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Abstract: Knowledge graph-based data integration is a practical methodology for heterogeneous
legacy database-integrated service construction. However, it is neither efficient nor economical
to build a new cross-domain knowledge graph on top of the schemas of each legacy database
for the specific integration application rather than reusing the existing high-quality knowledge
graphs. Consequently, a question arises as to whether the existing knowledge graph is compatible
with cross-domain queries and with heterogenous schemas of the legacy systems. An effective
criterion is urgently needed in order to evaluate such compatibility as it limits the quality upbound
of the integration. This research studies the semantic similarity of the schemas from the aspect of
properties. It provides a set of in-depth criteria, namely coverage and flexibility, to evaluate the
pairwise compatibility between the schemas. It takes advantage of the properties of knowledge
graphs to evaluate the overlaps between schemas and defines the weights of entity types in order
to perform precise compatibility computation. The effectiveness of the criteria obtained to evaluate
the compatibility between knowledge graphs and cross-domain queries is demonstrated using a
case study.

Keywords: data integration; knowledge graph; ontology evaluation; schema overlap; semantic
similarity

1. Introduction

The rapid emergence of management information systems challenges the classical
database techniques to respond to queries across multiple heterogeneous legacy database
systems. A mediator serves as middleware between such database systems and the unified
query services. It rewrites the queries and unites the answers according to the integrated
schemas of these databases. Consequently, an unavoidable problem arises regarding how
to choose the candidate databases to fulfill cross-system queries.

For example, suppose that we are querying the profile of a student using the multiple
legacy information systems in a smart university scenario: information is collected regard-
ing their grades from the academic affairs office, regarding their activities from the student
union, regarding their reading and thesis from the library, their physical records from the
hospital, etc. The classical mediator maps the universal query to the local queries for each
data source and reformats the answers in the form of a universal query. This solution relies
heavily on the universal knowledge graph, which mediates all the schemas of the data
sources. A straightforward solution is to construct cross-domain knowledge using all these
systems and then build the mediator on top of this. However, this is not always applicable
or economical, for example, for extension in the future. A more practical solution is to reuse
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the state-of-the-art general-purpose knowledge graphs such as DBpedia, schema.org, etc.
Consequently, the question becomes how to choose from the existing knowledge graphs.

Different approaches have been proposed, with frameworks from the perspective
of engineering demonstrating considerable success, but only a few have considered the
evaluation phase of this problem. Furthermore, most of the research involved qualitative
discussions rather than computational criteria.

This work is based on the European project ‘ISCF HDRUK DIH Sprint Exemplar:
Graph-Based Data Federation for Healthcare Data Science (https://gtr.ukri.org/projects?
ref=MC_PC_18029 (accessed on 24 December 2019)), which aims to provide a solution to
the integration of medical domain heterogeneous legacy systems of Scotland and Italy. On
the surface, reusing the data of these legacy systems leads to data integration problems [1],
but it is inefficient to consider only how to integrate the data. Therefore, we realized data
integration through schema integration. During the project, we encountered problems
related to semantic diversity on both the language level and knowledge level [2]. There
were mismatches between the terms in the two natural languages, i.e., English and Italian,
even in the same domain. Language-level diversity problems were solved by general-
purpose dictionaries in a relatively straightforward manner. Knowledge-level diversity is
defined as the many-to-many mappings between the entity types and the properties [3].

A knowledge graph can be divided into a schema knowledge graph (hereinafter referred
to as schema) at the knowledge level and a data knowledge graph at the individual level. A
schema is a similar concept to the database scheme, and it contains entity types (similar to a
table in a database) and properties (similar to attributes in a database). A data knowledge
graph is a similar concept to the record level in a database, and it contains entities and
property values. Figure 1 shows two different schemas in the same scenario. Individuals
are difficult to reuse because of the structural differences, but schemas at the knowledge
level can be reused in many general fields. Schema.org and DBpedia [4] contain a large
number of high-quality schemas with uniform specifications. When constructing a new
knowledge graph, effectively reusing these existing high-quality schemas can save energy
and avoid conflicts between new schema and existing schema.
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Figure 1. Equivalent entity type student and member in different schemas.

We use the student profile scenario shown in Figure 1 to motivate our work. There
is a table named student in the database of the academic affairs office and another table
named member in the database of the student union. The student Mary has records in both.
Language-level disambiguation alone does not resolve this kind of mismatch. A general-
sense knowledge graph will never assume this semantic equivalence either. Therefore, it is
necessary for an effective criterion on the knowledge level to verify this semantic similarity
on the overlaps of the two schemas. This paper proposes property-based semantic similarity
criteria to evaluate the overlaps of schemas. For example, name and taught-by, in the table
student, are properties about the entities, such as Mary, of that entity type (in a database
table). An entity type is denoted by a feature vector formed by such properties. Coverage
and flexibility are used to compute the compatibility between the schemas. Firstly, the
vectors are disambiguated by the language-level tools and then matched according to the
semantic similarity in three levels: label, property and individual. Secondly, the thresholds
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for each level are found to be dependent on the domain. Thirdly, the properties are
propagated through the is-a hierarchy of the entity types and properties to accumulate the
weights of those entity types. The weights are exploited to calculate the schema overlaps.
Finally, the coverage and flexibility are computed to help choose the schemas.

