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Abstract: Aiming at the problems of inefficient detection caused by traditional manual inspection
and unclear features in metal surface defect detection, an improved metal surface defect detection
technology based on the You Only Look Once (YOLO) model is presented. The shallow features
of the 11th layer in the Darknet-53 are combined with the deep features of the neural network to
generate a new scale feature layer using the basis of the network structure of YOLOv3. Its goal is to
extract more features of small defects. Furthermore, then, K-Means++ is used to reduce the sensitivity
to the initial cluster center when analyzing the size information of the anchor box. The optimal
anchor box is selected to make the positioning more accurate. The performance of the modified
metal surface defect detection technology is compared with other detection methods on the Tianchi
dataset. The results show that the average detection accuracy of the modified YOLO model is 75.1%,
which ia higher than that of YOLOv3. Furthermore, it also has a great detection speed advantage,
compared with faster region-based convolutional neural network (Faster R-CNN) and other detection
algorithms. The improved YOLO model can make the highly accurate location information of the
small defect target and has strong real-time performance.

Keywords: surface defect detection; YOLO; K-Means++

1. Introduction

As one of the main raw materials of industrial products, metal will inevitably be
damaged on its surface during processing, such as scratches and deformations. The
damage of the metal surface will seriously affect the quality and appearance of products, so
it is crucial to detect defects on the metal surface during the production process. However,
in traditional manual inspection, there will be problems such as missed detection and low
efficiency under the influence of human subjective factors. Therefore, how to conduct
efficient and accurate detection of metal surface defects is one of the key research directions
in target detection.

The defect detection proposed in machine vision is a non-contact detection without
manual intervention. It only needs to select the appropriate camera and light source to
collect the surface images of the metal, and then uses the related defect detection algorithm
to locate and classify the defects. This method has high detection efficiency and can greatly
improve the level of the manufacturing industry [1].

Recent advances in image processing technology, in the field of machine vision, in
particular, have led to the development of automated defect detection methods. Many
scholars have made contributions to improve the technology of surface defect detection.
Reference [2] used Ground Penetrating Radars (GPR) to survey moisture damages on
pavement bridges. It created three datasets with different resolutions and proposed mixed
deep convolutional neural networks (CNNs) for feature extraction. In reference [3], the
deep learning technology and structured light composed of vision and two laser sensors
have been applied to detect and quantify cracks on surfaces of concrete structures. It used
the laser alignment correction algorithm with a specially designed fixture module and a
distance sensor to increase the accuracy of the size measurement.
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In contrast to the combination of external devices, a large number of digital image
processing algorithms are also applied to detection. Reference [4] analyzed image filtering
and smoothing techniques, which were used as a basis to develop a background-weakening
algorithm. The new model was validated under a complex background and it has good ro-
bustness. Reference [5] presented a new detection method based on the image morphology
and Hough transform. According to the principle of a binocular stereo system, the position
and pose of the reactors will be detected. The results indicated that the proposed location
method is effective. The GrabCut algorithm was also used for skin lesion segmentation [6]
combined with the deep convolutional neural network. The study in reference [7] proposed
an approach combining YOLO-based object detection architecture with image processing
algorithms. It can exhibit the same high performance on complex images, like overexposed
and tilted ones.

To reduce labor costs for manual extract image features of defects, the improved deep
convolutional neural network is tested for defect detection [8]. Reference [9] just used
a single neural network to the full image, enabling real-time performance. To improve
the accuracy of defect inspection, reference [10] presented a new classification network, a
multi-group convolutional neural network (MG-CNN), to extract the feature map groups
of different types of defects. The study [11] optimized the feature layer of the YOLO model
by using an image pyramid to achieve multi-scale feature detection. It also improved the
detection accuracy and speed. Reference [12] designed a new feature pyramid network
layer and a proper frame and scale with a clustering algorithm. Meanwhile, the activation
function was verified and optimized.

