Numerical Algorithm for Dynamic Impedance of Bridge Pile-Group Foundation and Its Validation
Abstract
:1. Introduction
2. Project-Oriented Numerical Algorithm for Impedance of Pile-Group Foundation
2.1. Definition of the Impedance Functions
2.2. Refined FE Model of the Cap–Pile Group–Surrounding Soil System
2.3. Boundary Conditions
2.4. Calculation of the Impedance Funcitons
3. Verification of the Numerical Algorithm
3.1. Comparison with Existing Methods
3.2. Field Experiment
3.2.1. Description of the Experiment
- (1)
- Impact the top of the cap in a vertical direction and obtain its vertical acceleration response;
- (2)
- Impact the north side of the cap and obtain its acceleration response in a north–south direction;
- (3)
- Impact the east side of the cap and obtain its acceleration response in an east–west direction.
3.2.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.X.; Gu, Y. Seismic analysis of a curved bridge considering soil-structure interactions based on a separated foundation model. Appl. Sci. 2020, 10, 4260. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Dong, S.; Wang, Q.W. Seismic response of skewed integral abutment bridges under near fault ground motions, including soil-structure interaction. Appl. Sci. 2021, 11, 3217. [Google Scholar] [CrossRef]
- Carbonari, S.; Dezi, F.; Leoni, G. Seismic soil-structure interaction in multi-span bridges: Application to a railway bridge. Earthq. Eng. Struct. Dyn. 2011, 40, 1219–1239. [Google Scholar] [CrossRef]
- González, F.; Padrón, L.A.; Carbonari, S.; Morici, M.; Aznárez, J.J.; Dezi, F.; Leoni, G. Seismic response of bridge piers on pile groups for different soil damping models and lumped parameter representations of the foundation. Earthq. Eng. Struct. Dyn. 2019, 48, 1–22. [Google Scholar] [CrossRef]
- Mylonakis, G.; Gazetas, G. Seismic soil-structure interaction: Beneficial or detrimental? J. Earthq. Eng. 2000, 4, 277–301. [Google Scholar] [CrossRef]
- Soyluk, K.; Sicacik, E.A. Soil-structure interaction analysis of cable-stayed bridges for spatially varying ground motion components. Soil Dyn. Earthq. Eng. 2012, 35, 80–90. [Google Scholar] [CrossRef]
- Shirgir, V.; Ghanbari, A.; Shahrouzi, M. Natural frequency of single pier bridges considering soil-structure interaction. J. Earthq. Eng. 2016, 20, 611–632. [Google Scholar] [CrossRef]
- Gara, F.; Regni, M.; Roia, D.; Carbonari, S.; Dezi, F. Evidence of coupled soil-structure interaction and site response in continuous viaducts from ambient vibration tests. Soil Dyn. Earthq. Eng. 2019, 120, 408–422. [Google Scholar] [CrossRef]
- Qiao, H.; Xia, H.; Du, X.T. Dynamic Analysis of an Integrated Train-bridge-foundation-soil System by the Substructure Method. Int. J. Struct. Stab. Dyn. 2018, 18, 1850069. [Google Scholar] [CrossRef]
- Tochaei, E.N.; Taylor, T.; Ansari, F. Effects of near-field ground motions and soil-structure interaction on dynamic response of a cable-stayed bridge. Soil Dyn. Earthq. Eng. 2020, 133, 106115. [Google Scholar] [CrossRef]
- Carbonari, S.; Morici, M.; Dezi, F.; Leoni, G. A lumped parameter model for time-domain inertial soil-structure interaction analysis of structures on pile foundations. Earthq. Eng. Struct. Dyn. 2018, 47, 2147–2171. [Google Scholar] [CrossRef]
- Şafak, E. Time-domain representation of frequency-dependent foundation impedance functions. Soil Dyn. Earthq. Eng. 2006, 26, 65–70. [Google Scholar] [CrossRef]
