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Abstract: Construction labor productivity (CLP) is affected by various interconnected factors, such
as crew motivation and working conditions. Improved CLP can benefit a construction project in
many ways, such as a shortened project life cycle and lowering project cost. However, budget, time,
and resource restrictions force companies to select and implement only a limited number of CLP
improvement strategies. Therefore, a research gap exists regarding methods for supporting the
selection of CLP improvement strategies for a given project by quantifying the impact of strategies
on CLP with respect to interrelationships among CLP factors. This paper proposes a decision
support model that integrates fuzzy multi-criteria decision making with fuzzy cognitive maps to
prioritize CLP improvement strategies based on their impact on CLP, causal relationships among CLP
factors, and project characteristics. The proposed model was applied to determine CLP improvement
strategies for concrete-pouring activities in building projects as an illustrative example. This study
contributes to the body of knowledge by providing a systematic approach for selecting appropriate
CLP improvement strategies based on interrelationships among the factors affecting CLP and the
impact of such strategies on CLP. The results are expected to support construction practitioners with
identifying effective improvement strategies to enhance CLP in their projects.

Keywords: construction labor productivity; fuzzy multi-criteria decision making; fuzzy cognitive
map; productivity improvement strategy; impact quantification

1. Introduction

Many activities in the construction sector are labor intensive, so construction labor
productivity (CLP) has a significant impact on time, cost, and quality of a construction
project [1,2]. CLP is defined as a ratio of output (i.e., installed quantity) to input (e.g., labor
work hours) or vice versa. Therefore, maximizing CLP is pivotal for enhancing the overall
performance of construction projects in multiple areas, such as reducing variances from
the primary plan and keeping projects on time and within budget. Therefore, construction
companies are required to implement various CLP improvement strategies to enhance
the level of influencing CLP factors and consequently improve CLP. In this study, a CLP
improvement strategy is an individual management practice, such as a working method,
tactic, or innovation, that construction managers use to improve CLP on their projects.
Some examples of CLP improvement strategies include performing weekly reviews of crew
compositions to ensure crew mix is per plan, providing clear instructions to craftspeople
on how to complete tasks prior to execution, and scheduling regular inspections by the
owner team to reduce interventions during project execution. However, budget, time, and
resource constraints force construction companies to carry out only a limited number of
CLP improvement strategies [3]. Furthermore, in the complex environment of construction,
CLP is affected by numerous factors that are mostly interconnected [4,5]. Thus, the actual
impact of various factors on CLP can only be obtained using a systematic approach that
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models the interrelationships among them [6]. However, most construction companies
apply management practices, such as changing working times and switching the workweek,
based on their managers’ experience and knowledge [7].

Understanding factors that affect labor productivity is important for making strategic
decisions and selecting appropriate CLP improvement strategies [8]. Factors affecting CLP
are multilevel, ranging from the activity level to the project, national, and global levels [9,10].
Therefore, different opinions of a construction company’s personnel (e.g., project managers,
craft workers, foremen) should be captured to determine the importance of CLP factors for
CLP improvement [11]. To identify factors that affect CLP, previous studies integrated the
perspective of different project participants through questionnaires with interview surveys
and grouped the CLP factors under various categories to analyze them. For instance, Van
Tam et al. [12] identified and ranked 45 critical CLP factors out of 203 samples collected
from project managers and contractors via a survey questionnaire. Their results’ analysis
showed a significant difference between project manager’s and contractors’ opinions on
the key factors affecting CLP. Almamlook et al. [13] developed a questionnaire containing
30 factors affecting CLP in Libya. Their results indicated that a lack of labor supervision
and the experience and skill of labor are the most significant factors affecting CLP in Libyan
construction projects. Compared to CLP factors identification, very few studies have been
conducted for identifying key CLP improvement strategies. According to the provided
literature review, most techniques proposed for selecting key CLP improvement strategies
lack the capability to quantify the strategies’ impact on CLP. However, to effectively
improve CLP, the extent to which the implemented improvement strategies affect CLP
needs to be known. Widely used techniques for quantifying the impact of various strategies
on CLP include statistical methods such as t-test and regression analysis [7,14]. The major
limitation of statistical methods is their inability to capture the causal relationships among
CLP factors, improvement strategies, and CLP. In addition, such methods lack the capability
to consider project characteristics. However, key CLP improvement strategies differ from
one project to another. Consequently, determining interrelationships among key CLP
factors and strategies and determining the impact of each strategy on CLP is crucial for
prioritizing appropriate CLP improvement strategies for a given project.

In order to address the mentioned research gaps, the objective of this study is to
identify the most effective CLP improvement strategies and quantify their impact on CLP
through a decision support model that considers the causal relationships among CLP
factors as well as the project characteristics and experts’ perspective. The decision support
model is developed by integrating two fuzzy multi-criteria decision making (fuzzy MCDM)
methods, called fuzzy analytic hierarchy process (fuzzy AHP) and fuzzy techniques for
order of preference by similarity to idea solution (fuzzy TOPSIS), with fuzzy cognitive
maps (FCM). Improvement strategy selection is a decision-making problem in which vari-
ous criteria, such as impact on CLP and workers’ adaptation, influence the effectiveness
of selected strategies. MCDM techniques were specifically designed to mathematically
solve this type of problem by providing formalized tools for dealing with multiple crite-
ria [15]. However, the problem of selecting improvement strategies is too complex to be
understood quantitatively with numerical values since the criteria of strategy selection (i.e.,
implementation feasibility) are qualitative. This type of problem can be addressed by using
knowledge that is imprecise and qualitative [16]. Fuzzy MCDM incorporates MCDM meth-
ods with fuzzy set theory to resemble human reasoning by using approximate information
and uncertainty to generate decisions. Hence, this study proposes the combination of
two fuzzy MCDM methods—fuzzy AHP and fuzzy TOPSIS –to determine the top-ranked
CLP improvement strategies. The combination of fuzzy AHP and fuzzy TOPSIS captures
experts’ opinions and project characteristics and represents uncertainty and vagueness in
the decision-making process of CLP improvement strategies selection without involving
cumbersome mathematics [16]. CLP is affected by both quantitative factors (e.g., temper-
ature) and qualitative factors (e.g., team spirit of crew), and the combined effect these
factors have on CLP is difficult to determine. Thus, developing a precise model for CLP
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might not be feasible [17]. FCM as a knowledge representation and reasoning method
originates from the combination of fuzzy logic, cognitive mapping, and neural networks to
represent knowledge of systems such as a CLP environment, which are characterized by
uncertainty, causality, and complex processes [18–21]. FCM depicts a CLP system in a form
that corresponds closely to the way humans perceive it, through approximate reasoning
and taking into account the imprecision and uncertainty of CLP factors [22]. Ahn et al. [19]
showed the effectiveness of FCM as tool for modeling CLP since FCM considers causal
relationships among CLP factors as well as the imprecision and uncertainty of CLP factors.
Therefore, the proposed decision support model in this study develops an FCM model
for capturing the causal relationships among CLP factors and quantifying the impact of
improvement strategies.