Deep learning neural networks always need a large dataset when they are trained.
Reference [13] collected a large number of images acquired from mobile cameras. The
detection and classification accuracy was measured using the average F1 score obtained
from the precision and recall values. An active learning method [14] was proposed to
reduce the labeling workload when a large labeled training database is not easily available
because it requires domain-specified knowledge. Reference [15] trained YOLOv3 on a
dataset of 2000 images with corresponding labels. Then logistic regression was used for
performing class probabilities and label predictions. Reference [16] prepared a large-scale
dataset to explore the applicability of the model under various illumination conditions. As
is commonly known, training a deep learning model needs a large amount of exactly labeled
samples, which is expensive and time-consuming. Based on this, reference [17] proposed a
novel weakly supervised method based on deep active learning. It iteratively adjusted the
last few layers of the YOLOv3 model with the most valuable samples, which is selected by
a less confident strategy. Results showed that the method can reduce the labeled samples
without decreasing the detection accuracy. On the other hand, reference [18] proposed
a simple yet efficient weakly supervised processing pipeline. The proposed pipeline
only needs image-level-labeled data without bounding-box-labeled data. Reference [19]
introduced a labeled dataset approach. The dataset consists of images captured from two
camera views of an identical pavement segment. The wide-view images were used to
classify the distresses and to train the deep learning frameworks, while the top-down-view
images allowed calculation of distress density. Combining the defect size and K-means
algorithm, reference [20] carried out the dimension clustering of target frames. This
effectively reduces the error detection rate. In addition, double K-means [21] was also
used to generate an anchor box to improve the localization accuracy. What is refreshing is
that reference [22] proposed an unprecedented cascaded model. The located region that
contains the target was set to be an region of interest (RoI) region, which validated that the
proposed method was more efficient and robust than some previous works.

There are many state-of-the-art models at present. Reference [23] evaluated single-shot
detector (SSD), YOLO, and Faster R-CNN for speed and precision in detecting defects. Fur-
thermore, it demonstrated the viability of real-time automated defect detection. The YOLO
network performed at relatively high speed and accuracy. Experiments in the study [16]
showed that YOLOv3 is nine times faster than R-CNN. Furthermore, the precision of
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YOLO is higher. Even with small sample data, the paper [24] showed that the YOLOv3
still worked well. In reference [25], a comparative analysis was done in terms of preci-
sion, recall, accuracy, and F1 score. The results indicated the usefulness of auto-detecting
convolutional networks. Reference [26] improved the YOLO network and made it all
convolutional, which consists of 27 convolution layers. It provided an end-to-end solution
for surface defects detection. Reference [27] modified the framework of Faster R-CNN by
introducing multi-scale feature extraction and multi-resolution candidate bound extraction
into the network, which improved the detection effectively. Reference [28] improved the
YOLO model replacing the margin style with proportion style. Compared to the old loss
function, the new is more flexible and more reasonable in optimizing the network error.
Reference [29] developed a hybrid model by integrating the YOLO and U-net models. It
helped to make valid decisions at the right time. Furthermore, due to the small size, the
large number, and complex background, reference [30] proposed a two-layer detection
algorithm. Furthermore, it selected different feature extraction networks for each layer.
The test results showed that the detection results of the two-layer detection algorithm were
significantly better than those of the single-layer detection algorithm.

In this paper, a modified YOLOv3 model based on machine vision is proposed to
detect metal surface defects. By making datasets of three kinds of defects, the model
weights are trained after manually labeling the defective images. A new scale feature
layer has been generated from the shallow features of the 11th layer combined with the
deep features in the YOLOv3 model. Furthermore, the improved detection model uses
K-Means++ to analyze the size information of the anchor box on the datasets. It can extract
more features of small defects on the metal surface.

The rest of the paper is organized as follows. Section 2 presents a brief review of the
YOLOv3 neural network model and its classification prediction. Section 3 describes the
improvement of the proposed system and Section 4 outlines the process of defect detection
experiments. The detection results of the surface defects are given meanwhile. In Section 5,
the conclusions of the proposed method are drawn finally.

2. Related Work
2.1. Conventional CNN Models

Basic convolutional neural network (CNN) consists of three structures: convolution,
activation, and pooling. The output result of CNN is the specific feature space of each image.
When processing image classification tasks, the output feature space is generally taken
as the input of fully connected neural network (FCN). Furthermore, the fully connected
layer is used to complete the mapping from input image to label set, namely classification.
The most important work in the whole process is how to adjust the weight of the network
iteratively through the training data, that is, the back propagation algorithm. At present,
mainstream CNNs are all adjusted and combined by simple CNN.

The CNN is one of the most used deep learning models for image detection and
classification [31], due to its high accuracy when compared to other machine learning
algorithms. The inference of CNNs is usually done in centralized high-performance
platforms. The CNN model is therefore known to be faster than other types of deep
learning models without degrading effectiveness. In [32], a new efficient model was
proposed for text detection. The model used MobileNetV2 as a backbone and a balanced
decoder. The balanced decoder is a stack of inverted residual block (IRB) and standard
convolutional layers. It turns out that the proposed compact and accurate scene text
detector (CAST) is efficient and effective.

