaining more realistic
results on perception.

Table 1. Quantitative comparison of our model and the state-of-the-art model.

2K Inpainting 4K Inpainting

Method PSNR↑ SSIM↑ NRMSE↓ FID↓ PSNR↑ SSIM↑ NRMSE↓ FID↓

HiFill 21.386 0.810 0.175 1.193 20.503 0.813 0.239 2.082
SR-Inpaint 27.364 0.923 0.092 0.097 26.065 0.910 0.130 0.138
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6. Conclusions

We propose a general deep learning framework for the reconstruction of missing high-
frequency information in high-resolution image through a super-resolution enhancement
mechanism. Compared with traditional deep learning inpainting techniques, our model can
handle both 2K and 4K images. Since our model adopts a “degradation and refinement”
strategy, the computational overhead is well suppressed, while the inpainting quality
is guaranteed. In addition, compared with the current state-of-the-art high-resolution
inpainting model, our model leads in both visual results and numerical metrics, achieving
semantic continuity, texture clarity, and visual fidelity. In the future, we will further
optimize the network structure and training strategy to achieve better results as well as
higher efficiency.
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