fj algorithms

Article

Efficient Construction of the Equation Automaton

Faissal Ouardi **(, Zineb Lotfi ' and Bilal Elghadyry »**

check for

updates
Citation: Ouardji, F,; Lotfi, Z.;
Elghadyry, B. Efficient Construction
of the Equation Automaton.
Algorithms 2021, 14, 238. https://
doi.org/10.3390/a14080238

Academic Editor: Frank Werner

Received: 27 May 2021
Accepted: 6 August 2021
Published: 11 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science, Faculty of Sciences, Mohammed V University in Rabat,

Rabat 10000, Morocco; lotfi.ziineb@gmail.com (Z.L.); bilal.el-ghadyry@univ-littoral.fr (B.E.)

2 EA 4491-LISIC-Lab., Laboratoire d'Informatique Signal et Image de la Cote d’Opale Université Littoral Cote
d’Opale, 62100 Calais, France

* Correspondence: f.ouardi@umb5r.ac.ma

1t These authors contributed equally to this work.

Abstract: This paper describes a fast algorithm for constructing directly the equation automaton from
the well-known Thompson automaton associated with a regular expression. Allauzen and Mohri
have presented a unified construction of small automata and gave a construction of the equation
automaton with time and space complexity in O(m log m + m?), where m denotes the number of
Thompson automaton transitions. It is based on two classical automata operations, namely epsilon-
removal and Hopcroft’s algorithm for deterministic Finite Automata (DFA) minimization. Using the
notion of c-continuation, Ziadi et al. presented a fast computation of the equation automaton in O (m?)
time complexity. In this paper, we design an output-sensitive algorithm combining advantages of the
previous algorithms and show that its computational complexity can be reduced to O(m x |Q=,|),
where |Q=,| denotes the number of states of the equation automaton, by an epsilon-removal and
Bubenzer minimization algorithm of an Acyclic Deterministic Finite Automata (ADFA).

Keywords: regular expressions; finite automata; efficient algorithms

1. Introduction

The equation automaton (also known as derived terms automaton or Antimirov
automaton) was first introduced in Mirkin’s paper [1]. In [2], Antimirov introduced the
notion of partial derivative of a regular expression, that lead to another definition and
construction of the equation automaton. It is an e-free NFA which has in general smaller
number of states and transitions than the well-known position automaton [3-5]. The
complexity of the original construction algorithm of [2], which is based on the computation
of the set of partial derivatives of the expression, is in O(n5), where n denotes the size of the
regular expression. In 2001, Champarnaud and Ziadi [6] introduced the notion of canonical
derivatives and constructed a new automaton called the c-continuation automaton. They
also proved that this automaton is isomorphic to the position automaton and that the
equation automaton is its quotient for some equivalence relation.

The notion of c-derivative has been introduced in [6] to derive the equation automaton
from the position automaton via the c-continuation automaton. A unique regular expres-
sion over indexed and ordered letters, called c-continuation, is assigned to each state of the
position automaton. The resulting automaton is called the c-continuation automaton [6].
After that, one can define the equivalence relation between two c-continuations i.e., two
states of the c-continuation automaton as follows: if deleting the indices of letters from two
c-continuations results in the same regular expression, they correspond to the same partial
derivative. Hence, the equation automaton would be a quotient of the c-continuation
automaton w.r.t. the previously defined equivalence relation. From the algorithmic point
of view, this result allows the construction of the equation automaton in O(n?) time and
space [6,7]. Therefore, this improves the Antimirov’s algorithm by a factor of O(n?).

In [8], Allauzen and Mohri present simple and unified constructions of the position
automata [3-5], follow automata [9,10], and the equation automata [2,6,7] from regular

Algorithms 2021, 14, 238. https:/ /doi.org/10.3390/a14080238

https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7636-5001
https://orcid.org/0000-0002-8034-5855
https://doi.org/10.3390/a14080238
https://doi.org/10.3390/a14080238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14080238
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a14080238?type=check_update&version=2

Algorithms 2021, 14, 238

20f 17

expressions. Their algorithms are based on two standard automata operations applied to
the Thompson automata [11,12] called: epsilon-remove and Hopcroft’s algorithm for DFA
minimization [13]. The complexity of their construction for the equation automaton is in
O(m log m + mz), where m is the number of Thompson automaton transitions. Notice that,
by construction the number of transitions of the Thompson automaton m and the size of a
regular expression n are proportional. Thus, we have m = O(n).

To improve the time complexity of computing the equation automaton from a regular
expression E, we design an algorithm, combining advantages of previous methods [6-8],
with a worst-case time complexity in O(m x |Q=,|), where |Q=,| denotes the number of
its states. Our approach is based on Bubenzer minimization of an acyclic DFA instead
Hopcroft’s algorithm for DFA minimization step used in Allauzen and Mohri’s method.
The main idea is to associate implicitly each c-continuation to a corresponding state, called
position state in the Thompson automaton by a special marking of e-transitions. As a conse-
quence of this marking, the right language of each position state in the Thompson automa-
ton represents implicitly its c-continuation, called pseudo-continuation. After that, we disable
temporarily the cyclic e-transition in the Thompson automaton and perform Bubenzer min-
imization of an acyclic DFA to compute efficiently partial derivatives equivalence relation
over the set of position states. Finally, we remove indexed e-transitions, enable the cyclic e-
transition and then compute the e-closure of states in the produced automaton from the pre-
vious step to get the equation automaton. The implementation of the proposed algorithm
is available under the repository https:/ /github.com/FaissalOuardi/Equation-automaton,
(accessed on 27 May 2021).