The contributions of the paper are summarized as the following:

1. A three-fold semantic similarity is proposed to substitute the classical identity to
compute schema overlaps;

2. A property-based weight is defined to extend the influence of the entity types to
compute the coverage and flexibility;

3. A set of rules is accumulated to apply the thresholds in the practical medical domain.

The rest of the paper is organized as follows: in Section 2, we will introduce the related
work. In Section 3, we will introduce the related concepts. In Section 4, we will give the
measurement method of semantic equivalence and the formula of quantitative calculation.
In Section 5, we will define weight and the calculation method of two evaluation criteria
based on weight and we will describe experiments carried out to verify the correctness
and effectiveness of the proposed method in Section 6. The last section is Conclusions and
Future Work.

2. Related Work

In recent years, the amount of data has exponentially increased but much of this
amount exists in the legacy system and does not demonstrate its value. Many people
are committed to solving this problem. Alexandrova et al. [5] proposed a solution for
the public sector legacy system. Tomak et al. [6] proposed a new method to evaluate the
performance of fault management mechanisms in distributed real-time legacy software
systems. Golchin et al. [7] proposed a boomerang system which integrates a legacy non-
real-time OS that is customized for timing-sensitive tasks. However, they did not pay
attention to how legacy data can be used effectively. If we want to make use of legacy
data, we should first standardize the chaotic data. The schema proposed in this paper
is to meet this exact need. First, the schema level is fused, which is associated with
ontology integration or knowledge graph fusion. Then, the data level is fused. In addition,
the methods of ontology reuse [8] and ontology matching [9] are used in the process of
ontology integration. Next, we will introduce the related work in these areas.

In the past few years, more and more ontologies have been made available with
the help of existing tools, such as linked open vocabularies (LOVs) [10], Bioportal
(biomedicine) [11], etc. However, when aggregating these ontologies across domains,
such as TKM [12], etc., we may need to integrate two different ontologies into the third
ontology, and then contradictions may arise [13]. The heterogeneous problems [14] that are
difficult to deal with in ontology also need to be solved. There have been some solutions to
the normalization of ontology, such as WIDOCO [15], which records the wizard of ontology,
and VoCol [16], which supports the integrated environment of version-controlled vocab-
ulary development. Fèrnandez et al. investigated this and found that the heterogeneity
between the required conceptualization and the existing ontology is an important obstacle
to the development of knowledge integration.

Several semi-automatic methods of ontology integration have been proposed, such
as semi-automatic generation of property semantics based on ontology integration [17]
and automatic generation of new ontology patterns based on ontology reuse. They in-
clude an ontology integration method based on knowledge graphs and machine learning
technology, ontology integration [18] based on ontology matching and its related technolo-
gies [19], the model ranking of evaluating ontology based on semantic matching [20] and
the method of constructing ontology from an ontology pattern [21] and compatibility index
for comparing and aggregating ontologies [22]. However, when these methods evaluate
ontologies, they all use qualitative methods to measure the relationship. The computability
is not considered.
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In recent years, related research in the field of knowledge graph has grown rapidly. In
many studies [23], a knowledge graph is regarded as a cleaned knowledge base, which is
composed of individuals. To a certain extent, we can think that knowledge graph ≈ ontol-
ogy + knowledge base [24]. Now there are many knowledge graphs. It is very feasible to
use the schema level of these knowledge graphs.

Next, we will briefly introduce some related work of knowledge graph reuse and
knowledge graph fusion. In 2019, He et al. [25] proposed a connectionist framework, which
uses a manufacturing knowledge graph to solve the problem of integration. In the same
year, Wu et al. [26] tried to realize the construction of multiple online encyclopedias by
using knowledge graph fusion and reuse technology. To achieve the purpose of merging
multiple encyclopedias into a large knowledge graph. Shen et al. [27] reused the existing
knowledge base to build the knowledge graph. They used the incomplete domain-specific
knowledge graph and integrated the reusable knowledge base to build a user-friendly
medical knowledge graph. However, these methods are for specific functional areas and
are not universally applicable. Moreover, when they selected the existing knowledge graph
and database, they did not consider the evaluation criteria. This leads to the reuse of
inappropriate knowledge graphs and data, resulting in the low performance of later fusion.

In the process of reusing a knowledge graph, it is necessary to use appropriate eval-
uation criteria. Fan et al. [28] put forward several ontology evaluation criteria, such as
semantic intensity, wealth, depth and adaptability. Oh et al. [29] proposed three criteria of
ontology modularization and evaluation tools, namely tool performance, data performance
and usability. Dastgerdi et al. [30] discussed ontology evaluation criteria, approvals and
layers. They introduced the standards mentioned by experts in the field of ontology and
the standards proposed by the national ontology research center of the United States.
Hoo et al. [31] proposed a framework to guide the selection of appropriate standards for
various ontology evaluation levels and methods. Further, they identified overlaps and
established the relationships of the various criteria. However, their criteria only focus on
ontology itself. These criteria and methods cannot be applied in the schema fusion process.
Coverage [32] and flexibility [33] are important criteria to evaluate the overlapping effect
between schemas. In 2020, Giunchiglia and Fumagalli carried out a preliminary exploration
on quantitative evaluation [34], but the evaluation method regarded the importance of all
entity types as the same, without considering the differences among them. In the same year,
Park tried to measure the importance of nodes in a knowledge graph [35]. However, this
study mainly focused on the influence of inputs from different sources on nodes and did not
pay attention to the influence of the relationship between nodes in the knowledge graph.