2.2. YOLOv3 Model

YOLOv3 is a target detection model based on deep learning, provided by Joseph Red-
mon and Ali Farhadi, which can achieve high reasoning speed on the premise of ensuring
certain accuracy. Therefore, the YOLOv3 model has been selected for the experiments in
this article.
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YOLOv3 essentially implements a deep convolutional network with a regression
function. It predicts an objective score for each bounding box using logistic regression.
As the first step of a deep convolutional network, image feature information is extracted.
Compared with the two-stage detection algorithm in which the candidate box is used
to extract features, the YOLOv3 algorithm directly conducts end-to-end training and
reasoning for all areas of the entire image, which speeds up the operation speed and
has a better distinguishing effect between foreground and background. In addition, this
model fuses features of different scales, which leads to the fact that this algorithm is more
conducive to identify small targets and suitable for defect detection. The second step
of target detection is to classify the extracted features and divide the whole picture into
several regions. If the center of the target to be detected falls within this region, the region
will be classified by the classification model.

Each network corresponds to a bounding box. Each bounding box consists of five
predictions: x, y, w, h, and confidence. The (x, y) coordinates represent the upper left
corner of the box relative to the bounds of the grid cell. The width and height are predicted
relative to the whole image. Finally, the confidence prediction based on logistic regression
will judge if there contains the target. A high confidence level suggests that there is a target
in the bounding box, and then target classification will be done. The YOLOv3 network
structure is shown in Figure 1.
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Figure 1. The structure of YOLOv3 network.

The YOLOv3 model has 53 convolutional layers and extracts target features at three
convolutional layers using different scales. Furthermore, then, the features of these three
scales are integrated to conduct target classification.

2.3. Multi-Label Classification

In classification prediction, YOLOv3 uses multiple independent logistic classifiers
to replace the original softmax classifier. Softmax selects the maximum probability as
the correct category so that it determines that a target can only belong to one category.
However, in many cases, a target may belong to more than one category, and logistic can
just solve this problem. It performs two classifications for each category and uses the
sigmoid function to normalize the input value between [0,1]. The sigmoid function formula
is as follows:

g(z) =
1

1 + e−z (1)

Among them, z is the function of the classification boundary. Assuming that the
boundary function is linear, the formula is as follows:

θTx =
n

∑
i=1

θixi = θ1x1 + θ2x2 + . . . + θnxn (2)
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Substituting it into the sigmoid function to get the prediction function, the formula is
as follows:

hθ(x) = g
(

θTx
)
=

1
1 + e−θT x

(3)

When the sigmoid value exceeds 0.5, it is determined that the target belongs to this
category. Logistic directly judge whether the target belongs to this category, using multiple
logistic can achieve the purpose of multi-label classification.

In the loss function of the YOLOv3 neural network, the binary cross-entropy loss is
used for classification, and the formula is as follows:

L = −
N

∑
i=1

yi log ŷi +
(

1 − yi
)

log
(

1 − ŷi
)

(4)

The advantage of cross-entropy as a loss function is that the use of the sigmoid
function can avoid the problem of learning rate declined in the mean square error loss
function during gradient descent process, because the learning rate can be controlled by
the output error.

3. The Proposed Method
3.1. Network Architecture

YOLOv3 divides the input image into grids of different sizes by adding feature layers
of different scales to improve the detection ability of targets of different sizes. However,
there are a large number of small-sized targets for defects on the metal surface, and YOLOv3
is not sensitive to small target detection, and it is easy to cause missed detection. Therefore,
targeted improvements to YOLOv3 are needed to improve the detection accuracy of small
defect targets.

Based on the YOLOv3 network structure, this paper incorporates a new scale feature
layer to improve the detection of small defect targets. The improved network model is
shown in Figure 2, and concat is a tensor splicing operation to expand the tensor dimension.
The res-n represents a residual block containing n residual units, each consisting of two
DBL units and a shortcut link. Among them, DBL consists of the convolution layer, the
Batch Normalization layer, and the Leaky ReLu activation function.
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Figure 2. The improved YOLOv3 model.
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As is shown in the red box, the shallow output of the second residual block is merged
with the deep output of the network after 2 times of upsampling in Darknet-53. Further-
more, then a new feature layer is formed through a convolutional layer with a convolution
kernel size of 1 × 1, making the network more capable of extracting features. The size of
the newly added feature layer is 1/4 the size of the input image, and the input image is
divided into smaller 4 × 4 grids, that is, the number of grids is 104 × 104. A smaller grid
makes the network more sensitive to small targets. The shallow features are merged with
the deeper features output by Darknet-53 to generate a feature layer that is conducive to
the detection of small targets. It not only inherits the deep features but also makes full
use of the shallow features of the network to enhance the model’s ability to extract small
target features, reduce the probability of missed small defect targets and improve detection
accuracy.