The paper is organized as follows. Section 2 contains some basic definitions and nec-
essary preliminaries. Section 3 summarizes theoretical results that lead to c-continuations
of a regular expression, and their relations with the partial derivatives. The definition of
the c-continuation automaton is recalled, as well as the way it is connected to the equation
automaton. Section 4 is a recall to the algorithm due to Allauzen and Mohri. We detail then
in Section 5 the algorithmic refinements leading to an O(m x |Q=,|) time complexity of the
efficient construction of the equation automaton where |Q=, | is the number of its states.

2. Preliminaries

In this section, we introduce briefly the notion of finite automata. For further details
on formal aspects of finite automata theory, we particularly recommend reading classical
books [14,15].

2.1. Regular Expressions and Finite Automata

Let A be a non-empty finite set of letters, called an alphabet. The set of all words over
A is denoted by A*. ¢ is the empty word. A language over A is a subset of A*.

2.1.1. Regular Expressions and Languages

A regular expression over the alphabet A is a term of the algebra 7,,,(4) defined over
the set A U {0, 1} with the symbols of functions %, +, -, where * is unary and + and - are
binary. Properties of the constants 0, 1 and the operators *, +, and - lead to identities on
this algebra. Each regular expression denotes a language. L is the function that assigns to
each regular expression the regular language it denotes. L : T,,,(4) — reg(A*) is defined

as follows:

L) = @
L) = {e
L(a) = a, foreachain A
L(F+G) = L(F)UL(G)
L(F-G) = L(F)L(G)
L(F) = L(F)*

https://github.com/FaissalOuardi/Equation-automaton

Algorithms 2021, 14, 238

30f17

The following identities are classically used:
0+E=E=E+0, 1-E=E=E-1, 0-E=0=E-0.

Let E be a regular expression. The set of letters occurring in E is denoted by Ag.
To specify their position in the expression, letters are subscripted following the order of
reading. The resulted expression is the linearized form of E, denoted by E. For example,
starting from E = (a + b)*aba + 1, one obtains the linearized version E = (a1 + by)*azbyas +
1 of E. The subscripted letters are called positions; the set of all position in the expression E is
denoted by pos(E). For the previous example, we have pos(E) = {ay, by, a3,b4,a5}. If Fis
a subexpression of E, we denote by pos (F) the subset of positions of E that are letters of F.
We say that a regular expression is in linear form if each letter of the expression occurs only
once. We denote by & the function that maps each position in pos(E) to the letter of Ag that
appears at this position in E. For E = (a + b)*aba + 1, we have h(a;) = h(az) = h(as) = a
and h(by) = h(bs) = b. The size of the regular expression E, denoted by | E|, is the number
of nodes in its syntax tree. We call alphabetic width of E, denoted by || E ||, the number of
occurrences of letters in the expression i.e., the cardinality of pos(E). The alphabetic width
of the expression (a + b)*aba + 1 is equal to 5; its size is equal to 12.

Notice that the alphabetic width and the size of a regular expression are independent
parameters. Therefore complexities are expressed w.r.t. both of these two parameters.
However, it is usual to preprocess the input expression in order to reduce its size and to
make its size proportional to its alphabetic width. So, if we consider a reduced regular
expression E w.r.t. the following rules:

e 1+1=1,
e 1+E+1=1+E,
e Eisin Star-Normal Form (SNF) [16].

Thus, we have in this case |E | = O(|| E ||). It is known that regular expressions can
be transformed to SNF in linear time [16]. A(E) denote the null term of E, that is

[1 ifeeL(E),
AME) = { 0 otherwise.

By T(E) we denote the syntax tree associated with the regular expression E. A node in
T(E) will be denoted by v. We write Nodes(E) for the set of nodes of T(E). If v € Nodes(E)
isanode in T(E),sym(v), father(v) and right(v) denote respectively the symbol, the father
and the right son of the node v. If sym(v) is an operator, E, will denote the subexpression
that corresponds to the subtree with the root v.

2.1.2. Finite Automata and Recognizable Languages

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,A,q0,6,F) where
Q is a finite set of states, A is the alphabet, g9 € Q is the initial state, F C Q is the set of final
states, and & : Q x (A U {e}) — 2 is the transition function. The size of an automaton A,
denoted by |.A|, is the number of its states. The automaton A is called deterministic (DFA) if
there is only one initial state, [6(g,¢)| = 0and |6(g,a)| =1, forany g € Q, foranya € A. A
pathin A is a sequence (g;,4;,4i+1), i = 1,- -+, n, of consecutive transitions. Its label is the
word w = ayay - - - a,. A word w = ajay - - - a, is recognized by the automaton A if there
exists a path labeled w such that g1 = qp and g,,41 € F.

The language recognized by the automaton .4, denoted by L(.A), is the set of words

—>
it recognizes. The right language of a state g in the automaton A, denoted by L;(.A), is
—
obtained by setting g to be the initial state, i.e., L4(A) = {w € A* | 6(q,w) NF # @}.

We say that A is acyclic if the underlying graph is acyclic. The language associated
with an acyclic automaton is finite.

Algorithms 2021, 14, 238

40f17

Let ~ be an equivalence relation over Q. For g € Q, [] denotes the equivalence class
of gw.rt. ~ and, for C C Q, C/~ denotes the quotient set C/~ = {[g]|q € C}. We say that
~ is right invariant w.r.t. A if and only if the following conditions hold:

e ~ C(Q-— F)?U F? (final and non-final states are not ~-equivalent),
e foranyp,g€ Quac A ifp~g, thend(p,a)/~=10q,a)/~.

2.2. Thompson Automaton

In [12], Thompson gave a linear time and space algorithm to convert a regular expres-
sion E to an NFA with e-transitions, denoted by 7g. The recursive steps of the construction
of Thompson NFA are pictured in Figure 1.

It E =0, we have If E =1, we have It E=ae¢€ A we have
-0 O —~0—0 020
If E=F+ G, we have IfE=F-G, we have

+°<: % >o T e T e

If E=F*, we have

&)

£ £

Figure 1. Thompson construction of an NFA.