Our main concern is the overlapping degree in the process of schema fusion. In solving
the schema fusion problem, the reuse of high-quality schema is an important issue. When
deciding whether a schema is applicable, the quantitative computation of measurement
criteria is particularly critical. At present, there is little attention paid to the internal entity
of schema. The important contribution of this paper lies in giving a reasonable quantitative
computation method of evaluation criteria in the schema fusion process.

3. Problem Definition

As is shown in the related work, it is vital to evaluate the overlaps of schemas to
reuse high-quality knowledge graphs. The concepts of coverage and flexibility should
be defined in the perspective of properties in a computable way. Since the concept of
knowledge graphs came into being and was developed, there have been the emergence
of many domain-specific and cross-domain knowledge graphs. However, most of these
knowledge graphs are constructed from scratch, with the disadvantage of “built once, used
once”. On the one hand, this consumes too much time and energy for each case; on the
other hand, it leads to high probability of conflicts in the interactions among the multiple
applications based on different knowledge graphs. Therefore, it is more practical to reuse
than to build a new knowledge graph.
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After we recognize the importance of knowledge graph reuse, two important issues
are worth thinking about.

• What kind of knowledge graph can I reuse to solve my need? This leads to the
introduction of the schema-level knowledge graph.

• How to determine if an existing knowledge graph is suitable for use? This asks for a
quantitative evaluation method.

A knowledge graph can be regarded from the schema level (with the classes and
properties) and the data level (with the individuals). Once we have constructed a schema for
a knowledge graph, it can be populated via different sets of individuals. Such knowledge
graphs with individuals are difficult to reuse [36], but the schema itself can be reused rather
easily. Common sense knowledge graphs such as Schema.org, DBpedia, etc. contain many
high-quality schemas with uniform specifications. When constructing a new knowledge
graph, it will save energy and avoid conflicts if we can reuse these existing high-quality
schemas effectively. Now the question is to determine whether an existing schema is
suitable to reuse. The first step is to determine the entity types and the properties in the
query (short for competency query [37]) provided by users. The next step is to choose an
existing schema that can cover most of the entity types and properties. In this process, the
key is to measure overlaps of the schema onto the query to determine whether the schema
selected is suitable.

Coverage and flexibility are evaluation criteria used to measure the overlaps of
schemas. Coverage focuses on the overlaps of one schema on another, while flexibility fo-
cuses on the redundancy after one schema covers another. Suppose there are two schemas,
A and B. The calculation formula defined in the form of a set in Formulas (1) and (2) is
abbreviated as Cov(A, B) and Flx(A, B). Note that the two parameters A, B are ordered. It
means that the coverage degree of schema A over B is not equal to the coverage degree of
schema B over A. In the experiment in Section 5, we use these two criteria to measure the
overlapping effect between the query [38], the schema and the datasets.

At present, the definitions are based on set theory. Cov(A, B) is the ratio of the part
of schema A that covers B (A ∩ B) divided by schema B. Flx(A, B) is the ratio of the
part of schema A that does not cover B (A− B) divided by schema A. Neither criterion
is symmetric.

Cov(A, B) =
A ∩ B

B
(1)

Flx(A, B) =
A− B

A
(2)

In Formula (1), “A ∩ B” represents the “same” part of A and B and “A − B” in
Formula (2) represents the part of A that is different from B, that is, the part of A not
covered by B. However, it is not obvious that A and B are schemas that are not classical sets.
To compute quantitatively the two criteria, the equivalence of entity types in the schema
should be well defined.

4. Semantic Equivalence

The evaluation criteria defined in the form of a set are introduced in the previous
section. The next step is to compute them quantitatively. Taking Cov(A, B) as an example,
in Formula (1), A and B are schemas, and A ∩ B refers to the “equivalent” entity types.
This section mainly describes the semantic equivalence of the entity types. Let us imagine
several scenarios. Firstly, if all properties of two entity types are the same (semantically
equivalent), then the two entity types are very likely to represent the same thing in the real
world. Secondly, if two entity types in different schemas have the same individuals, they
are similar in a certain way. The second situation is very common in life, as a person is
likely to leave the same record in different databases. Additionally, these two individuals
instantiate different entity types in the different schemas. Although we name the two entity
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types differently (in different schemas), the meanings of the two entity types are similar, at
least for this person.

It is rare to have two entity types to be 100% the same in the two schemas. If the
similarity is high to a certain extent, they can be taken as equivalent entity types. The
similarity of entity types lies in three levels.