The number of anchor boxes for each feature layer in the network is still 3, after
adding a feature layer, the total number is increased from 9 to 12 to strengthen the detection
density. The superposition of the number of feature layers can divide the size levels of
defect targets, and enhance the network’s comprehensive detection capabilities for different
sizes of targets.

3.2. K-Means++

YOLOv3 uses K-Means cluster analysis to obtain anchor boxes, but it has certain
limitations. K-Means is sensitive to the selection of initial clustering centers, and the
clustering results of different initial clustering centers are very different. Since the K value
is not easy to determine in the clustering process, resulting in inaccurate positioning, it is
extremely important to select the appropriate K cluster centers.

Aiming at the problems of K-Means selecting initial clustering centers, K-Means++
is used to solve the shortcomings. Randomly select a sample as the current first cluster
center. Then calculate the shortest distance between each sample and the existing cluster
center, and classify the sample into the category corresponding to the cluster center with
the smallest distance. At the same time, the probability of each sample being identified as
the next cluster center is calculated, and the sample with the highest probability is selected
as the next center. The formula for calculating the probability is:

p =
D(x)2

∑n
i=1 D(xi)

2 (5)

D(x) is the shortest distance from each sample point to the current center. Each time
an object is allocated, the cluster center will be recalculated based on the objects in the
existing cluster, and this process will be repeated until no objects are reassigned to other
clusters. Finally, K cluster centers are screened out. As a benefit from the difference between
the acquired 12 anchor boxes, the effect of detecting the target is significantly improved.

The process of selecting cluster centers by K-Means++ greatly reduces the dependence
of the clustering results on the K value and makes the distance between the initial cluster
centers as far as possible, which effectively solves the defects of K-Means.

4. Experiments and Results

The metal surface defect detection technology using the YOLOv3, proposed in this
paper, is used to detect three kinds of defects including scratches, deformations, and
wrinkles. The entire process is shown in Figure 3.

The quality of images has a significant impact on the effect of detection. Therefore, this
paper makes a detailed comparison and analysis of the camera and light source involved
in the image acquisition module. Eventually, the model of equipment used in this system
is determined.
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4.1. Hardware Using for Detection

The experimental platform of this paper uses Ubuntu 20.04 operating system, equipped
with CPU i9-10900K@3.7 Ghz, GPU NVIDIA RTX3090 and 64 GB running memory, installed
CUDA 10.0 and CUDNN 8.0.5 to speed up the GPU computing.

Camera Selection. The defect detection based on machine vision has a high require-
ment on image quality. Generally, the image quality collected by a common camera is poor,
the detection effect may not be very ideal. A series of issues such as resolution, frame rate,
transmission speed, and economic cost should be taken into consideration in the selection
of the camera used in this experimental platform.

Compared with complementary metal oxide semiconductor (CMOS) cameras of the
same size, charge coupled device (CCD) cameras have higher resolution and much less
noise. Based on the above factors, this paper finally chooses MV-EM series CCD industrial
cameras. The highest pixel of this series camera can reach 14 million. The image information
is transmitted by stable gigabit Ethernet, and the transmission function is not affected
even if the network is disconnected. In addition, MV-EM series CCD industrial cameras
are widely used in industrial manufacturing, workpiece measurement, target detection,
agricultural machine vision detection, medical imaging, scientific research, and many other
machine vision applications. They all have good performance.

Two CCD industrial cameras, MV-EM120C and MV-EM200C, are preselected in the
experiment. The specific parameters are shown in Table 1.

Table 1. Compared with MV-EM120C and MV-EM200C.