Example 1. Let us consider the reqular expression E = (a* + ba* + b*)*. The Thompson
automaton Tg associated with E is shown in the Figure 2.

i

Figure 2. Thompson automaton 7g.

There are some disadvantages of Thompson’s NFA when it is used in practice: it has
many redundant states and e-transitions, its number of states is in O(| E|) while other
constructions offer NFAs with O(|| E||) states.

In the next section, we will present the construction of a reduced e-free automaton, named
equation automaton, sometimes called Antimirov automaton or derived terms automaton.

Algorithms 2021, 14, 238 50f17

3. Equation Automaton

The equation automaton has been introduced for the first time by Mirkin in [1]. In 1996,
Antimirov introduced the notion of partial derivatives and used it to define the equation
automaton [2]. Champarnaud and Ziadi [6] defined the notion of canonical derivatives of
a linear expression and constructed a new automaton called the c-continuation automaton.
They also proved that this automaton is isomorphic to the position automaton in the sense
that the two automata have identical sets of states, identical initial and final states, and
transitions Theorem 6 in [6]. Using an equivalence relation over the set of states of the
c-continuation automaton, they derive the equation automaton in quadratic time.

The definition of the equation automaton of a regular expression is based on that of
the partial derivatives of regular expressions, which are multisets of regular expressions
over A. The partial derivative of E with respect to a € A is defined recursively on the
structure of E as follows:

%(0) = (1) =0,
da(x) = ifa= xthen {1} else @,
0(F+G) = 04(F)U0.(G),
%(F-G) = 0(F)- GU?\() - 0a(G),
9a(F") 9a(F) - F

The partial derivative of E with respect to the string u € A* is denoted by 9, (E) and
recursively defined by 9;(E) = E and 0,4 (E) = 9,(9,(E)).
Let D(E) = {E} U{E' | E' € 9,(E) withu € A*}.

Theorem 1. (Antimirov [2]). The cardinality of the set D(E) of all partial derivatives of a reqular
expression E is less than or equal to || E || + 1.

The equation automaton &g = (D(E), Ag, E, , F) of E is defined by:
e S(E,a)={E"€D(E)| B’ €9,(E)},
e F={F eD(E)|AME)=1}.

Example 2. Let us consider the reqular expression E = (a* 4 ba* 4 b*)*. The partial derivatives
of E are as follows:

QO
2
—~

[es]
~

|

The computation of the transitions of the equation automaton &g are as follows:

a*)(a* +ba* + b*)* Ud,((a* + ba* + b*)*)

) *(a* +ba* +b*)* U (04(a*) Udg(ba*) Ud,(b*))(a* + ba* + b*)*

a* +ba* +b*)*}

)(11 +ba 4+ b*)* Uoy((a* + ba* + b*)*)

Ja*(a* + ba* +b*)* U (9p(a*) U0y (ba*) Uay(b*))(a* + ba* + b*)*

b)a* Uoy(b)b*)(a* + ba* + b*)*

a*(a* + ba* + b*)*,b*(a* + ba* + b*)*}

9a(b* (a* +ba* +b*)*) = 9,(b*)(a* + ba* + b*)* Ud,((a* + ba* + b*)*)
a(a*) U0,(ba*) Ud,(b*))(a* + ba* + b*)*

a*(a* + ba* + b*)*}

(b*)(a* + ba* + b*)* U0y ((a* + ba* 4 b*)*)

= 9y(b)b* (a* 4 ba* 4+ b*)* U (9p(a*) U 9p(ba™) U9y (b*))(a* + ba* + b*)*

= {b*(a* + ba* +b*)*} U (9p(b)a* Uy (b)b*)(a* + ba* + b*)*
= {b*(a* + ba* + b*)*,a*(a* + ba* + b*)*}

The equation automaton &g associated with E is shown in Figure 3.

3y (b* (a* + ba* +b*)*) =

Algorithms 2021, 14, 238 60f 17

a, b

@, a* + ba* + b*)

/A\\\

—((a* +ba* +0°)°) (0" (a® + ba® + 7))
_/

b b

Figure 3. The equation automaton &g.

In the following, we recall the definition and properties of the c-continuation automa-
ton. Next, we show how it can be bound to the equation automaton.

3.1. C-Continuation Automaton

This automaton has been introduced by Champarnaud and Ziadi [6] to efficiently
compute the equation automaton. Let us recall the notion of c-derivative, c-continuation
and c-continuation automaton.

Definition 1. (c-derivative with respect to a letter). The c-derivative of a regular expression E with
respect to a letter a is the regular expression d,(E) defined by:

d,(0) d,(1) =0,
ds(x) = ifa=xthenlelse,
d.(F+G) if d,(F) # 0 then d,(F) else d,(G),
d,(F-G) = ifd,(F) #0thend,(F)- G else A(F) - d,(G),
)

da (F* d,(F) - F*.

The c-derivative with respect to a word u = u; - - - u, is defined recursively by the
rules: d¢(E) = Eand dy,...u, (E) = duy...,, (duy (E)).

Theorem 2. (Theorem 4 in [6]). Let E be a linear reqular expression and a be a letter from E. Then
all non-zero c-derivatives of the form d,,(E), where u is an arbitrary word, are equal.

Theorem 2 allows us to define the c-continuation ¢, (E) of a in a linear expression E as
the unique value of the non-zero c-derivatives dy, (E).

Proposition 1. (Proposition 6 in [6]). For every letter a of a linear expression E, the c-continuation
cqa(E) is such that:

ca(a) 1,
ca(F+G) = ifc,(F) exists then ¢, (F) else ¢, (G),
c(F-G) if ¢;(F) exists then¢,(F) -G else c,;(G),
)

= ¢cq(F)-F".