• Label level, such as polysemy, can be calculated by similarity at the language level. If
the similarity between two entity types at the label level reaches a prescribed threshold,
they can be directly considered as equivalent.

• Property level, such as entity types with similar properties, for example, the entity
types student and member in Figure 1. Although these two entity types are in different
schemas, they have very similar properties, which shows that these two entity types
are similar at the property level. Similarly, we should judge the similarity of different
properties at the label level, such as properties gender and sex, ID and student ID in
Figure 1 as representing the same meaning. If the similarity between two entity types
at the property level reaches a prescribed threshold, it can be judged that the two
entity types are equivalent.

• Individual level, from the bottom up. Suppose Mary is an individual of entity type
student both in the database of the academic affairs office and an individual of entity
type student in the database of the student union, as shown in Figure 1. It means that
two different entity types correspond to the same individual, which shows that the
entity type student and the entity type member are potentially similar (at least related).
It might be rational to view the entity type student and the entity type member as the
same from the different schemas.

The following is the formal definition of entity type equivalence in the three aspects.

Definition 1. Semantic Equivalence:

The semantic similarity of two entity types U, V can be calculated with Formula (3).

Sims(U, V) = αSimL(U, V) + βSimP(U, V) + γSimI(U, V) (3)

where
SimL(U, V) = |U, V|

In which P is the vector formed by the natural language labels of P and |U, V| returns
the semantic distance [39] of the two vectors;

SimP(U, V) = ∑i,j SimL
(

Pu,i, Pv,j
)

where Pu,i and Pv,j are properties of U and V, respectively,

SimI(U, V) = ∑m,n
i,j e

(
Iu,i, Iv,j

)
/Min(m, n)

where Iu,i, Iv,j are among the m, n individuals of U, V, respectively, and

e(Iu, Iv) =

{
1, if Iu refers to the same individual as Iv,
0, otherwise.

Moreover, to compute Formula (3), the three factors take effects in the following
conditions.

(α, β, γ) =


(1, 0, 0), i f SimL(U, V) > TL
(1, 1, 0), i f SimL(U, V) ≤ TL and SimP > TP
(1, 1, 1), otherwise.
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Here, TL, TP are the predefined thresholds for the similarity on the label level and
property level, respectively. Furthermore, an overall threshold TS (TS < TL and TS < TP) is
defined with the empirical value from an expert to simulate the semantic equivalence. For
example, for the entity types student in the schema of the education affairs office and member
in the schema of the student union as shown in Figure 1, if Sims (student, member) > Ts,
the two entity types are considered semantically equivalent.

Theorem 1. The method proposed in Definition 1 can measure the semantic equivalence of two
entity types.

Proof. First, if two entity types U, V reach a given threshold at the label level, there is

SimL(U, V) > TL

then in Formula (3), (α, β, γ) = (1, 0, 0), there is

Sims(U, V) = SimL(U, V) > TL

According to the limitation of TS, TS < TL, we can deduce

Sims(U, V) > TS

We can conclude that the two entity types U, V are regarded as semantically equivalent.
When SimL(U, V) < TL but SimP > TP, then (α, β, γ) = (1, 1, 0), and there is

Sims(U, V) = SimL(U, V) + SimP(U, V)

Sims(U, V) > SimL(U, V) + TP > TP

and TS meets TS < TP, so
Sims(U, V) > TS

which indicates that the two entity types U, V are regarded as semantically equivalent.
Finally, in the third case when SimL(U, V) ≤ TL and SimP ≤ TP, there is Sims(U, V) =

SimL(U, V) + SimP(U, V) + SimI(U, V). If SimL(U, V) + SimP(U, V) + SimI(U, V) >
TS, we can deduce Sims(U, V) > TS. �

In conclusion, when the calculated results of two entity types at the level of label
and property reach the given threshold, the two entity types can be regarded as directly
equivalent. The three levels label, property and individual can comprehensively evaluate
the equivalence of the two entity types from multiple perspectives.

The classical equivalence of two entity types lies only on the label level. Potentially
equivalent entity types are usually neglected because of different labels. Such different
labeling happens frequently for entity types from different schemas. This exaggerates the
difference between the entity types, which in turn reduces the precision of the criteria to
evaluate the overlaps between schemas. We consider the particularity of entity type in
schemas and enhance the measurement of entity types. Our method not only considers the
label level, which is compatible with the previous calculation methods, but also considers
the property level and individual level. This method can find more equivalent entity types.

5. Computation of Coverage and Flexibility

With the semantic equivalence calculation method of entity types, A∩ B is transformed
into the equivalent entity types both in schema A and schema B. Cov(A, B) and Flx(A, B)
can be calculated quantitatively. In this section, we introduce the weight of entity types
based on properties. Then, we introduce the quantitative calculation formula of Cov(A, B)
and Flx(A, B) based on the weight.
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5.1. Weight

Before the definition of weight, let us take the schema (Figure 2) extracted in Figure 1
as an example (hereinafter referred to as schema A).
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There are four entity types in schema A {student, teacher, course, scholarship} and four
object properties {receive, take, teach, lecture} between these four entity types. Among these
four entity types, student is associated with the other three entity types, while scholarship is
associated with student only. Suppose there is another schema referred to as B containing
entity type {teacher, course, scholarship} without entity type student. Entity type student in
schema A is not covered by schema B. The consequences brought by this mismatch are
relatively serious because the absence of entity type student will lead to a lack of connection
between entity type student and other entity types, which will easily lead to the incomplete
and inaccurate phenomenon when we use schema B to cover schema A. Semantically, if
entity type student is missing in schema B, Cov(A, B) should be lower in this case.