Model MV-EM120C MV-EM200C

Highest Resolution 1280 × 960 1600 × 1200
Pixel Size 3.75 × 3.75 4.4 × 4.4

Sensor Type CCD CCD
Frame Rate 30 FPS 20 FPS

Memory 128 M 128 M
Time of Exposure 10 us–0.2 s 10 us–0.2 s

Output Color Color Color
Data Bits 12 14

Exposure Method Frame Exposure Frame Exposure
Weight 65 g 65 g

The choice of CCD camera should be based on the accuracy of the object, which
needs to be observed, to determine the resolution. In a dynamic capturing detection
target, the field of vision in one direction should be slightly larger than the size of the
detection target, to avoid incomplete image information. In static target acquisition, the
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closer to the detection target size is better under the condition that the light source is
adjusted. In this way, the image acquired has higher accuracy and less postprocessing.
The real object of defect detection is 80 mm and the maximum width is 50 mm, which
requires us to put forward requirements in the selection of industrial cameras. To achieve
a better detection effect, the detection accuracy is considered to be 0.5 mm. In addition,
MV-EM200C CCD industrial camera adopts the mode of frame exposure and belongs to
the plane array camera. Its frame rate, pixel size, optical size, and other performances can
meet the requirements of target detection on the general industry 4.0 assembly line. Finally,
this paper selects the MV-EM200C camera, as shown in Figure 4.

Camera

Lights

Figure 4. Image acquisition platform.

Light Source Selection. The choice of the light source is also very important in defect
detection based on machine vision. Table 2 shows the characteristics of various common
light sources.

Table 2. The characteristics of light sources.

Type Lighting Effect (Im/W) Feature

Halogen Lamp 12–24 High Calorific Value
Fluorescent Lamp 50–120 Large Area Exposure

LED Light 110–250 Low Power Consumption
High Intensity Discharge Lamp 150–330 High Light Intensity

Among them, in addition to the advantages described in Table 2, LED lights can also
be combined into various shapes. Through the comparison test of the actual light source,
the image acquisition effect is better when the LED ring light is used to illuminate the front
side. The LED ring light source is shown in Figure 4.

Through the overall design of the system described above and the selection and
analysis of related equipment used in the image acquisition module, this paper deploys
the whole system and carries out experiments on the system.

4.2. Dataset

In order to better compare experiments with past advances, the experiment uses the
Tianchi metal surface defect dataset collected by Alibaba Cloud [33]. There are three types
of defects, scratches, deformations, and wrinkles. There are 30 images of each type of
defect, totaling 90. In order to strengthen the model training effect, this study performs
data enhancement operations on the dataset, flips all the images horizontally and vertically,
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adjusts the saturation and contrast of the images, and adds some defect-free metal images
to improve the robustness of the data. Finally, a new dataset is formed, a total of 300 sheets.
The classification diagram is shown in Figure 5.

Scratches

Deformations

Wrinkles

Figure 5. Tianchi dataset.

This study uses Yolo_Mark to locate and classify the defect location. The dataset is
randomly divided into a train dataset and a test dataset at a ratio of 4:1, that is, 240 sheets
in the train dataset and 60 sheets in the test dataset.

Yolo_Mark software is used to mark the defects on the images, namely, to mark the
coordinates of the location of the defects and the categories of the defects. The contents of
the yaml file are shown in Figure 6. Furthermore, the effect of image labeling is shown in
Figure 7.

Figure 6. The yaml file.

Figure 7. Image labeling.
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4.3. Performance Evaluation

The precision rate and the recall rate are used to calculate the mean average precision
(mAP) as the network model performance evaluation standard. The mAP is the value
of the average detection accuracy of all categories, which is used to evaluate the overall
performance of the detection model. The calculation formulas are as follows:

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

mAP =
1
N

N

∑
i=1

APi (8)

Among them, true positive (TP) is a positive example that is correctly predicted, false
positive (FP) is a negative example that is incorrectly predicted as a positive example, false
negative (FN) is a positive example that is incorrectly predicted as a negative example, N
is the number of detection categories, AP is the detection accuracy of various types, and
the calculation formula is:

AP =
∫ 1

0
precision(recall)d(recall) (9)

4.4. Train the Improved Model

The neural network model training process mainly includes the following steps.
Firstly, the relevant dataset needs to be loaded according to the configuration file. Secondly,
the dataset should be preprocessed to meet the input requirements of the neural network
model. After inputting the processed data into the model, it starts iterative training and
updates the parameter values. At the end, when the training number reaches the end of
the count, the network weights will be outputted.

This study implements the improved YOLOv3 model based on PyTorch, a deep
learning framework. First of all, it pretrains on the COCO dataset, and then uses the result
of pretraining to train the custom dataset. The image size of the model input is 416 × 416.
During the training, batch size is set to 16, the learning rate is set to 0.01, and the Adam
optimization algorithm is used for iterative optimization. It lasts 1000 epochs in total.