Corollary 1. (Corollary 5 in [6]). For every letter a of a linear expression E, the c-continuation
ca(E) is either 1 or a subexpression of E or a product of subexpressions.

More precisely, for a linear regular expression E, we have c,(E) = Hy - - - Hy, where
H; is a subexpression of E, for all 0 <i < k.

We now consider a regular expression E over A. Let E be the linearized form of E over
pos(E) and & be the mapping from pos(E) onto Ag.

In order to simplify the writing for a regular expression E, we consider by convention
that cg(E) = d¢(E) = E and cy(E) will denote c,(E).

Algorithms 2021, 14, 238

7 of 17

Definition 2. (c-continuation automaton) The c-continuation automaton of E, Cg = (Q, Ag, 1,9,
F), is defined by:

e Q={(x,cx(E)) | x € pos(E) U{0}},

e i=1(0,c0(E)),

* F={(xc(E)) | A(cx(E)) =1},

e ((x,cx(E)),a) = {(y,cy(E) | h(y) = aandd,(cx(E)) = cy(E)},Vx € pos(E) U

{0} and Va € Ag.
We note that the number of states of C is exactly || E || + 1.
Corollary 2. (Corollary 7 in [6]). Let E be a regular expression. One has: L(Cg) = L(E).

Example 3. Let us consider the regular expression E = (a* + ba* + b*)* from Example 1. The
linearized form of E is E = (a} + boa} + b})* and the c-continuations of E are as follows:

co(E) = (aj +byaj +b})" ca;(E) = cay(aj + bpaj +b3) - (a7 + boaj +b;)*
cao; (B) = aj(aj +bya;+b;)* = cCay(bpa}) - (a7 + boaj +by)*

ey, (E) = a3(aj +baj +b;)* = cgy(a}) - (a] + bpaj + b})*

cp,(E) = by(aj +boaj +by)* = a3(aj +boaj +b3)*

The outgoing transitions from the state (0,co(E)) are computed using the c-derivatives of
co(E) as follows:

Figure 4. The c-continuation automaton Cg.

3.2. Equation Automaton as a Quotient of C-Continuation Automaton

Champarnaud and Ziadi [6] have proved that the equation automaton is a quotient of
the c-continuation automaton. Let us consider the equivalence relation =, defined by

(x,cx(E)) = (y,¢y(E)) & h(cx(E)) = h(cy(E)) @
Sometimes we write x =, y < h(cx(E)) = h(cy(E)).

Proposition 2. The relation =, is right-invariant, i.e., for all letters a in A, for all pairs of states
(x,cx(E)), (y,cy(E)) in Q such that (x,cx(E)) = (y,cy(E)), we have: 5((x,cx(E)),a)/=, =
5((y,¢y(E)),a)/ =,

Moreover, if two states are equivalent w.r.t. =, then they are either both final or both
non-final, since (x,cx(E)) € F < A(cx(E)) =1 < A(h(cx(E))) = 1.

Algorithms 2021, 14, 238

8of 17

The equivalence class of the state (x, cx(E)) is represented by Cx = h(cx(E)). Since the re-
lation =, is right-invariant, we can define the quotient automaton Cg /=, = (Q=,, Ag, 90,6, F)
as follows:

* Q= ={C [x€pos(E)U{0}},

® qO = CO/

o F={G | Mcx(E)) =1},
e 6(Cya)={Cy | h(y) =aand dy(cx(E)) = cy(E)}, YCy € Q=, and Va € Ag.

Theorem 3. (Theorem 10 in [6]). Let E be a reqular expression. The automaton Cg/ =, deduced
from the c-continuation automaton is isomorphic to the equation automaton Ex.

We note that the number of states of & is majorized by || E || + 1.

Example 4. Let us consider the regular expression E = (a* + ba* + b*)* from Example 1. There
are three =,-equivalence classes when applying the function h that remove indices from letters for
different c-continuations of E:

h(co(E)) = (a* + ba* + b*)*
h(ca (E)) = h(cp, (E)) = h(cas (E)) = a*(a” + ba* +b*)*
h(cy, (E)) = b*(a* + ba* 4-b*)*
The c-continuation automaton Cg and the quotient automaton Cg /=, which is isomorphic to
the equation automaton Eg are schematized in Figure 5:

(b)

Figure 5. (a) The c-continuation automaton Cg versus (b) The quotient automaton Cg /=, .

4. Allauzen and Mohri’s Algorithm

In [8], Allauzen and Mohri compute the equation automaton from the Thompson
automaton of a regular expression E in O(mlog m + m?) time. Their algorithm is based on
some combinations of e-transitions removal and Hopcroft’s algorithm for DFA minimiza-
tion to the classical Thompson automata [13]. In the next, we briefly describe their method.

Let A = Ag U {s{r, e%r, el,e2}. We denote by 7’; the automaton over A obtained by
recursively marking some of the e-transitions of the Thompson automaton 7g as follows:

— IfE = F*, we have

Algorithms 2021, 14, 238

9of 17

Allauzen and Mohri have shown that the equation automaton can be obtained using
some e-transitions marking of the Thompson automaton and then apply two classical
automata operations, namely epsilon removal, denoted by the function rmeps (resp. the
function 7meps for marked epsilon removal) and the Hopcroft’s algorithm for DFA mini-
mization [13], denoted by ming.

Proposition 3. (Proposition 3 in [8]). We have Eg = Fmeps(ming (rmeps(Tg))).

Note that after removing e-transitions from the automaton 7Tg, we obtain a determin-
istic finite automaton rmeps (7). After that, the Hopcroft’s algorithm for DFA minimiza-
tion is applied to derive the automaton ming (rmeps(Tg)) such that the set of its states
is in bijection with the set of partial derivatives of E. Finally, to compute transitions of
the equation automaton from minp (rmeps(?g)), marked e-transitions are removed using
rmeps operation.