A main contribution of this study is providing a novel decision support model that
integrates the combination of fuzzy AHP and fuzzy TOPSIS, as two fuzzy MCDM methods,
with FCM to prioritize CLP improvement strategies based on their impact on CLP, causal
relationships among CLP factors, and project characteristics. In addition to representing
uncertainty and vagueness, the combination of fuzzy AHP and fuzzy TOPSIS supports
FCM modeling by reducing the number of improvement strategies required for FCM
modeling with respect to project characteristics and experts’ opinions. Thereafter, FCM,
by taking into account the imprecision and uncertainty of CLP factors, models the causal
relationships among CLP factors in order to quantify the impact of the strategies on CLP
improvement. Accordingly, the results of this study are more accurate than previous
studies that used statistical methods such as t-test and regression analysis, which lack
the capability to capture project characteristics and causal relationships among various
factors. The decision support model is implemented on a case study of concrete-pouring
activities in building projects to show how construction companies can utilize the proposed
model in their projects to identify the improvement strategies that serve as the most
effective management practices with respect to CLP. The results of this study will assist
construction management teams in identifying the impacts of CLP improvement strategies
on their projects. The contribution of this study is presenting this systematic decision
support model for identifying key CLP improvement strategies and quantifying their
impact on CLP, which will provide construction practitioners with a means of ranking
CLP improvement strategies with respect to various criteria, including implementation
feasibility and risk, adaptation of workers, and impact on CLP. These findings can assist
construction managers in improving CLP for their projects in an optimum manner to
reduce variances from the primary plan and keep projects on time and within budget. In
addition, based on the capability of the decision support model to simulate the impact of
various management practices on the CLP of specific projects prior to their implementation,
construction companies can use the provided model to apply management practices that
have only subtle impact on the CLP for given projects.

This article is organized as follows. Section 2 provides a review of past research on
approaches for identifying and measuring CLP improvement strategies. Section 3 describes
the framework for prioritizing CLP improvement strategies through three phases: (1) iden-
tifying factors and strategies, (2) ranking strategies and, (3) quantifying strategies’ impact
on CLP (i.e., building the FCM model). Section 4 presents and summarizes the experimen-
tal results of using the proposed decision support model to quantify CLP improvement
strategies. Section 5 presents conclusions and notes regarding future work.

2. Literature Review

While new technologies and innovations provide construction companies with oppor-
tunities to improve CLP, their influence is insignificant if improvement strategies recognized
as necessary for controlling and improving CLP are not utilized first [7]. Consequently,
project managers implement a wide range of improvement strategies to increase CLP in
construction projects [6,7,23,24]. The implemented strategies aim to boost CLP by changing
the work system or its components [25]. However, more than half of nonproductive work
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hours are caused by implementing ineffective improvement strategies since the actual
impact on CLP is not evident [26]. Thus, to achieve optimum productivity in projects, it is
critical for construction management teams to identify the most effective CLP improvement
strategies. Several studies have been conducted on identifying key CLP improvement
strategies in the construction domain. However, they have not attempted to quantify the
impact of the strategies on improving CLP. As a result, most previous studies have not
provided empirical evidence to prove the effectiveness of their recommended improve-
ment strategies. Gurmu and Aibinu [27] used two questionnaires and developed a scoring
tool to identify and prioritize construction equipment management practices that increase
productivity. Kazerooni et al. [3] developed a systemic framework for ranking CLP factors
according to their importance for CLP improvement by integrating MCDM with fuzzy data
clustering. They suggested various improvement strategies based on the identified key
factors. Shoar and Banaiti [28] applied fuzzy fault tree analysis method to identify critical
events that cause low productivity and find appropriate response strategies with respect
to the identified events. Agrawal and Halder [29] conducted two survey questionnaires
and used the RII method to gauge the perception of construction workers regarding CLP
factors and practices leading to CLP improvement. Kedir et al. [30] integrated MCDM
with fuzzy agent-based modeling to analyze the implementation of different productivity
improvement policies. Contrary to previous studies, Al-Rubaye and Mahjoob [31] focused
on the loss of labor productivity in Iraq by deploying cause-and-effect analysis. They
identified factors that cause CLP loss and proposed various management practices to lower
its impact. Kermanshachi et al. [32] developed a system dynamics model to analyze the
effects of change orders on CLP and, based upon sensitivity analysis, identified five policies
to lessen these effects. Thomas et al. [33] suggested various CLP improvement strategies
for avoiding workspace congestion and increasing CLP by comparing the productivity
rates measured in the field with baseline productivity rates based on historical data.

While previous studies investigated various CLP improvement strategies, only a few
attempted to quantify the impact of given improvement strategies on CLP. For instance,
Ghodrati et al. [14] attempted to quantify the effectiveness of nine widely implemented
management strategies such as incentive programs, training, resource scheduling, and
communication to improve labor productivity. Each management strategy entails several
management practices. To assess the implementation level of the management strate-
gies, they developed a management strategy assessment index and interviewed experts
from several New Zealand construction companies. They then employed multiple regres-
sion analyses and a t-test to determine the relationships between the strategies and CLP.
Shan et al. [7] aimed to identify the effectiveness of seven pre-defined key management
programs for improving CLP. Through a series of t-tests, they examined the relationships
between management programs and labor productivity. The results of their analyses
showed that CLP is positively correlated to implementation of the management programs.
Caldas et al. [6] developed a statistical method and metric, called the best productivity
practices implementation index for industrial projects (BPPII Industrial), for identifying key
construction productivity practices and quantifying the relative importance of the identified
practices. Their results indicated that projects with higher BPPII Industrial scores have a
greater potential to achieve better construction productivity than was originally estimated.

The following are research gaps in the current literature of CLP improvement strate-
gies: (1) The applied statistical methods do not consider the causal relationships among
CLP improvement parameters (i.e., affecting factors and CLP). CLP factors are mostly
interconnected and affect each other, so it is necessary to consider the causal relationships
among the factors and strategies in order to achieve accurate values for the quantified im-
pact of strategies on CLP. (2) Most previous studies did not consider project characteristics
for selecting CLP improvement strategies. They selected the key improvement strategies
based on previous research. However, CLP is a context-specific efficiency measure, because
the identified factors and their degree of impact on CLP vary from project to project [1,4].
Hence, key CLP improvement strategies also differ from one project to another, and a
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systematic approach is needed to capture the project characteristics and construct the
cause-and-effect relationships among CLP improvement parameters in order to identify
the most effective CLP improvement strategies.