- Kaynia, M.; Kausel, E. Dynamic Stiffness and Seismic Response of Pile Groups; Massachuestts Institute of Technology: Cambridge, MA, USA, 1982. [Google Scholar]
- Gazetas, G.; Fan, K.; Kaynia, A. Dynamic response of pile groups with different configuration. Soil Dyn. Earthq. Eng. 1993, 12, 239–257. [Google Scholar] [CrossRef]
- Jiang, T.; Cheng, C.S. Impedance functions analysis of various foundations embedded in stratified soils by using thin layer method. Chin. Q. Mech. 2007, 28, 180–186. (In Chinese) [Google Scholar]
- Miura, K.; Kaynia, A.M.; Masuda, K.; Kitamura, E.; Seto, Y. Dynamic behavior of pile foundations in homogeneous and non-homogeneous media. Earthq. Eng. Struct. Dyn. 1994, 23, 183–192. [Google Scholar] [CrossRef]
- Zhou, X.L.; Wang, J.H. Analysis of pile groups in a poroelastic medium subjected to horizontal vibration. Comput. Geotech. 2009, 36, 406–418. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, D.; Liu, W.Q. Horizontal impedance of pile groups considering shear behavior of multilayered soils. Soils Found. 2014, 54, 927–937. [Google Scholar] [CrossRef] [Green Version]
- Saitoh, M.; Padrón, L.A.; Aznárez, J.J.; Maeso, O.; Goit, C.S. Expanded superposition method for impedance functions of inclined-pile groups. Int. J. Numer. Anal. Met. 2016, 40, 185–206. [Google Scholar] [CrossRef]
- Cao, Y.M.; Wu, P. Dynamic impedance of pile group foundation of bridge based on the TLM-PML-VM method. In Proceedings of the ISEV 2018, Changsha, China, 26–28 October 2018. [Google Scholar] [CrossRef]
- Luan, L.B.; Deng, X.; Deng, W.T.; Wang, C.L.; Ding, X.M. Influence of pile geometry on responses of end-bearing pile groups subjected to vertical dynamic loads. Int. J. Struct. Stab. Dyn. 2020, 20, 2050050. [Google Scholar] [CrossRef]
- Luan, L.B.; Zheng, C.J.; Kouretzis, G.; Ding, X.M. Dynamic analysis of pile groups subjected to horizontal loads considering coupled pile-to-pile interaction. Comput. Geotech. 2020, 117, 103276. [Google Scholar] [CrossRef]
- Álamo, G.M.; Martínez-Castro, A.E.; Padrón, L.A.; Aznárez, J.J.; Gallego, R.; Maeso, O. Efficient numerical model for the computation of impedance functions of inclined pile groups in layered soils. Eng. Struct. 2016, 126, 379–390. [Google Scholar] [CrossRef]
- Padrón, L.A.; Aznárez, J.J.; Maeso, O. BEM-FEM coupling model for the dynamic analysis of piles and pile groups. Eng. Anal. Bound. Elem. 2007, 31, 473–484. [Google Scholar] [CrossRef] [Green Version]
- Emani, P.K.; Maheshwari, B.K. Dynamic impedance of pile groups with embedded caps in homogeneous elastic soils using CIFECM. Soil Dyn. Earthq. Eng. 2009, 29, 963–973. [Google Scholar] [CrossRef]
- Ai, Z.Y.; Li, Z.X.; Wang, L.H. Dynamic response of a laterally loaded fixed-head pile group in a transversely isotropic multilayered half-space. J. Sound Vib. 2016, 385, 171–183. [Google Scholar] [CrossRef]
- Zhang, S.P.; Cui, C.Y.; Yang, G. Vertical dynamic impedance of pile groups partially embedded in multilayered, transversely isotropic, saturated soils. Soil Dyn. Earthq. Eng. 2019, 117, 106–115. [Google Scholar] [CrossRef]
- Dezi, F.; Carbonari, S.; Leoni, G. A model for the 3D kinematic interaction analysis of pile groups in layered soils. Earthq. Eng. Struct. Dyn. 2009, 38, 1281–1305. [Google Scholar] [CrossRef]
- Dezi, F.; Carbonari, S.; Morici, M. A numerical model for the dynamic analysis of inclined pile groups. Earthq. Eng. Struct. Dyn. 2015, 45, 45–68. [Google Scholar] [CrossRef]