Theorem 4. (Theorem 3 in [8]). Let E be a regular expression over A. The equation automaton of
E can be computed in O(mlogm + m?) time.

5. Efficient Conversion Algorithm

In this section, we will show that the equation automaton &g of a regular expression E
can be deduced from the associated Thompson automaton in O(|E | - |Q=,|) time, where
|Q=, | denotes the number of states of &g. Algorithm 1 summarizes the different steps of
our approach.

Algorithm 1 Computation of the equation automaton.

input : The Thompson automaton 7g = (Q, Ag, I, §, F) associated with a regular
expression E.
output: The equation automaton &g associated with E.

/* Computation of states */
Compute Id(Tg):

Subexpressions identification over states of 7.
e Define the sub-automaton Id(7g) by marking recursively some e-transitions of 7
according to the following rules:
if E = F+ G then
L mark the e-transitions by ¢, (resp. ¢,+) from the initial state I to I7; (resp. I7)

if E = F* then
- mark the e-transitions by ¢!, from the initial state I (resp. the final state Fr,) to I7;

(resp. F) and by &2 from the initial state I to F.
- temporarily disable the e-transition from Fr, to I7;.

e Compute the function N(q) that maps each state ¢ € Q to a unique integer
identifying the associated subexpression E, if it exists.

Compute C=, (Id(Tg)):

e Compute pseudo-continuations for all position states of Id(Tg).
* Merge equivalent states having the same pseudo-continuation.

/* Computation of transitions and final states x/

Compute rmeps(C=,(1d(Tg))):

e Perform epsilon removal operation using rmeps() function over C=, (Id(7g)).

For convenience, we assume that the k states of a given finite automaton are identified
by the integers 1, - - - , k.

Algorithms 2021, 14, 238

10 of 17

From Corollary 1, the c-continuation cy(E) = Hy - - - H; associated with a position x is a
concatenation of distinct subexpressions H; of E, possibly reduced to a single subexpression
or to 1. In the Thompson automaton 7g, we can associate a position x to a particular state g,
called position state and define the associated pseudo-continuation C(q) = N(Hy) - - - N(Hj),
where N(H;) denotes the integer that identify the initial state of the Thompson automaton
Th;- So, the first step, compute 1d(7g), of our algorithm consists on computing the function
N(.) such that for two subexpressions H; and H; of E, we have: H; = H; & N (ITHi) =

N (ITH/.). This step can be done using a special marking of the e-transitions of 7 that makes

it acyclic and deterministic and such that the right languages of its states represent the
structure of the corresponding subexpressions. In the next step, Compute C=, (1d(7g)), we
re-mark the e-transitions such that the resulted automaton is acyclic and deterministic and
the right language of a position state in Id(7g) represents a pseudo-continuation. After
that, one can merge equivalent position states having the same right language. The final
step is the computation of final states and transitions of the equation automaton using
an epsilon removal operation, denoted by rmeps(.), from the resulted automaton in the
previous step.

In the next, we will show that the equation automaton & can be computed efficiently
from the Thompson automaton 7 using the following operations rmeps(C=, (1d(7Tg))).

5.1. Computation of States

In the following, We will show that the computation of the relation =, over the states
of the Thompson automaton can be performed in linear time w.r.t. the size of the expression
using the minimization of an acyclic deterministic finite automaton. This minimization can
be performed efficiently in O(| E |) time using Bubenzer’s algorithm [17,18].

Before computing the equivalence classes C=, over states of the Thompson automaton,
we will perform a preprocessing step to identify all identical sub-expressions of E. In the
next, we will show that this identification can be done in O(| E |) time.

5.1.1. Sub-Expressions Identification

Let Exp the set of all subexpressions of E. In this preprocessing step, we will mark
each state in the Thompson automaton by a unique letter in the set {1,2,...,| Exp |}.

Let us define a bijection N between the set Exp and a finite set of letters {1,2,..., | Exp | }.
Consequently, if E; and E; are two sub-expressions of E, then we have:

E1 = E; & N(E1) = N(Ep) 2

Based on the parsing method, introduced in Section 6 in [19], that derive an equivalent
regular expression from Thompson automaton, each subexpression H; of E is associated
with an integer identifying the initial state I7;, in the Thompson automaton 7.

Let g be a state in Tg, we denote by E, the subexpression associated with g, if it exists.
For abbreviation, N(g) represents N(E;).

In the following, we will show that the computation of the function N over the states
of T turns into a minimization of the acyclic deterministic sub-automaton of the Thompson
automaton, Id(7g) = (Q’, Ag, I, ¥, F), defined by:

o A={e, e, ery,el,e2} U AE wherel (resp. r), denote left (resp. right),
e Q' ={(q,N(g9))| g € Q},ie., astatein Tg is augmented by the letter N(g).
e The transition function ¢’ is defined over the Thompson automaton as follows:

Algorithms 2021, 14, 238 11 of 17

If E=F+ G, we have If E=F-G, we have

Notice that this automaton is an acyclic deterministic sub-automaton of the Thompson
automaton where e-transitions are indexed and the cyclic transitions in the case when
E = F* are temporarily disabled.

To compute identical subexpressions, we define the equivalence relation ~ over the
states of Id(7Tg) as follows:

q~4q < N(g) =N(q) ®)
Thus we have:
41~ = [~ & N(E;) = N(E;) @
Lemma 1. Let q and q' be two states in 1d(Tg). We have:
— -
La(1d(Te)) = Ly (1d(Tg)) < Eq = Ey
Proof. Obvious, by construction. [

Proposition 4. The function N(.) can be computed over 1d(Tg) in O(|E|) time.