To address the mentioned research gaps, this study proposes a decision support
model to assist selection and implementation of optimal CLP improvement strategies for
a given project. The proposed model consists of: (1) the combination of fuzzy AHP and
fuzzy TOPSIS methods in order to deal with uncertainty and vagueness in the decision-
making process of selecting CLP improvement strategies and to capture experts’ opinions
about the ranking of strategies regarding various criteria in order to consider project
characteristics and (2) an FCM model to consider the causal relationships among CLP
factors for quantifying the impact of improvement strategies on CLP and capturing the
imprecision and uncertainty of CLP factors for CLP modeling. Accordingly, the proposed
methodology is expected to achieve more accurate results than previous studies that
utilized statistical methods to quantify the impact of CLP improvement strategies without
considering the imprecision of CLP factors, causal relationships among CLP factors, and
project characteristics.

3. Methodology

This study proposes a decision support model for identifying and prioritizing the
most effective CLP improvement strategies by integrating fuzzy MCDM methods with
FCM. Fuzzy MCDM methods, such as fuzzy AHP and fuzzy TOPSIS, are operations
research tools for ranking various parameters with respect to multiple criteria in complex
decision-making problems [34]. In the problem of improvement strategy selection, fuzzy
AHP is used to weight criteria, and fuzzy TOPSIS is used to rank the strategies based on the
criteria. FCM is a causal cognition tool for modeling and simulating dynamic systems [35].
In this study, FCM is utilized to quantify the impact of strategies on CLP by modeling
a CLP environment. Figure 1 shows a general view of the framework for selecting CLP
improvement strategies, which includes three phases: identifying factors and strategies,
ranking strategies, and quantifying strategies’ impact on CLP.
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In the first phase, the key CLP factors are determined based on the study carried out
by Ebrahimi et al. [36]. Then, various CLP improvement strategies that correspond to key
factors (i.e., strategies that could be used to address each factor) are identified through a
comprehensive background review of the literature. In the second phase, the two fuzzy
MCDM methods of fuzzy AHP and fuzzy TOPSIS are integrated and used to rank the
identified improvement strategies by capturing experts’ opinions of the importance of each
strategy versus various criteria. In the third phase, an FCM model is developed based
on the identified factors and top-ranked strategies for analyzing the effects of factors on
each other and determining the impact of each strategy on CLP improvement. Finally, the
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most effective CLP improvement strategies are prioritized, or ranked, according to their
quantified impact on CLP. Two validation approaches, structural validity and behavioral
validity, are used in this study to validate the developed decision support model. The
structural validity approach is utilized to evaluate the list of model components (factors
influencing CLP and CLP improvement strategies) and the relationships among them.
Behavioral validity of the FCM model is evaluated using the extreme conditions test,
as utilized by Kumar and Yamaoka [37], which compares the behavior of a developed
model to the behavior of the real system under the same extreme conditions of input
factors [38]. According to Gerami Seresht and Fayek [39], common validation tests such as
the statistical hypothesis test are not suitable for FCM models, which simulate dynamic
systems. Therefore, both utilized validation approaches compare the structure and behavior
of the model with a real-world system empirically, using case studies and, theoretically,
using the literature. An overview of the utilized case study is presented below.

3.1. Case Study and CLP Dataset Overview

The CLP dataset used in this research was provided from a previous study conducted
by Tsehayae and Fayek [4,11]. They defined CLP as the ratio of units of output, expressed
as installed quantity (in cubic meters), to units of input, expressed as total labor work hours,
and the data were collected for concrete-pouring activities in building projects in Alberta,
Canada. They studied concrete pouring in three data collection cycles between June 2012
and October 2014 in collaboration with two partnering companies. Each cycle extended
over a month-long period and encompassed different weather seasons. The data were
collected by documenting the value of CLP factors and CLP on a daily basis at construction
sites. A total of 118 factors influencing CLP were identified and measured for a total of
92 days. Thus, the proposed decision support model in this study is developed for identi-
fying, ranking, and implementing improvement strategies for the CLP of concrete-pouring
activities in building projects. The following sections present the details of each phase of
CLP improvement strategy selection by implementing them in the case study model.

3.2. Identifying Factors and Strategies

Past studies have shown that key CLP factors vary from one construction project to
another [40]. In this regard, the first step in developing a CLP model is to determine
the relevant surrounding factors that affect CLP within the studied context. Accord-
ingly, for the purpose of this research, the most value-adding CLP factors identified in
Ebrahimi et al. [36] were considered since they utilized the same empirical data that was
introduced earlier. Ebrahimi et al. [36] utilized hybrid feature selection to identify and rank
a total of 19 factors as the most value-adding CLP factors.

After the most value-adding CLP factors were determined, an extensive literature
review of past studies was conducted to identify various CLP improvement strategies
that correspond to the identified key factors. As a result, 54 strategies with the potential
to improve CLP were identified for 19 factors. The most appropriate strategy among the
identified potential strategies was then determined for addressing each CLP factor using
three experts involved in the project under study. As a result, 16 different strategies were
identified. Table 1 shows the factors and their corresponding improvement strategies. The
linguistic descriptors of the factors are given under the factors in order to give a clear
understanding of the factors’ definitions. The linguistic descriptors of F6 are categorical,
and it is not possible to replace a category (e.g., columns) with another category (e.g., slabs)
in the project, so no improvement strategy corresponds to this factor.



Algorithms 2021, 14, 254 7 of 20

Table 1. The most value-adding CLP factors and their corresponding improvement strategies.

No. Most Value-Adding CLP Factor No. CLP Improvement Strategy

F1 Fairness of work assignment (Poor, Fair, Good) S1 Perform weekly reviews of crew compositions to
ensure crew mix is per plan

F2 Complexity of task (Low, Average, High) S2 Provide clear instructions to craftspeople on how
to complete tasks prior to execution

F3 Repetitiveness of task (Low, Medium, High) S3 Have the same person perform a task several times
rather than making personnel changes along the way

F4 Owner staff on site (Low, Average, High) S4 Schedule regular inspections by the owner team
to reduce interventions during project execution

F5 Congestion of work area (Low, Average, High) S5 Establish staggered working hours of laborers

F6 Structural element (Columns, Footings,
Grade beams, Pile caps, Slabs, Walls) N/A N/A

F7 Concrete placement technique (Pump,
Crane and bucket, Direct chute) S6 Train laborers to achieve the latest

concrete-pouring techniques

F8 Team spirit of crew (Poor, Fair, Good) S7 Perform project team activities

F9 Weather—precipitation (Low, Medium, High) S8 Cover working area to protect from
wind effects and precipitation