In another case, if schema B contains the entity type {teacher, course, student} without
entity type scholarship, it means that schema B can cover all entity types in schema A
but entity type scholarship. This kind of incompleteness will not affect the relationship
between other entity types because scholarship is associated with student only. That is to say,
the negative impact is relatively small, so the computation result of Cov(A, B) should be
greater than in the previous situation.

Similarly, suppose there is a schema C containing entity type {teacher, course, scholarship}
without entity type student. Now we need to calculate the redundancy degree of schema A
after it covers schema C, that is, Flx(A, C). There is no entity type student in schema C while
entity type student is very important in schema A, which means that entity type student
in schema A is very redundant. That is, schema A has serious redundancy. Therefore,
Flx(A, C) is large. On the contrary, if schema C contains entity type {teacher, course, student}
without entity type scholarship, the redundancy degree will be relatively low. Additionally,
Flx(A, C) should be smaller than in the previous situation because redundant entity type
A in schema C is not as important in schema C.

According to the example above, the intuition is that different entity types should be
associated with different weights according to their relationship with other entity types.
In a schema, the relationship between entity types is related to object properties. We use
“property” for “object property” if no ambiguity exists. Next, we introduce the definition
and quantitative calculation method of entity type weight based on property.

Definition 2. Weight of Entity type

In a schema, the weight of entity type E is

weight(E) =
|LE|

2 ∗ |L| (4)
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where |L| is the total number of all properties between all entity types in the schema. LE is
defined as follows:

LE = {p|E ∈ domain(p) or E ∈ range(p)}

|LE | is the cardinality of LE.
There are two exceptions to mention. Firstly, the entity type without any property is

difficult to express in a schema, so we do not consider these isolated entity types. Secondly,
in the denominator of weight definition |L| needs to be multiplied by 2 because the property
p is calculated twice in the definition LE. This process ensures the normalization of weights,
that is, the weight of each entity type is less than 1 and the weight sum of all entity types is
1, ∑n

i=1 |LEi | = 2 ∗ |L| (n is the total number of entity types in a schema).
In order to make this formula easier to understand, we use the entity types in

schema A in Figure 2 as an example. We give the weight of each entity type based
on property according to Formula (4). There are four entity types in schema A {stu-
dent, teacher, course, scholarship} and four properties {receive, take, teach, lecture}. |L| = 4
because there are four properties in total in schema A. For entity type student, student ∈
domain(take), domain(receive) and range(teach). Therefore, Lstudent = {take, receive, teach},
|Lstudent| = 3, weight(student) = |Lstudent|/(2 ∗ |L|) = 3/8. Similarly, Lscholarship =
{receive}, weight(scholarship) = 1/8. Lcourse = {take, lecture}, weight(course) = 1/4.
Lteacher = {teach, lecture}, weight(teacher) = 1/4. The above is a simple example of calcu-
lating the weight of entity type with Formula (4).

5.2. Handling of Is-a Relationship

An is-a relationship exists between entity types and between properties. The relation-
ship between entity types implies that subclasses inherit the property of their superclass. In
computation, we transfer the property influencing the superclass to subclasses. At the same
time, if all subclasses of the same superclass are associated with another entity type A, we
think that the superclass will also be associated with entity type A due to the closed world
assumption. We preprocess the schema before weight computation based on the above
semantic analysis of the is-a relationship between entity types. As the is-a relationship
corresponds to the semantics of superclass to subclass and subclass to superclass, we
preprocess these two situations separately.

5.2.1. From Superclass to Subclass

In a schema, if the superclass has any property, then the subclass should inherit the
same property, which does not exist explicitly in the schema. This should be considered
when calculating the weight of entity types. The specific method is to traverse all the
properties of the superclass and add them to each subclass entity type. Quantitative
calculation is |LsubclassEntityType|+ 1 and |L|+ 1 in Formula (4). The weight of the subclass
entity type will be larger.

5.2.2. From Subclass to Superclass

As shown in Figure 3, it is assumed that entity types {A1, A2 . . . Ak} are all subclasses
of entity type A in a schema. If entity types {A1, A2 . . . Ak} have properties pi(i = 1, . . . , k)
pointing to entity type B, then we create a property p pointing from entity type A to
entity type B. Here, p is only used to calculate weights, so the specific meaning of p is
not considered. However, in theory, the common parent property of the original k edges
can be extracted. In addition, we assume that these k properties are different, otherwise
they should be refined into properties of super classes entity type A to entity type B before
building a schema.
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On the semantic level, this operation is reasonable. If every subclass of entity type A
has a relationship with entity type B, it means that entity type A and entity type B also have
a certain relationship. When calculating the weight of an entity type A, the influence of
entity type B should be considered together. In the computation, if each subclass of entity
type A has a property pointing to entity type B, then |LA|+ 1 and |L|+ 1 in Formula (4).
The weight of entity type A will be larger.