Proof. Let g and g’ two states in Id(7g). One has:

3
a~7 <L N(g)=N()
& Eq = Eq/

L L (1d(Tg)) = Ly (1d(T))

Thus, the equivalence relation ~ coincides with Myhill-Nerode equivalence relation [20,21]
over the states of Id(7g). Since the automaton Id(7g) is deterministic and acyclic, its minimiza-
tion using Bubenzer’s algorithm [17] requires O(| E |) time and space complexity. [

Example 5. The automaton 1d(Tg) obtained after performing the subexpression identification step
for the reqular expression E = (a* + ba* + b*)* through Tg.
As shown in Figure 6, for the states 3 and 9 we have:

—
Ly(1d(Ts)) = {elaelel, el

< 3~9<= N(3) =N(9)
Lo(1d(Tg)) = {elaciel, ele;

As a consequence, we have E3 = Eg.

Algorithms 2021, 14, 238 12 of 17

Figure 6. The automaton Id(7g) associated with E = (a* + ba* 4 b*)*.

5.1.2. =,-Equivalent States Merging

Let us now turn to the computation of the set of states of the equation automaton.
From Corollary 1, the c-continuation cx(E) is a concatenation of distinct subexpressions of
E, possibly reduced to a single subexpression or to 1. The following proposition shows that

the c-continuation ¢, (E) can be computed over the syntactic tree T(E) associated with the
linearized version E.

Proposition 5. (Ref. [6]). Let E be a reqular expression and x a position in pos(E). Let vy be a

node in T(E) such that sym(vy) = x. The c-continuation c,(E) is as follows:

x(E)= (O Epy

Vy jvjvg

f)#L

where © is the concatenation operator.
The function f : Nodes(E) U{L} — Nodes(E) U {_L} is defined as follows:

father(v) if sym(father(v)) = x and v # vg
flv) = ji_ght(father(v)) #Zym(father(v)) =
otherwise.

with L is an artificial node such that f(L) = L.

Using Proposition 5, the computation of the set of states requires O(| E |*) time and
space complexity. This is due to the fact that the size of a c-continuation is in O(| E |?). In
order to reduce this complexity, we introduce a modified definition of pseudo-continuation
introduced in [6] over an acyclic deterministic sub-automaton of the Thompson automaton,
denoted by C=,(Id(7Tg)). When merging =.-equivalent states over Id(7g), we get the
automaton C=,(Id(7g)). This step requires a linear time w.r.t the size of E using Bubenzer’s
algorithm [17], since the automaton Id(7g) is acyclic and deterministic.

In the following, a state (g,N(g)) in the automaton Id(7g) is called a position state, if
there exists 2 € Ag and (¢/,N(q’)) € Q' such that &' ((¢’, N(¢')),a) = (g, N(q)). The state
(0, N(0)) is also considered as a position state.

It is obvious to see that each position state is associated with a unique position in
pos(E) U {0} and then it’s can be associated with a c-continuation.

Algorithms 2021, 14, 238

13 0f 17

Let (3,N(q)) and (4, N(q')) two position states associated with the positions x and x’
in pos(E). One can extend the =, relation over position states in Id(Tg) as follows:

(0, N(q)) = (7, N(q)) <= h(cx(E)) = h(cy (E))

In the next, we will prove that the computation of the equivalence classes C=, can be
performed in a linear time w.r.t. the size of the regular expression over Id(7g) using the
notion of pseudo-continuations.

For abbreviation, a state (g, N(g)) in Id(7Tg) will be denoted by g. We denote by C(gq)
the pseudo-continuation associated with the position state g which is an implicit representation
of its c-continuation cx(E), where x is the position letter of . We will show that the
computation of the equivalence classes C=, turns on the computation of pseudo-continuation
C(gq) over a particular e-transitions marking of the automaton Id(7g).

Definition 3. The pseudo-continuation C(q) associated with a position state (q,N(q)) € Q' in
1d(Tg) is recursively defined by:

N(q if0'(q,e14) = g'and ' (q,¢1) = q",
N(q")-C(q") ifd'(q,€5) =q" and &' (q',a) = q for some a € Ag,
Clq) = 4 N@g)-C(g") ifd(q€)) =g andd'(9,¢3) = q", ®)
a-Clg) ifd(q.a) =q, forallac Ag,
C(q") if6'(q,¢) = 4.

In order to compute efficiently the set of pseudo-continuations associated with the
position states in Id(7g), we define an acyclic deterministic sub-automaton C=, (Id(7g)) =
(Q=,, Ag, I,6",F) of the Thompson automaton as follows:

. A:{Eo,'-‘,S‘EXP‘}UAE.
e Q=,=1{(4C(g))| (g9,N(q9)) € Q'},ie., astate in Id(Tg) is replaced by (g,C(q)).

e The transition function " is defined as follows:

If E=F+ G, we have If E=F-G, we have

< Tr

EN()

(q. C(ff)j

-0

EN(g)

Let us define the equivalence relation ~ over the position states of C=,(Id(Tg)) as follows:
(9,C(9)) = (4,C(q") < Clq) = C(¢") ©)

Thus we have:
1)~ = l4]~ & C(q) =C(q"))

Let 1 be the application that maps a letter ¢; to the letter i. By construction, the
following proposition holds.

Algorithms 2021, 14, 238

14 of 17

Proposition 6. Let (q,C(q)) be a position state in C=,(1d(Tg)). We have:

(L y(C=,(14(T)))) = C(q)

Example 6. Let us consider the Thompson automaton Tg defined in previous examples. Figure 7
schematizes the derived automaton from 1d(Tg) after pseudo continuations computation for
position states.
Notice that dotted e-transitions are temporarily disabled and dashed ones are temporarily added.
The position states in the automaton 1d(Tg) are {0,5,8,11,16}. According to the definition
of a pseudo continuation (see Formula (7)), the pseudo-continuations associated with position states
are computed over the automaton Id(Tg) as follows:

C(5)=C(8)=C(11)=10-1
C(16) =15-1

On the other hand, we have:

L5(C=, (14(T5))) = L(C= (14(T5)) = Lt (C=, (1(T5)) = €10+ &1
L16(C=,(1d(T))) = €15 - &1

The following proposition is fundamental to prove that the equivalence relation =,
using the notion of c-continuation is the same when using pseudo-continuations C(g).