F10 Crew participation in foreman’s decision-making
process (Without explanation, Joint, With) S9 Hold regular meetings with laborers about

schedule and remaining tasks

F11 Location of work scope—distance
(Very close, Close, Far) S10 Design processes to eliminate repetitive motion

and reduce manual labor

F12 Material movement practices—horizontal
(Poor, Fair, Good) S11 Develop clear instructions about the equipment

used to transport materials

F13 Availability of labor (Low, Medium, High) S12 Offer internship and scholarship programs to trade and
vocational schools to help company’s future workers

F14 Weather—temperature (Low, Medium, High) S13
Apply preventive maintenance to heating and

air-conditioning systems to make sure they
are in working order

F15 Variability of weather (Low, Medium, High) S8 Cover working area to protect from wind
effects and precipitation

F16 Job security(Poor, Fair, Good) S14 Hold meetings during later project stages to discuss
transfer of project team to future projects of the company

F17 Working conditions—dust and fumes
(Low, Average, High) S13

Apply preventive maintenance to heating and
air-conditioning systems to make sure they

are in working order

F18 Ground conditions (Poor, Fair, Good) S15 Use a down-hole vibrator that is lowered into
the ground to compact soils at depth

F19 Cleanliness of work area (Poor, Fair, Good) S16 Hire cheap labor for daily housekeeping tasks

3.3. Ranking Strategies

In this phase, the identified 16 strategies are ranked with respect to four strategy
selection criteria (SSCs), which were identified by reviewing the current literature around
strategy selection [34,41–44] and are described as follows:

• Impact on CLP (IC) is the impact of a strategy on CLP improvement in a project
under study.

• Implementation feasibility (IF) is the degree to which a strategy can be implemented
in a project with respect to economic, technical, and scheduling constraints, including
required time and cost of implementation.

• Workers’ adaption (WA) is the ease with which workers can adapt to a strategy.
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• Implementation risk (IR) is the potential for a strategy to encounter development or
deployment failure. (The term describes risks related to strategy launch.)

As stated in the introduction section, two widely used fuzzy MCDM methods—fuzzy
AHP and fuzzy TOPSIS—are integrated to rank the CLP improvement strategies meeting
the above criteria. The main advantages of these methods are that they mathematically
represent uncertainty and vagueness in the decision-making process without involving
cumbersome mathematics [16]. According to Taylan et al. [34], the combination of fuzzy
AHP and fuzzy TOPSIS shows better performance compared to using each method sepa-
rately. Accordingly, fuzzy AHP is used to determine the relative weights of SSCs based
on fuzzy pairwise comparison, and fuzzy TOPSIS is applied to determine the relative
importance of each strategy and rank the strategies. Figure 2 presents the hierarchical
structure of the decision-making process for CLP improvement strategy selection. Inputs
of the proposed decision-making methods are provided by two questionnaire surveys,
described in the next section. The following sections demonstrate the development of fuzzy
AHP and fuzzy TOPSIS to identify the top-ranked CLP improvement strategies.
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3.3.1. Questionnaire Surveys

A major task in constructing the proposed model is determining the relative im-
portance of each SSC to the final goal of selecting the most effective CLP improvement
strategies. How the weights are determined can affect the outcome of the decision-making
process. A well-designed weighting mechanism serves two purposes: (1) it identifies
the solution that best meets the decision makers’ needs, and (2) it quantifies the differ-
ences between the solutions. Accordingly, two questionnaire surveys were designed, and
10 experts with an average of 7 years of experience in construction responded. In the
first questionnaire, shown in Figure 3, experts were asked to weight SSCs by selecting a
preference term from “Equal” to “Absolute” when comparing the relative importance of
one criterion to another. Similar to Efe [43], Mathiyazhagan et al. [44], and Kabak et al. [45],
a symmetric triangular fuzzy number (TFN) is used to represent each preference term in
order to compute the SSC weights in the next phase. The numbers under the importance
levels to the left of “Equal” show that the left SCC is more important than the matching
SSC on the right in the same row. The numbers to the right of “Equal” show the opposite
statement. For example, 4 experts indicated that the relative importance of IF to the prob-
lem of selecting CLP improvement strategies is “Fairly Strong” compared to the relative
importance of IR. However, 2 experts responded that the importance of IR is “Fairly Strong”
compared to the importance of IF.
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In the second questionnaire survey, the same 10 experts indicated their opinions on the
importance of the selected strategies to CLP improvement with respect to SSCs. They indi-
cated their responses using the seven-value linguistic scale presented in Table 2. Figure 4
shows the membership functions of linguistic terms, which are based on Özdağoğlu and
Güler [46].

Table 2. Linguistic scale for ranking the improvement strategies.

Linguistic Term Membership Function

Very Low (VL) (0, 0, 1, 2)
Low (L) (1, 2, 2, 3)

Fairly Low (FL) (2, 3, 4, 5)
Moderate (M) (4, 5, 5, 6)

Fairly High (FH) (5, 6, 7, 8)
High (H) (7, 8, 8, 9)

Very High (VH) (8, 9, 10, 10)
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3.3.2. Fuzzy AHP

AHP is a broadly applied method for determining the weights of criteria in a struc-
tured manner based on pairwise comparison [47]. To handle subjective judgements in
comparison, fuzzy sets are combined with AHP. Thus, fuzzy AHP assigns membership
degrees to exact numbers in order to describe the extent to which these numbers belong to a
linguistic expression. The relative weight of an SSC is assessed by processing the triangular
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fuzzy preference numbers elicited from the questionnaire survey in Figure 3 through the
fuzzy AHP method, in a manner similar to that presented by Perçin and Aldalou [48]. The
triangular fuzzy preference of the ith SSC over the jth SSC is shown as (Lij, Mij, Uij), where
the parameters L, M, and U denote the smallest possible value, the most promising value,
and the largest possible value that describe the relative importance of the ith SSC over the
jth SSC, respectively. The steps of the proposed fuzzy AHP can be described as follows.

Step 1: Calculate the fuzzy sum. The fuzzy sum value with respect to the ith SSC, which is
a TFN, is defined as

FSi =
(

LFSi , MFSi , UFSi

)
=

(
4

∑
j=1

Lij,
4

∑
j=1

Mij,
4

∑
j=1

Uij

)
(1)

Step 2: Calculate the fuzzy synthetic extent (S). The S value with respect to the ith SSC,
which is a TFN, is defined as

Si =
(

LSi , MSi , USi

)
=

(
LFSi

∑4
j=1 UFSj

,
MFSi

∑4
j=1 MFSj

,
UFSi

∑4
j=1 LFSj

)
(2)

where S1, S2, S3, and S4 are the fuzzy synthetic extent of IC, IF, WA, and IR, which equal
(0.1891, 0.3092, 0.4936), (0.1697, 0.2743, 0.4317), (0.1314, 0.2120, 0.3489), and (0.1291, 0.2046,
0.3408), respectively.
Step 3: Calculate the degree of possibility (V). The V value with respect to the ith SSC is
defined as