In the process of migrating a property from superclass to subclass, there are two
special cases that need to be dealt with. As shown in Figures 4 and 5, suppose that in a
schema, entity type A1 is a subclass of entity type A, there is a property p1 between entity
type A and entity type B and entity type B1 (only in Figure 5) is a subclass of entity type B.
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1. As is shown in Figure 4, if there is property p2 between A1 and B and p2 is a subclass
of p1, there is no need to create a new property from A1 to B. In other cases, we create
a new property p from A1 to B;

2. As is shown in Figure 5, if there is property p3 between A1 and B1, and p3 is a subclass
of p1, there is no need to create a new property p from A to B. In other cases, we create
a new property from A to B.

After preprocessing, if the is-a relationship in the original schema is well handled,
then the weight is calculated according to Definition 2.

5.2.3. Handling of Restriction Relationship

After dealing with the is-a relationship, next step is to deal with the restriction rela-
tionship in OWL. Protégé-OWL API makes a clear distinction between named class and
anonymous class. Named classes are used to create instances, and anonymous classes are
used to explain in detail the logical characteristics of named classes. We can classify all
individuals with the same properties into an anonymous class, which is called a Restriction.

To give an example, teacher, an entity type, has a restriction “teaching people”, so
theoretically speaking, “teaching people” is a superclass of teacher. Our method does not
consider the weight of an anonymous superclass, because its function is only to restrict
subclasses. The properties between an anonymous superclass and another entity type are
still inherited by subclasses according to the method in Section 5.2.1.

5.3. Computation of Coverage and Flexibility

After defining the weights, we can define the computation formulas of coverage and
flexibility:

Definition 3. Coverage and Flexibility.

Given a schema X,

X = {A1 : k1, . . . , An : kn, B1 : kn+1, . . . , Bm : kn+m}

Ai : ki means that for entity type Ai in schema X, ki = weight(Ai), and given a
schema Y,

Y = {A1 : j1, . . . , An : jn, C1 : jn+1, . . . , Cl : jn+l}

The coverage and flexibility of schema X to schema Y are given by:

Cov(X, Y) = ∑n
i=1 ji (5)

Flx(X, Y) = ∑n+l
i=n+1 ki (6)

Some explanations of the formula:
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1. The semantic equivalent entity type between schema X and schema Y is {A1, . . . , An};
2. The positions of the two independent variables in (5) and (6) cannot be exchanged,

that is, the independent variables do not have symmetry.

Theorem 2. Formulas (5) and (6) conform to the semantics set of Formula (1) and (2), that is, the
computation method proposed in Definition 3 is correct.

Proof. Cov(X, Y) is defined as

Cov(X, Y) =
X ∩ Y

Y

Combined with Definition 2, for each entity type Ei in schema Y, there is

weight(Ei) =
|LEi |

2 ∗ |LY|

where |LEi | is the number of all properties with entity type Ei as the range or domain, and
|LY| is the number of all properties in schema Y. According to Definition 3, there is

ji = weight(Ei) =
|LEi |

2 ∗ |LY|

thus

Cov(X, Y) =
n

∑
i=1

ji =
n

∑
i=1

|LEi |
2 ∗ |LY|

=
∑n

i=1 |LEi |
2 ∗ |LY|

X ∩ Y are the entity types in two schemas, namely entity type A1 − An, and the
number of properties of this part is ∑n

i=1 |LEi |. The total number of properties in schema Y
is |LY|, as shown in Figure 2, each property links two entity types and both entity types
count this property when calculating their weights. Therefore, each property is counted
twice, so 2 ∗ |LY| represents the number of times involved in the calculation.

Therefore, ∑n
i=1 |Lei |/2 ∗ |LY| represents the meaning of X ∩ Y/Y, and the computa-

tion method in Definition 3 is correct. The correctness of Flx(X, Y) can be proved in the
same way. �

The application scenarios of these two formulas are widely used. When we need
to fuse schemas, we need to measure their overlapping effect. In the past, it was mostly
decided by domain experts whether the two schemas could be fused, which is not sci-
entific and efficient. This kind of quantitative evaluation can assist domain experts to
judge. Moreover, when the number of schemas that need to be evaluated is too large, it
is unrealistic to rely only on domain experts. Then, automation or semi-automation can
be designed according to the metrics above. It can increase efficiency, save labor costs
and avoid instability of subjective factors. In a word, the computability of evaluation
criteria is very important. The calculation method in Formulas (5) and (6) contributes to
the evaluation of schema fusion and the evaluation process.

6. Experiment
6.1. Computation of Coverage and Flexibility

Our experiment is mainly compared with the method in [37]. For the neutrality of the
experimental results, we select the data of a business practice project of the University of
Trento in Italy as the data source. We compared with the original method in [37] which does
not consider the weight of entity type in the calculation. In addition, under the premise
of considering the weight, we carry out experiments to compare the results of whether to
deal with the is-a relationship. The experimental results can verify the effectiveness of the
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method. The experiment is carried out on a desktop PC with a Intel i7-6700hq processor,
8GB DDR4 1333 Ram and SSD hard disk of 900GB.