, Gio101)
£10

S0 5115

Rl (1.3,1)> (16 16,15 - 1)

£15

<15 -
' : ((14,14)) ((17,18))

Figure 7. Pseudo-continuations computation for position states in Id(7g).

Proposition 7. Let q (resp. q') be a position state associated with a position x € pos(E) (resp.
x" € pos(E)) in C=,(1d(Tg)). One has:

C(q) = C(q") < h(cx(E)) = h(cw (E))

As a consequence, the following proposition holds.

Algorithms 2021, 14, 238

150f 17

Proposition 8. Let q and g’ be two position states in C=,(Id(Tg)). One has:
q9=cq < Clq) =C(q)

Theorem 5. Let E be a reqular expression and Tg the associated Thompson automaton. The relation
=, can be computed over C=,(I1d(Tg)) in O(|E|) time.

Proof. From Proposition 8, one can deduce that the computation of the equivalence relation
=,, turn to apply the Myhill-Nerode relation on the states of the automaton C=, (Id(7g)).
By definition, this last is acyclic and deterministic. Then, its minimization using Bubenzer’s
algorithm [17] requires O(| E|) time and space complexity. [

Example 7 (Continues). The automaton C=,(1d(Tg)), schematized in the Figure 8, is obtained
from 1d(Tg) after merging =.-equivalent position states 5,8 and 11.

The next step of our approach consists of the transitions and final states computation
of the equation automaton &g using epsilon removal operation, denoted by rmeps(), over
the automaton C=, (Id(7g)).

by
((15,15)) (16.16,15 - 1)
-

= :f T \J £15
(14, 14) £15 (17.18))

Figure 8. The automaton C=,(Id(7g)) associated with E = (a* + ba* + b*)*.

5.2. Computation of Transitions and Final States

After merging =.-equivalent states in the previous step, we obtain a reduced automa-
ton C=, (Id(7g)) having the same set of states as the equation automaton. To compute the
transition function, we first enable the cyclic transitions previously disabled in the case
when E = F* on C, (1d(Tg)).

Let Q—, be the set of states of C=, (Id(7Tg)). Recall that epsilon removal operation is
denoted by, rmeps(p) for a state p € Q and rmeps(.A) denotes the resulted automaton after
removing marked and non-marked e-transitions from the automaton A.

As a consequence of Lemma 5 from [8], the following Lemma yeilds.

Lemma 2. (Lemma 5 in [8]). Let q and q' be two position states in Q=, associated respectively
with the positions x and x' in pos(E) U {0}, we have:

g € rmeps(q') iff h(cx(E)) € 9,(h(cy (E))), for some a € Ag.

Algorithms 2021, 14, 238

16 of 17

The set of destination states of the outgoing transitions from a state g € Q—, is then
equal to
{p € Q=, | p € rmeps(q) and p is a position state }

Lemma 3. Let q be a position state in Q=, associated with a position x in pos(E) U {0}, we have:
F € rmeps(q) iff A(cx(E)) = 1.
Proposition 9. We have &g = rmeps(C=,(1d(Tg)))

Example 8. (Continues). Let us consider the automaton C=,(I1d(Tg)) of the Example 7. The final
states and the transitions of the equation automaton are computed over C=,(Id(Tg)) using epsilon
removal operation rmeps as follows:

e The set of states of the equation automaton are {0, {5,8,11},16}.

e Since the final state of C=, (Id(Tg)) is the state 19 and 19 € rmeps(0), 19 € rmeps({5,8,11}),
and 19 € rmeps(16), then the set of final states are {0,{5,8,11},16}.

e There are two paths in C=,(Id(Tg)) from the state O to the state {5,8, 11} labeled respectively
bye-e-e-e-aande-e-¢-b, then {5,8,11} € rmeps(0). Consequently, two transitions
(0,a,{5,8,11}) and (0,b,{5,8,11}) are added to the equation automaton. The same process
will be applied for other transitions.

Since there are O(| E |) states in C=, (Id(7Tg)) and the operation rmeps(C=,(1d(7g))) is
performed on exactly |Q=, | states, the following theorem holds.

Theorem 6. Let E be a reqular expression. The equation automaton of E can be computed in

O([E[- Q=)

6. Conclusions

In this paper, we presented a fast and sophisticated construction of the equation
automaton from a regular expression over its associated Thompson automaton. The time
complexity of our algorithm is at least as favorable as that of the best previously known
algorithm. It is based on the minimization of acyclic deterministic finite automata and
epsilon removal operations. This allowed us a construction of the equation automaton in
O(]E|-|Q=,|) time and space complexity where |Q=,| denotes the number of transitions
of the produced automaton. The implementation of the proposed algorithm is available
under the following repository: https:/ /github.com/FaissalOuardi/Equation-automaton
(accessed on 27 May 2021).

Author Contributions: Conceptualization, F.O., Z.L. and B.E.; methodology, FO., Z.L. and B.E;
validation, F.O., Z.L. and B.E.; formal analysis, F.O., Z.L. and B.E. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Source code can be found under the following link: https://github.
com/FaissalOuardi/Equation-automaton (accessed on 27 May 2021).