Vi = min
j 6=i

(
v
(
Si > Sj

))
(3)

where v(Si > Sj) is calculated as follows

v(Si > Sj) =


1, i f MSi ≥ MSj

0, i f LSj ≥ USi
LSj
−USi

(MSi
−USi )−

(
MSj
−LSj

) , otherwise
(4)

Step 4: Calculate the relative weight of SSCs (W). The W value with respect to the ith SSC
is determined by normalizing Vi as follows

Wi = Vi/
4

∑
j=1

Vj ∀i = 1 to 4 (5)

where W1, W2, W3, and W4 are the relative weights of IC, IF, WA, and IR, which equal 0.324,
0.283, 0.201, and 0.192, respectively
Step 5: Assess the consistency ratio (CR). The consistency of the respondents’ pairwise
comparisons in the questionnaire survey (see Figure 3) is assessed to determine whether
any re-examination of the survey pairwise judgments is required. This is performed
by computing the CR of the matrix Ã, which includes the fuzzy preference numbers
of the relative importance of each SSC versus another. Based on the approach used by
Kazerooni et al. [3], matrix Ã is defuzzified into two crisp matrices. The first matrix, A1,
includes the most promising value of the fuzzy numbers of matrix Ã, and the second matrix,
A2, includes the geometric mean of the lower and upper bounds of the fuzzy numbers.
Then, the CR for matrices A1 and A2 is evaluated: CRA1 = 0.0155 and CRA2 = 0.0426.
Since both CRs are less than 0.1, no re-examination of the survey pairwise responses, shown
in Figure 3, is required.

3.3.3. Fuzzy TOPSIS

Fuzzy TOPSIS, as another fuzzy MCDM technique, is used for determining the relative
importance of each strategy to CLP improvement. TOPSIS is one of the most widely used
MCDM methods that works satisfactorily in various application areas [49]. However,
it is often difficult for decision makers to assign accurate values to alternatives for the
criteria under consideration [48]. Fuzzy TOPSIS allows decision makers to assign linguistic



Algorithms 2021, 14, 254 11 of 20

performance ratings to the alternatives instead of precise numbers. This method ranks
CLP strategies according to their distance to the fuzzy positive-ideal solution, Ã∗, and
the fuzzy negative-ideal solution, Ã−. According to Singh et al. [50], Ã∗ can be obtained
by maximizing the benefit criteria IC, IF, and WA. Ã− can be reached by minimizing the
cost criterion, which is IR. Considering a set of K decision makers as {D1; D2; ...; DK} and
a set of m CLP improvement strategies as {S1; S2; ...; Sm}, the steps of fuzzy TOPSIS for
determining the importance of the CLP improvement strategies are given below.

Step 1: Construct the fuzzy decision matrix. The linguistic value given by the kth decision
maker to each improvement strategy regarding each SSC is transformed into a trapezoidal
fuzzy number as R̃k = (ak; bk; ck; dk), using the membership functions in Table 2. The re-
sponses of the decision makers are then aggregated as R̃ = (a; b; c; d) using the following
detailed computations

a = min
k
{ak} b =

1
K

k

∑
i=1

bK c =
1
K

k

∑
i=1

cK d = max
k
{dk} (6)

The fuzzy decision matrix is built with m rows and K columns. Each cell of the matrix
is shown by R̃ij =

(
rij1; rij2; rij3; rij4

)
, which is the fuzzy number of the ith strategy with

respect to the jth criterion.
Step 2: Compute the normalized fuzzy decision matrix. For the benefit criteria IC, IF, and
WA, normalized R̃ij is computed as

Ñij =

(
rij1

r∗j
;

rij2

r∗j
;

rij3

r∗j
;

rij4

r∗j

)
(7)

where r∗j is calculated as
r∗j = max

i

{
rij4
}

(8)

For the cost criterion IR, normalized R̃ij is calculated as

Ñij =

(
r−j
rij4

;
r−j
rij3

;
r−j
rij2

;
r−j
rij1

)
(9)

where r−j is calculated as
r−j = min

i

{
rij1
}

(10)

Step 3: Weight the normalized fuzzy decision matrix. The weighted Ñij is determined by
following formula

Ṽij = Wj × Ñij (11)

where Ṽij is the weighted fuzzy number of the ith strategy with respect to the jth criterion
and is depicted as

(
vij1; vij2; vij3; vij4

)
.

Step 4: Calculate the distance of each improvement strategy from Ã∗ and Ã−. First, Ã∗

and Ã− are determined by the following formulas

Ã∗ = (Ṽ∗1 , Ṽ∗2 , Ṽ∗3 , Ṽ∗4 ) (12)

Ã− = (Ṽ−1 , Ṽ−2 , Ṽ−3 , Ṽ−4 t) (13)

where Ṽ∗j and Ṽ−j are trapezoidal fuzzy numbers, defined as

Ṽ∗j = (max
i

{
vij1
}

; max
i

{
vij2
}

; max
i

{
vij3
}

; max
i

{
vij4
}
) (14)

Ṽ−j = (min
i

{
vij1
}

; min
i

{
vij2
}

; min
i

{
vij3
}

; min
i

{
vij4
}
) (15)

Then, the distance of the ith improvement strategy from Ã∗ and Ã− is calculated by

d∗i =
4

∑
j=1

dv(Ṽij, Ṽ∗j ), d−i =
4

∑
j=1

dv(Ṽij, Ṽ−j ) (16)
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where dv(., .) is the vertex distance measurement between two trapezoidal fuzzy numbers,
such as x̃ and ỹ, that is computed by following formula

dv(x̃, ỹ) =

√
(x1 − y1)

2 + (x2 − y2)
2 + (x3 − y3)

2 + (x4 − y4)
2

4
(17)

Step 5: Compute the closeness coefficient. The closeness coefficient of each CLP improve-
ment strategy is computed by

CCi =
d−i

d−i + d∗i
(18)

The higher the CCi of the strategy, the closer to Ã∗ and farther from Ã−. Table 3
shows the closeness coefficient of the CLP improvement strategies along with their rank
compared to each other.

Table 3. CLP improvement strategy ranking.

Strategy Closeness Coefficient Rank

S11 0.8496 1
S2 0.8341 2

S13 0.8026 3
S7 0.7899 4
S6 0.7665 5
S9 0.7201 6

S16 0.7099 7
S12 0.6991 8
S8 0.6961 9

S14 0.6900 10
S1 0.6875 11
S3 0.6644 12

S15 0.6418 13
S10 0.6215 14
S5 0.6005 15
S4 0.5704 16

Based on the data in Table 3, the average closeness coefficient equals 0.7090. Therefore,
the first seven top-ranked strategies are S11, S2, S13, S7, S6, S9, and S16, which have
closeness coefficients greater than the average and were selected as the most effective CLP
improvement strategies for the project under study.