- Moghaddasi, H.; Shahbodagh, B.; Khalili, N. Lateral vibration of piles and pile groups in nonhomogeneous transversely isotropic media. Int. J. Geomech. 2020, 20, 04020124. [Google Scholar] [CrossRef]
- Varghese, R.; Boominathan, A.; Banerjee, S. Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads. Soil Dyn. Earthq. Eng. 2020, 133, 106117. [Google Scholar] [CrossRef]
- Wang, L.H.; Ai, Z.Y. Vertical vibration analysis of a pile group in multilayered poroelastic soils with compressible constituents. Int. J. Geomech. 2021, 21, 04020232. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, C.L.; Xu, C.J. Lateral dynamic response of pile group embedded in unsaturated soil. Soil Dyn. Earthq. Eng. 2021, 142, 106559. [Google Scholar] [CrossRef]
- Kohnke, P. ANSYS Theory Reference-Release 13.0.; ANSYS Inc.: Canonsburg, PA, USA, 2010. [Google Scholar]
- Qiao, H.; Du, X.T.; Xia, H.; De Roeck, G.; Lombaert, G.; Long, P. The effect of local topography on the seismic response of a coupled train-bridge system. Struct. Eng. Mech. 2019, 69, 177–191. [Google Scholar] [CrossRef]
- Huang, J.Q.; Zhao, M.; Du, X.L. Non-linear seismic responses of tunnels within normal fault ground under obliquely incident P waves. Tunn. Undergr. Space Technol. 2017, 61, 26–39. [Google Scholar] [CrossRef]
- Zhang, C.H.; Pan, J.W.; Wang, J.T. Influence of seismic input mechanisms and radiation damping on arch dam response. Soil Dyn. Earthq. Eng. 2010, 29, 1282–1293. [Google Scholar] [CrossRef]
- Du, X.L.; Zhao, M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media. Soil Dyn. Earthq. Eng. 2010, 30, 937–946. [Google Scholar] [CrossRef]
- Wen, X.Z.; Zhou, F.Y.; Fukuwa, N.; Zhu, H.P. A simplified method for impedance and foundation input motion of a foundation supported by pile groups and its application. Comput. Geotech. 2015, 69, 301–319. [Google Scholar] [CrossRef]
Item | Parameter | Value |
---|---|---|
Piles | Pile diameter | 1.0 m |
Pile length | 20 m | |
Pile spacing | 5.0 m | |
Unit weight | 20 kN/m3 | |
Poisson’s ratio | 0.25 | |
Elasticity modulus | 3.92 × 109 N/m2 | |
Soil | Unit weight | 14 kN/m3 |
Damping ratio | 0.05 | |
Velocity of shear wave | 100 m/s | |
Poisson’s ratio | 0.4 |
Item | Unit Weight (kN/m3) | Poisson’s Ratio | Elasticity Modulus (N/m2) |
---|---|---|---|
Soil type 1 | 20 | 0.25 | 7.08 × 107 |
Soil type 2 | 20 | 0.35 | 4.37 × 107 |
Soil type 3 | 20 | 0.25 | 10.8 × 107 |
Soil type 4 | 18.5 | 0.35 | 12.3 × 107 |
Pile | 25 | 0.25 | 3.25 × 1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Qiao, H.; Wang, Y.; Du, X. Numerical Algorithm for Dynamic Impedance of Bridge Pile-Group Foundation and Its Validation. Algorithms 2021, 14, 247. https://doi.org/10.3390/a14080247
Wang C, Qiao H, Wang Y, Du X. Numerical Algorithm for Dynamic Impedance of Bridge Pile-Group Foundation and Its Validation. Algorithms. 2021; 14(8):247. https://doi.org/10.3390/a14080247
Chicago/Turabian StyleWang, Chenyu, Hong Qiao, Yi Wang, and Xianting Du. 2021. "Numerical Algorithm for Dynamic Impedance of Bridge Pile-Group Foundation and Its Validation" Algorithms 14, no. 8: 247. https://doi.org/10.3390/a14080247
APA StyleWang, C., Qiao, H., Wang, Y., & Du, X. (2021). Numerical Algorithm for Dynamic Impedance of Bridge Pile-Group Foundation and Its Validation. Algorithms, 14(8), 247. https://doi.org/10.3390/a14080247