There are three steps in this experiment. First, we extract entity type and properties
from query, datasets and existing universal schema to form three schemas. For the convenience
of description, these three schemas are referred to as Query, Datasets and Schema, respec-
tively. The second step is to determine semantically equivalent entity types between the 3
schemas pairwise according to the definitions in Section 4. To simplify the problem, we
assume that the semantic equivalence of entity types is symmetric and transitive across
schemas. Therefore, we only need to calculate the semantic equivalence of Query-Schema
and Datasets-Schema, respectively. Next, we explain the methods of extracting entity types
and properties from different schemas.

Query is presented in natural language in the project. We manually extracted the entity
types contained in Query with the help of the project document. The project document
provides some lexical alignment, and because of this, most of the entity types can be judged
as semantically equivalent on the label level. However, there are some exceptions. For
example, entity type Company extracted from Query and entity type Business Organization
from Schema are neither semantically similar nor synonymous in WordNet, but they
have the same properties at the property level, so they are computed to be semantically
equivalent according to the definition in Section 4. To facilitate the next step of our
experiment, standardize all equivalent entity types between Query and Schema.

As for Datasets, it is a bit more complicated, because the equivalence of entity types
contained in different tables of Datasets must be determined before the comparison
with Schema. Therefore, individual-level judgement in Section 4 works. For example,
entity type Company Category and entity type Industry from 2 different tables have the
same individuals and these two entity types are semantically equivalent according to the
definition in Section 4.

After entity type equivalence judgment and standardization, the numeric relationship
of Schema, Query and Datasets in our experiment is found, as shown in Figure 6. The
overlapping parts represent the equivalent entity types. For example, the number “9” in
the blue part in Figure 6 indicates that nine equivalent entity types can be found in Query,
Schema and Datasets, and the “8” in the yellow part indicates that there are 8 equivalent
entity types in both Query and Schema.
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The third step of our experiment is to calculate the weights of all entity types in
Datasets and Schema by the method proposed in Section 5. Limited by space, we cannot
list all the results. Figure 7 shows the distribution of entity type weights. We divide these
entity types into six important degrees according to a step size of 0.02 and use them as
independent variables of the experiment.
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It can be seen from Figure 7 that most entity types in Schema are of low importance.
Only a few important entity types have high weights. Three computation methods were
involved in our experiment:

1. The method which does not consider property-based weight computation (classical
method in [37]);

2. The method which considers weight computation but does not consider is-a relation-
ship handling in Section 5.2;

3. The method which both considers weight computation and is-a relationship handling
proposed in Section 5.

They are abbreviated as Method 1, 2 and 3 below.
For each method, the coverage and flexibility of the schema to Query and Schema to

Datasets are calculated. Note that Cov(A, B) = 1− Flx(B, A). Therefore, we can calculate
Cov(A, B) and get the value of Flx(B, A). As there is no is-a relationship in Query or
Datasets, the weights of entity types in Query and Datasets are not affected by prepro-
cessing the is-a relationship or not. For the above reasons, there is no difference between
Method 2 and Method 3 when calculating Cov(Schema, Query). Therefore, we only com-
pare Method 1 and Method 2 in Section 6.2.1. During the experiment, we remove one entity
type belonging to a certain degree of importance in Schema at a time, and the changes
in coverage and flexibility are observed. The average value is taken when entity types
belonging to the same degree of importance are removed.

6.2. Results and Analysis
6.2.1. Coverage

When calculating Cov(Schema, Query), according to Formula (5), we need to calculate
the weight of the entity types in Query. Then, the overlap degree of Schema over Query
is calculated. The greater the total weight of the entity types that cover query, the higher
the degree of overlap and the greater the result of Cov(Schema, Query). The calculation
method of Cov(Schema, Datasets) is similar.

As shown in Figure 8, when no entity types are removed, the coverage value calculated
by Method 2 is higher than that calculated by Method 1, because the importance of
entity types not included in Schema but in Query is very small. This also shows that
Method 2 can measure the coverage more accurately. With the importance of removed
entity types increasing from 1 to 3, the coverage value of Method 2 falls faster and faster,
because the absence of entity types with high importance in Schema will greatly reduce
the overlapping effect between Schema and Query, while the decline of Method 1 has no
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obvious change, indicating that the computation results of Method 2 can better reflect the
change in overlaps.

Algorithms 2021, 14, x FOR PEER REVIEW 15 of 19 
 

obvious change, indicating that the computation results of Method 2 can better reflect the 
change in overlaps. 

 
Figure 8. Coverage of Schema to Query. 

In particular, when removing entity types with an importance degree of 4, the de-
creasing amplitude of Method 2 becomes smaller, because there is only one entity type, 
Patent, with an importance degree of 4, and the weight of this entity type in Query is not 
high. Therefore, it presents abnormal points, as shown in Figure 8. When removing entity 
types with importance degrees of 5 and 6, the coverage value calculated by Method 2 is 
lower than that calculated by Method 1, because if the most important entity types are not 
included in Schema, the overlap degree of Query to Schema will decrease greatly, while 
the calculated value of Method 1 increases instead because it does not consider the differ-
ence in entity type weight. 