3.4. Quantifying Strategies’ Impact on CLP

An FCM model of CLP is developed for simulating the relationships among the most
value-adding CLP factors and quantifying the impact on CLP of the selected top-ranked
improvement strategies. FCM is a soft computing technique for modeling and simulating
dynamic systems such as a CLP environment by mimicking the process of developing a
cognitive map in a human mind [19]. Generally, the manual process for developing an
FCM is using expert knowledge to evaluate the strength of causal relationships in terms
of weights using linguistic variables such as “Low”, “Medium”, and “High”. During
the simulation, the value of CLP factor Cj at time t is calculated using Equation (19), as
proposed by Papageorgiou [51]

A(t)
j = f


M

∑
i=1

j 6=i

wij

(
2A(t−1)

i − 1
)
+
(

2A(t−1)
j − 1

)


(19)
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where wij is the strength of the causal relation between two CLP factors Ci and Cj, and
denoted via a causal edge from Ci to Cj; wij ranges from −1 (absolute negative causality)
to 0 (no causality) and 1 (absolute positive causality).

In Equation (20), f (.) is an activation function that is formulated as sigmoid threshold
function in this study

f(x) =
1

1 + e−λ(x−h)
(20)

where λ and h are real positive numbers that control slope and offset of the function,
respectively. Higher values of λ make the function more sensitive to the fluctuations of
x [20].

When no expert is available or the model contains a large number of relationships,
an FCM cannot be developed through the manual process of using expert knowledge [52].
For such cases, learning processes can be applied to automatically determine near-optimal
weights for the relationships. FCM learning algorithms can be grouped into three types
based on their underlying learning paradigm: (1) Hebbian-based, (2) error-driven, or
(3) hybrid. Hebbian-based learning algorithms, such as nonlinear Hebbian learning (NHL),
are unsupervised methods and do not require historical data. Their main drawback is
their dependency on expert knowledge, since they require initial weight of causal rela-
tionships [53]. Error-driven learning algorithms, such as the real-coded genetic algorithm
(RCGA), generates weight matrices by attempting to fit the FCM model to a set of historical
data. Several studies illustrated that these algorithms increase FCM robustness, functional-
ity, and generalization abilities [54]. Hybrid learning algorithms employ a combination of
the other two types to take advantage of the fast speed and effectiveness of Hebbian-based
methods and the global search and generalization ability of error-driven methods [55].

In the proposed method, an initial FCM model is developed based on the importance
of the most value-adding CLP factors, then the strength of a causal relation between two
factors Ci and Cj is quantified by a numerical weight wij ∈ [−1, 1]. Three types of causal
relationships among the factors exist: (1) positive causality (wij > 0), which means an
increase or decrease in Ci causes the same result in Cj; (2) negative causality (wij < 0); (3) no
causality (wij = 0). After the strengths of all relationships are assessed, each improvement
strategy is considered in the model, one at a time, in order to determine the quantitative
effect of each strategy on construction productivity.

FCM Expert, developed by Nápoles et al. [18], is used as a software platform for
modeling the proposed FCM model of CLP. Figure 5 shows the flow chart of the pro-
posed framework for constructing the FCM model, which consists of three major tasks,
described below.
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Figure 5. Flow chart for construction of FCM model for quantifying improvement strategies’ impact on CLP.

Initial FCM construction included causal relationships among the initial FCM param-
eters (i.e., the most value-adding factors and CLP) and initial states of the parameters
according to the dataset, surveys results, and past studies.
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Optimal weight searching entails applying the RCGA algorithm to find an optimal
weight matrix based on its global search and generalization ability. The weight matrix
comprises the causal relationships among the factors. The data used in the RCGA is based
on the dataset of Tsehayae and Fayek [4,11] discussed in the methodology section above.
For use in the FCM model, the dataset including the value of factors and CLP is normalized
between 0 and 1. Figure 6 shows the real-time visualization of the error curve for searching
the optimal weight matrix by performing 50 iterations.
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Optimal weight refining applies the NHL algorithm in order to fine-tune the optimal
weight matrix and get closer to the optimized structure. The output of the RCGA is used as
the input of the NHL algorithm, thus, no expert knowledge is required for conducting NHL.

Based on the refined optimal weight matrix, the final FCM model of CLP is developed
as shown in Figure 7, F1, F2, and so on through F19 are the identified most value-adding
CLP factors (listed in Table 1), and the directions and values of the arrows demonstrate
the direction and strength of causalities among the factors. For example, the strength of
causality from factor 4 (F4) “Owner staff on site” toward factor 5 (F5) “Congestion of work
area” is +0.8, which means F4 has a strong positive influence on F5; the strength of causality
from factor 19 (F19) “Cleanliness of work area” toward factor 2 (F2) “Complexity of task”
is −0.2, which means F19 has a weak negative influence on F2.

By considering the importance of improvement strategies derived from fuzzy TOPSIS,
the quantified impact of each strategy on CLP is determined through the steps shown in
Figure 8.

As shown in Figure 8, the final FCM model is run one time without applying any
strategies in order to determine the base CLP that equals 0.5310 for the project under study.
The base CLP is the current value of the project’s CLP. Then, a single strategy is applied to
the model according to its rank as shown in Table 3. In the case study, strategy 11, “Develop
clear instructions about the equipment used to transport materials”, is selected first. The
model is run and the resulting CLP is called the “improved CLP”, since it is obtained from
applying the CLP improvement strategy to the FCM model. The improved CLP is 0.5452
for strategy 11. Other strategies are selected one by one according to their rank as shown in
Table 3, and their improved CLPs are determined, as shown in Table 4.
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Figure 8. Flow chart showing process of determining improvement strategies’ impact on CLP.

Table 4. Quantified impact and rank of the most effective CLP improvement strategies.

No. CLP Improvement Strategy Improved CLP Rank

S2 Provide clear instructions to craftsmen on how to complete tasks before their execution 0.5516 1
S6 Train laborers to achieve the latest concrete-pouring techniques 0.5478 2

S13 Apply preventive maintenance to heating and air-conditioning systems to make sure
they are in working order 0.5460 3

S11 Develop clear instructions about the equipment used to transport materials 0.5452 4
S9 Hold regular meetings with laborers about schedule and remaining tasks 0.5451 5
S7 Perform project team activities 0.5446 6

S16 Hire cheap labor for daily housekeeping tasks 0.5420 7

4. Results and Discussion

The case study provided the application of the presented decision support model for
identifying the most effective CLP improvement strategies and quantifying their impact on
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CLP for concrete-pouring activities in a building construction project. Experts’ opinions
and historical data were collected to model the complex CLP environment including the
relationships among the factors affecting CLP, which are mostly interconnected. According
to SSC weights derived from the responses of ten experts to the questionnaire survey
shown in Figure 3, the most critical criteria for selecting CLP improvement strategies for
the project under study are IC and IF, respectively. This means the first priority of the
company is to implement strategies that have greater impact on CLP compared to other
strategies. The second priority of the company is to implement strategies, which takes less
time and involves lower costs compared to the project’s scheduled duration and budget.