4.5. Performance for Real-Time Operation

The training loss function is shown in Figure 8. As can be seen from the figure,
with the increase of iteration times, the loss function value gradually decreases and tends
to converge.

Figure 8. The curve of loss function. Training loss is measured during each epoch while validation
loss is measured after each epoch.
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Figure 9 is the mAP graph. The mAP is a comprehensive measurement index com-
monly used in the field of target detection. It measures the overall detection accuracy of
the detection box under different IOUs. The higher the value, the higher the accuracy of
the model.

Figure 9. The curve of the mAP. The abscissa is the number of the iterations. Furthermore, the y-axis
is the value of the prediction, recall, mAP@0.5, and mAP@0.5:0.95.

4.6. Comparison of the Improved Model with the YOLOv3 Model

In order to demonstrate the feasibility of the proposed method, this paper compares
and analyzes the improvement points one by one. In terms of speed, the two neural
network models are very similar. In terms of accuracy, the improved YOLOv3 model turns
out to be slightly superior.

K-Means++ and K-Means are used to cluster the dataset, respectively. As shown in
Table 3, the mAP using K-Means++ clustering is 75.1%, which is 3.02% higher than that of
YOLOv3 using K-Means. The results show that K-Means++ can play a role in optimizing
clustering centers, strengthening positioning, and improving the detection accuracy of
the algorithm.

Table 3. Comparison of two clustering algorithms.

Cluster mAP/% FPS (f/s)

K-Means 72.9 83
K-Means++ 75.1 83

Table 4 shows the comparison of the detection accuracy of various types of defects on
the dataset of YOLOv3 before and after the improved network structure. The K-Means++
clustering algorithm is used to cluster the generated Anchor Box. According to the analysis
of Table 3, the mAP after the improvement of the network structure is 75.1%, which is
1.03 times of that before the improvement. The modified network structure has significantly
improved the accuracy of various detections, especially the detection of small defect targets.
For example, the detection accuracy of deformation is 62.8%, which is 11.8% higher than
that of YOLOv3 before the improvement. In Table 4, the classification accuracy of the
scratches detected by the proposed model is worse than the original one. The reason is that
the improved model can detect small targets more accurately. However, the metal surface
texture is very clear after image preprocessing, so that some metal surfaces are wrongly
detected as scratches resulting in a decrease in accuracy.

Table 4. Results before and after network improvement.

Defects/AP(%) The Original Model The Improved Model

Deformations 55.4 62.8
Scratches 68.1 66.0
Wrinkles 95.1 96.4

Precision 0.746 0.792
Recall 0.677 0.715
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The precision is also called the accuracy rate. It shows how many samples of the
predicted results are correct. The precision represents the generalization ability of a model.
The recall refers to how many positive samples of the predicted results are correctly
detected. When Recall = 1, there are no missed tests. The AP curve is calculated by the
area enclosed under the curve of precision and recall. As shown in Table 4, the value of the
precision increased by 6.2% while the value of the recall increased by 5.6%. This indicates
that the improved model reduces the false negative error rate, so that the additional costs
in the next stage of the production line can also be reduced.

Using the YOLOv3 and the modified model detect metal surface defects, respectively,
as shown in Figure 10. Comparing the YOLOv3 and the improved model in this paper,
it can be clearly seen that the improved model in this study detects all the small defect
targets. In the detection of the three types of defects, the detection effect of the improved
model in this paper is better than that of the YOLOv3, indicating that the improved model
can effectively reduce the probability of missed detection.

Scratches

Deformations

Wrinkles

Figure 10. Detection effect of the algorithm in this paper.

Therefore, the comprehensive performance of the proposed model is optimal and
meets the requirement of higher precision of metal defect detection.

5. Conclusions

In this paper, a surface defect detection system based on the improved YOLOv3 model
is designed and deployed. To ensure the collection of high-quality images in the actual
production environment, this study compares and analyzes in detail a variety of main
image acquisition equipment, taking into account the cost and performance factors of
equipment. The modified model proposed in this paper reaches 75.1% mAP by using
K-Means++, and the reasoning speed reaches 83 FPS.

The improved model can achieve real-time detection while ensuring high accu-
racy. It provides a feasible scheme for eliminating products with surface defects on the
assembly line.
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mAP mean Average Precision
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