As for coverage of Schema to Datasets, the initial situation is like Query-Schema, as 
shown in Figure 9. However, when removing entity type with an importance of 4, the 
calculated values of the two methods both rise, which is because the entity type Patent is 
not included in Datasets of this project, leading to an increase in the schema’s overlap 
degree to Datasets after removing Patent from the schema. When removing entity types 
with the highest degrees of importance, the calculated value of Method 2 drops signifi-
cantly, because the weights of the most important entity types in Schema are also very 
high in Datasets. Removing these entity types will lead to a significant decrease in the 
overlap degree of Schema to Datasets, which is not reflected by the trend of Method 1. 

0.84
0.85
0.86
0.87
0.88
0.89

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98

0 1 2 3 4 5 6
Importance of removed etype

𝐶𝑜𝑣(𝑆𝑐ℎ𝑒𝑚𝑎,𝑄𝑢𝑒𝑟𝑦)

Method 1 Method 2

Figure 8. Coverage of Schema to Query.

In particular, when removing entity types with an importance degree of 4, the de-
creasing amplitude of Method 2 becomes smaller, because there is only one entity type,
Patent, with an importance degree of 4, and the weight of this entity type in Query is not
high. Therefore, it presents abnormal points, as shown in Figure 8. When removing entity
types with importance degrees of 5 and 6, the coverage value calculated by Method 2 is
lower than that calculated by Method 1, because if the most important entity types are not
included in Schema, the overlap degree of Query to Schema will decrease greatly, while the
calculated value of Method 1 increases instead because it does not consider the difference
in entity type weight.

As for coverage of Schema to Datasets, the initial situation is like Query-Schema, as
shown in Figure 9. However, when removing entity type with an importance of 4, the
calculated values of the two methods both rise, which is because the entity type Patent is not
included in Datasets of this project, leading to an increase in the schema’s overlap degree
to Datasets after removing Patent from the schema. When removing entity types with
the highest degrees of importance, the calculated value of Method 2 drops significantly,
because the weights of the most important entity types in Schema are also very high in
Datasets. Removing these entity types will lead to a significant decrease in the overlap
degree of Schema to Datasets, which is not reflected by the trend of Method 1.

To sum up, when calculating the coverage of Schema to Query and Schema to Datasets,
the calculation results of Method 2, which considers weight, can reflect the difference in
importance of entity types better than Method 1.
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Figure 9. Coverage of Schema to Datasets.

6.2.2. Flexibility

After verifying the effectiveness of Method 2 for computing coverage, we ver-
ify the effectiveness of Methods 2 and 3 for computing flexibility. When calculating
Flx(Schema, Query) according to Formula (6), we need to calculate the weight of the entity
types in Schema. Then, the redundancy degree of Schema after covering query can be
calculated. The greater the weight of the entity types that do not cover Query, the higher
the degree of redundancy and the greater the result of Flx(Schema, Query). The calculation
method of Flx(Schema, Datasets) is similar.

As shown in Figure 10, among the three computation methods, Method 3 is most in
line with this trend. The trend of Method 1 is irregular. Although Method 2 also has an
increasing trend, the flexibility values are all greater than the values in Method 3. This is
because Method 2 does not deal with the is-a relationship. The calculated weight values of
entity types which have high importance degrees are less prominent, resulting in the larger
redundancy. Additionally, it is also the reason why there is a drop at degree 6 in Method
2. For flexibility of Schema to Datasets in Figure 11, the situation is roughly the same as
flexibility of Schema to Query.
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To sum up, when calculating the flexibility of Schema to query and Schema to Datasets,
Method 3, which utilizes every property-based metric in Section 5, is better than Methods
1 and 2. By comparing the experimental results, the applicability and effectiveness of
Methods 2 and 3 for computing flexibility are verified.
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7. Conclusions and Future Work

This research studies the quantitative evaluation method of semantic equivalence
of entity types and overlapping effect between schemas. On the one hand, we give a
method to judge the semantic equivalence between entity types. In the past, most of the
equivalence judgments were based on the label of entity type, and did not make effective
use of the particularity of entity type in a schema. Our method considers the influence of
properties and individuals on entity type, which makes the calculation method of semantic
equivalence of entity type in a schema more scientific and reasonable. Our work can
give some inspiration in the sense that it can be considered as judging the equivalence
of entity type from different perspectives, rather than just from the single perspective of
label. In future work, we will refine the calculation method and explore more clear and
scientific quantitative means. On the other hand, we calculate the weight of entity types in
a schema based on properties. We effectively consider the influence between entity types
and quantify the influence. On this basis, we define the calculation methods of coverage
and flexibility which contribute to ontology evaluation in the process of scheme fusion. It is
vital to define the fine-grained weights of entity types, for example, to compute differences
in the weights of object/data properties from type to type. In the future, the context of the
entity type will be considered in the calculation of the weight.
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