In Table 3, strategy 11, “Develop clear instructions about the equipment used to
transport materials”, has the highest value of closeness coefficient. This strategy along with
strategies S2, S13, S7, S6, S9, and S16 have closeness coefficients above the average. This
means these strategies are the most effective CLP improvement strategies with respect to
SSCs. The impact of these seven most effective strategies was quantified by developing an
FCM model for CLP, implementing each strategy in the model, and determining improved
CLP for each strategy. According to Table 4, strategy 2, “Provide clear instructions to
craftsmen on how to complete tasks before their execution”, improves CLP by 0.0206
and has the greatest impact on CLP. Recall that CLP is defined as the ratio of installed
quantity (in cubic meters) to total labor work hours; therefore if concrete pouring requires
100 labor work hours per week, implementing this improvement strategy will increase
the installed quantity of concrete by 100 × 0.0206, or 2.06 cubic meters per week. This
strategy is supported by Tsehayae and Fayek [11] and Gurmu and Aibinu [27], whose
work identified “Availability of clear work front”, “Adequate job instruction”, and “Clear
readability of drawings and specifications” as top strategies for improving CLP. Strategy 6,
“Train laborers to achieve the latest concrete-pouring techniques”, improves CLP by 0.0168
and is the second most effective in terms of impact on CLP. This strategy is supported by
Archana Menon and Varghese [56] and Hammad et al. [57], who found “Training crew”
and “Expanding skilled laborers” to be important strategies for improving construction
productivity. Strategy 13, “Apply preventive maintenance to heating and air-conditioning
systems to make sure they are in working order”, strategy 11, “Develop clear instructions
about the equipment used to transport materials”, strategy 9, “Hold regular meetings with
laborers about schedule and remaining tasks”, strategy 7, “Perform project team activities”,
and strategy 16, “Hire cheap labor for daily housekeeping tasks”, are the next most effective
strategies, improving project CLP by 0.0150, 0.0142, 0.0141, 0.0136, and 0.0101, respectively.

The proposed decision support model was evaluated using structural validity and
behavioral validity, as discussed in the methodology section above. Structural validity was
conducted by evaluating the list of model parameters (i.e., factors influencing CLP, CLP
improvement strategies) with respect to the relevant literature and the panel of experts who
completed surveys in various phases of the study. Regarding behavioral validity, behavior
of the system was validated by the extreme conditions test, which compares the generated
behavior of CLP in the FCM model before applying any strategies to the behavior of the
real system of CLP under the same extreme conditions of CLP factors. First, the upper
and lower bounds of factors and CLP need to be defined. Since the utilized dataset was
normalized between 0 and 1, the upper bound for the factors and CLP is 1 and the lower
bound is 0. Second, the FCM model is run twice. In the first run, factors that positively
impact CLP took the extreme high value of 1, and the factors with negative impact on CLP
took the extreme low value of 0. In this case, the resulting CLP was 0.984, which is close to
1, as anticipated. In the second run, positive factors took the extreme low value of 0 and
negative factors took the high value of 1. The resulting CLP in this case was 0.088, which is
close to 0, as anticipated. Therefore, the FCM model of CLP revealed a logical behavior
when extreme values were assigned to the factors affecting CLP. Accordingly, behavioral
validity of the proposed FCM model of CLP is determined.

Since CLP is affected by various interconnected factors, such as crew motivation and
working conditions, it is necessary to consider the causal relationships among the factors
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and strategies to achieve accurate values for the quantified impact of strategies on CLP [9].
Another issue that affects the accuracy of the quantified impact of improvement strategies
is the consideration of project characteristics in modeling CLP. CLP is a context-specific
efficiency measure because the identified factors and their degrees of impact on CLP vary
from project to project [1,4]. Hence, key CLP improvement strategies also differ from one
project to another. Since statistical methods such as t-test and regression analysis lack the
capability to capture project characteristics and causal relationships among various factors,
considering project characteristics and causal relationships among CLP factors made the
results of this research more accurate than previous studies that used statistical methods to
quantify the impact of improvement strategies on CLP.

5. Conclusions

In this study, a decision support model is proposed to identify the most effective
CLP improvement strategies and quantify their impact on CLP. The provided model
consists of three phases, namely, (1) identifying factors and strategies, (2) ranking strategies,
which includes the utilization of the two fuzzy MCDM methods of fuzzy AHP and fuzzy
TOPSIS, and (3) quantifying strategies’ impact on CLP, which includes developing an
FCM model of CLP in order to quantify the impact of improvement strategies on CLP.
Implementation of the developed model on a case study of concrete-pouring activities
in building projects was used to illustrate how construction practitioners can apply the
proposed model to their projects in order to identify the improvement strategies that serve
as the most effective management practices with respect to CLP. According to the case
study results, the following ranked management practices were the most effective CLP
improvement strategies for the project under study: (1) Develop clear instructions about
the equipment used to transport materials, (2) Provide clear instructions to craftspeople on
how to complete tasks before their execution, (3) Apply preventive maintenance to heating
and air-conditioning systems to make sure they are in working order, (4) Perform project
team activities, (5) Train laborers to achieve the latest concrete-pouring techniques, (6) Hold
regular meetings with laborers about schedule and remaining tasks, and (7) Hire cheap
labor for daily housekeeping tasks. These strategies are supported by previous studies that
suggested similar strategies as the top management practices for improving CLP. Since
CLP is a context-specific efficiency measure and CLP factors are mostly interconnected and
affect each other, considering project characteristics and causal relationships among CLP
factors made the results of this research more precise than previous studies that utilized
statistical techniques to quantify the impact of improvement strategies on CLP. Statistical
techniques such as t-test and regression analysis lack the capability to capture project
characteristics and interconnections among the factors.