Acknowledgments: We wish to thank the referees for the care they put into reading the previous
versions of this manuscript. Their comments were invaluable in depth and detail, and the current
version owes much to their efforts.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/FaissalOuardi/Equation-automaton
https://github.com/FaissalOuardi/Equation-automaton
https://github.com/FaissalOuardi/Equation-automaton

Algorithms 2021, 14, 238 17 of 17

References

1.

10.

11.

12.
13.

14.
15.
16.
17.

18.
19.

20.

21.

Mirkin, B.G. Novyj algoritm postroénia bazisa v dzyké régularnyh vyrazénij. Izvéstid Akadémii Nauk SSSR. Engineering
cybernetics, no. 5 (1966). English translation of the preceding: Brzozowski, J. An algorithm for constructing a base in a language
of regular expressions. pp. 110-116. J. Symb. Log. 1971, 36, 694.

Antimirov, V. Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 1996, 155, 291-319.
[CrossRef]

Glushkov, V.M. The abstract theory of automata. Russ. Math. Surv. 1961, 16, 1-53. Available online: https:/ /iopscience.iop.org/
article/10.1070/RM1961v016n05ABEH004112 (accessed on 27 May 2021). [CrossRef]

McNaughton, R.F,; Yamada, H. Regular expressions and state graphs for automata. IEEE Trans. Electron. Comput. 1960, 9, 39-57.
[CrossRef]

Ziadi, D.; Ponty, J.-L.; Champarnaud, J].-M. A New Quadratic Algorithm to Convert a Regular Expression into an Automaton. In
Proceedings of the Workshop on Implementing Automata, London, ON, Canada, 29-31 August 1996; pp. 109-119.
Champarnaud, J.-M.; Ziadi, D. Canonical derivatives, partial derivatives and finite automaton constructions. Theor. Comput. Sci.
2002, 289, 137-163. [CrossRef]

Khorsi, A.; Ouardi, F,; Ziadi, D. Fast equation automaton computation. J. Discret. Algorithms 2008, 6, 433—448. [CrossRef]
Allauzen, C.; Mohri, M. A Unified Construction of the Glushkov, Follow, and Antimirov Automata. In Proceedings of the
International Conference of Mathematical Foundations of Computer Science, Stard Lesnd, Slovakia, 28 August-1 September 2006;
pp- 110-121.

Ilie, L.; Yu, S. Follow automata. Inf. Comput. 2003, 186, 140-162. [CrossRef]

Champarnaud,].-M.; Nicart, E; Ziadi, D. From the ZPC Structure of a Regular Expression to its Follow Automaton. IJAC 2006, 16,
17-34. [CrossRef]

Kleene, S. Representation of Events in Nerve Nets and Finite Automata; Automata Studies, Ann. Math. Studies 34; Princeton
University Press: Princeton, NJ, USA, 1956; pp. 3—41.

Thompson, K. Regular Expression Search Algorithm. Commun. ACM 1968, 11, 410-422. [CrossRef]

Hopcroft, J. An n log n Algorithm for Minimizing States in a Finite Automaton; Technical Report; Stanford University, CS Dept.:
Stanford, CA, USA, 1971.

Hopcroft,].E.; Ullman,].D. Introduction to Automata Theory, Languages and Computation; Addison-Wesley: Reading, MA, USA, 1979.
Sakarovitch, J.; Thomas, R. Elements of Automata Theory; Cambridge University Press: Cambridge, UK, 2009.
Briiggemann-Klein, A. Regular expressions into finite automata. Theor. Comp. Sci. 1993, 120, 117-126. [CrossRef]

Bubenzer, J. Cycle-aware minimization of acyclic deterministic finite-state automata. J. Discret. Appl. Math. 2014, 163, 238-246.
[CrossRef]

Revuz, D. Minimization of acyclic deterministic automata in linear time. Theor. Comput. Sci. 1992, 92, 181-189. [CrossRef]
Giammarresi, D.; Ponty,].-L.; Wood, D.; Ziadi, D. A characterization of Thompson digraphs. Discret. Appl. Math. 2004, 134,
317-337. [CrossRef]

Myhill, J. Finite automata and the representation of events. In WADD TR-57-624; Wright Patterson AFB: Dayton, OH, USA, 1957;
pp. 112-137.

Nerode, A. Linear automata transformation. Proc. AMS 1958, 9, 541-544. [CrossRef]

http://doi.org/10.1016/0304-3975(95)00182-4
https://iopscience.iop.org/article/10.1070/RM1961v016n05ABEH004112
https://iopscience.iop.org/article/10.1070/RM1961v016n05ABEH004112
http://dx.doi.org/10.1070/RM1961v016n05ABEH004112
http://dx.doi.org/10.1109/TEC.1960.5221603
http://dx.doi.org/10.1016/S0304-3975(01)00267-5
http://dx.doi.org/10.1016/j.jda.2007.10.003
http://dx.doi.org/10.1016/S0890-5401(03)00090-7
http://dx.doi.org/10.1142/S0218196706002895
http://dx.doi.org/10.1145/363347.363387
http://dx.doi.org/10.1016/0304-3975(93)90287-4
http://dx.doi.org/10.1016/j.dam.2013.08.003
http://dx.doi.org/10.1016/0304-3975(92)90142-3
http://dx.doi.org/10.1016/S0166-218X(03)00299-3
http://dx.doi.org/10.1090/S0002-9939-1958-0135681-9

	Introduction
	Preliminaries
	Regular Expressions and Finite Automata
	Regular Expressions and Languages
	Finite Automata and Recognizable Languages

	Thompson Automaton

	Equation Automaton
	C-Continuation Automaton
	Equation Automaton as a Quotient of C-Continuation Automaton

	Allauzen and Mohri's Algorithm
	Efficient Conversion Algorithm
	Computation of States
	Sub-Expressions Identification
	e-Equivalent States Merging

	Computation of Transitions and Final States

	Conclusions
	References