The contribution of this paper is providing a decision support methodology for
construction companies and practitioners to solve the problem of prioritizing CLP improve-
ment strategies and quantifying their impact on CLP by integrating two fuzzy MCDM
methods, fuzzy AHP and fuzzy TOPSIS, with FCM. The combination of fuzzy AHP and
fuzzy TOPSIS captures experts’ opinions and represents uncertainty and vagueness in
the decision-making process of CLP improvement strategies selection without involving
cumbersome mathematics. In addition, the utilized fuzzy MCDM methods support FCM
by reducing the number of improvement strategies needed for FCM modeling according to
various criteria including impact on CLP, implementation feasibility, workers’ adaptation,
and implementation risk. The developed FCM model takes into account the impreci-
sion and uncertainty of CLP factors as well as the causality among them. The proposed
methodology considers the causal relationships among CLP improvement parameters and
captures the perspective of construction experts to consider project characteristics and
address existing gaps in the CLP improvement strategies literature. Therefore, the results
of this research are more accurate than previous studies that used statistical methods to
quantify the impact of improvement strategies on CLP without considering the project
characteristics and causal relationships among CLP factors. The decision support model
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provided in this study can be adapted to several construction problems, such as selection
of policies for maximizing crew motivation and performance. The presented model will
assist construction managers in identifying the most effective improvement strategies
for given projects and help them quantify how implementing various strategies impacts
CLP. Therefore, construction companies will be able to simulate the impact of multiple
management practices on CLP prior to their implementation in order to avoid applying
management practices that have only subtle impact on CLP for given projects. Furthermore,
they will be able to allocate their limited budget and resources to those strategies that most
significantly improve CLP while providing a high degree of implementation feasibility,
high degree of workers’ adaptation, and low degree of implementation risk. Based on
the findings of this study, construction practitioners can improve the CLP of their projects
significantly in order to reduce variances from the primary plan and keep projects on time
and within budget.

The first limitation of this study was determining the effect of each improvement strat-
egy on CLP without considering the existence of other strategies. However, improvement
strategies are interconnected and synergy among them is expected to exist. To overcome
the aforementioned limitation, future research may consider the impact of improvement
strategies on each other by using simulation techniques such as fuzzy system dynamics to
achieve results that are more precise. The second limitation was related to the limited num-
ber of experts that were used to carry out various phases of the developed model. In order
to have more generalized and representative results, future studies may utilize a larger
sample size in terms of experts. In addition, more criteria, such as impact on a company’s
key performance indicators, schedule risk, and budget risk, can be considered for ranking
CLP improvement strategies. Although adding more criteria increases the computational
complexity of fuzzy MCDM methods and increases the time spent on survey question-
naires, the model is expected to deliver more accurate results for prioritizing improvement
strategies as more criteria are considered in the strategy selection process. Adding more
criteria can also increase the applicability of the proposed decision support model within
a broader context, such as the selection of the most effective improvement strategies on
multifactor construction productivity, which includes labor, equipment, and material.
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model. Uluslararası İktisadi İdari İncelemeler Dergisi 2018, 18, 583–598. [CrossRef]

49. Yavuz, M. Equipment selection by using fuzzy TOPSIS method. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 42040. [CrossRef]
50. Singh, D.K.; Dash, M.K.; Kumar, A. Using TOPSIS and modified TOPSIS methods for evaluating the competitive advantages of

internet shopping malls. Int. J. Bus. Inf. Syst. 2016, 22, 476–494. [CrossRef]
51. Papageorgiou, E.I. Learning algorithms for fuzzy cognitive maps—A review study. IEEE Trans. Syst. Man Cybern. Part. C Appl.

Rev. 2012, 42, 150–163. [CrossRef]
52. Kokkinos, K.; Lakioti, E.; Papageorgiou, E.; Moustakas, K.; Karayannis, V. Fuzzy cognitive map-based modeling of social

acceptance to overcome uncertainties in establishing waste biorefinery facilities. Front. Energy Res. 2018, 6, 112. [CrossRef]
53. Stach, W.; Kurgan, L.; Pedrycz, W. Data-Driven Nonlinear Hebbian Learning Method for Fuzzy Cognitive Maps. In Proceedings

of the IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong,
China, 1–6 June 2008; pp. 1975–1981. [CrossRef]

54. Chen, Y.; Mazlack, L.J.; Minai, A.A.; Lu, L.J. Inferring causal networks using fuzzy cognitive maps and evolutionary algorithms
with application to gene regulatory network reconstruction. Appl. Soft Comput. 2015, 37, 667–679. [CrossRef]

55. Ren, Z. Learning Fuzzy Cognitive Maps by a Hybrid Method Using Nonlinear Hebbian Learning and Extended Great Deluge
Algorithm. In CEUR Workshop Proceedings, Proceedings of the 23rd Midwest Artificial Intelligence and Cognitive Science Conference
2012, Cincinnati, OH, USA, 21–22 April 2012; pp. 159–163. Available online: http://ceur-ws.org/Vol-841/submission_27.pdf
(accessed on 28 July 2021).

56. Menon, M.A.; Varghese, S. Labour productivity measurement method using 3D BIM of a commercial project. Int. Res. J.
Eng. Technol. 2018, 5, 3055–3061. Available online: https://www.irjet.net/archives/V5/i5/IRJET-V5I5585.pdf (accessed on
28 July 2021).

57. Hammad, M.; Omran, A.; Pakir, A. Identifying ways to improve productivity at the construction industry. Acta Tech. Corviniensis
Bull. Eng. 2011, 4, 47. Available online: http://acta.fih.upt.ro/pdf/2011-4/ACTA-2011-4-06.pdf (accessed on 28 July 2021).

http://doi.org/10.1108/JEDT-10-2020-0428/FULL/HTML
http://doi.org/10.1061/(ASCE)1084-0680(2006)11:4(197)
http://doi.org/10.1016/j.asoc.2014.01.003
http://doi.org/10.1109/ICTAI.2017.00103
http://doi.org/10.1108/17410380710722854
http://doi.org/10.1007/s12205-016-0278-y
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001549
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001340
http://doi.org/10.1016/j.proeng.2017.02.168
http://doi.org/10.3390/sym10020046
http://doi.org/10.1016/j.asoc.2015.09.037
http://doi.org/10.1108/JAMR-09-2018-0085
http://doi.org/10.1016/j.enbuild.2013.12.059
http://doi.org/10.17559/tv-20140801181553
http://doi.org/10.1016/j.eswa.2020.113738
http://doi.org/10.18092/ulikidince.347925
http://doi.org/10.1088/1755-1315/44/4/042040
http://doi.org/10.1504/IJBIS.2016.077839
http://doi.org/10.1109/TSMCC.2011.2138694
http://doi.org/10.3389/fenrg.2018.00112
http://doi.org/10.1109/FUZZY.2008.4630640
http://doi.org/10.1016/j.asoc.2015.08.039
http://ceur-ws.org/Vol-841/submission_27.pdf
https://www.irjet.net/archives/V5/i5/IRJET-V5I5585.pdf
http://acta.fih.upt.ro/pdf/2011-4/ACTA-2011-4-06.pdf

	Introduction 
	Literature Review 
	Methodology 
	Case Study and CLP Dataset Overview 
	Identifying Factors and Strategies 
	Ranking Strategies 
	Questionnaire Surveys 
	Fuzzy AHP 
	Fuzzy TOPSIS 

	Quantifying Strategies’ Impact on CLP 

	Results and Discussion 
	Conclusions 
	References

