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Abstract: A two echelon distribution system is often used to solve logistics problems. This study
considers a two-echelon distribution system in reverse logistics context with the use of drop box
facility as an intermediary facility. An optimization model of integer linear programming is proposed,
representing a two-echelon vehicle routing problem with a drop box facility (2EVRP-DF). The aim is
to find the minimum total costs consisting of vehicle transportation costs and the costs to compensate
customers who have to travel to access these intermediary facilities. The results are then compared
to those of common practice in reverse logistics. In common practice, customers are assumed to
go directly to the depot to drop their goods. In addition, this study analyzes the environmental
impact by adding a component of carbon emissions emitted by the vehicles. A set of comprehensive
computational experiments is conducted. The results indicate that the 2EVRP-DF model can provide
optimal costs and lower carbon emissions than the common practice.

Keywords: vehicle routing problem; simulated annealing algorithm; drop box facilities; integer
linear programming

1. Introduction

Indonesia is a country with a large population. Its population reached over 264 million
in 2019 [1] and is projected to increase by roughly 12–15% during 2025–2035 become
296–305 million population, respectively [2]. The large number of residents has an impact
on the increasing amount of waste. Three cities in Indonesia with the highest volume
of waste in 2019 transported per day by type of waste are DKI Jakarta with 4139.88 m3,
Semarang with 2755.90 m3, and Denpasar with 2434.74 m3 [1]. Besides, a study by Mai-
rizal [3] shows that electronic waste will increase from 7.3 kg/capita in 2021 to 10 kg/capita
in 2040. In addition, the island of Java contributes 56% to e-waste generation. There is also
an interesting case study conducted at the Galuga landfill, Bogor. This study estimated the
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average daily removal of microplastics from the leachate channel at 80,640 ± 604.80 parti-
cles. The daily release of mesoplastic from leachate channels into the aquatic environment
was estimated at 618,240 ± 1905.45 particles [4].

With regard to the increasing level of waste, awareness of the importance of waste
management to create a sustainable environment is increasing as well, particularly in the
context of recycling process or waste disposal for products that cannot be recycled [5].
Reverse Logistics (RL) plays an essential role in the success of waste management [6].
Reverse logistics is a part of the supply chain, where the activities are reversed from
common logistics. RL consists of reverse product flow activities, starting with the final
customer until the goods are returned to the manufacturer. RL goals can vary from proper
dumping at the end of a product’s life cycle, renewals, product recollections, to being part of
any eco-friendly business program. Besides maintaining good environmental sustainability,
RL is also beneficial for the company’s image. It is the trade-off between the costs incurred
to support the process and the benefit generated by the actions.

For RL in urban areas, end customers usually returns goods to sellers or retailers
directly. This common practice often encounters problems that are not profitable for
customers, such as traffic congestion and environmental issues such as air pollution. In
addition, if the distance between the customer and the seller is far, then the shipping cost
of the goods to be returned is charged to the customer who returns the goods.

An alternative to the common practice for RL activities for customer goods is the
pick-up method. This can save time and is more cost-effective than the common practice
given correct planning. In the pick-up method, the customer can pick up or send the
package through an intermediary facility near the customer’s residence or office. The
customer’s pick-up location is usually in a communal area that is easily accessible. A more
conventional form of parcel locker as the intermediary facility is seen in the application of
the receiving box, which is a fixed locker for receiving packages. It is commonly installed
outside the consumer’s house. In a study conducted by Lemke [7], almost 15% of customers
tend to be more likely to use lockers if the locker location is close to their home. Many
recent studies on logistics activity in general are concerned not only with the economic
perspective but also with the sustainable and green aspects of the operations [8,9]. Thus,
consideration of emission costs is often included when discussing sustainable and green
logistics activity. Furthermore, studies regarding the utilization of parcel lockers to enhance
reverse logistics are also gaining increasing interest from researchers [10–12]. However,
among the research available on parcel lockers applied in reverse logistics, to the best of
our knowledge no available study proposes the analysis of using parcel lockers or drop
box facilities for reverse logistics considering emission cost.

This study discusses reverse logistics activities such as product returns or refurbish-
ment by utilizing a network of drop box facilities. The problem is formulated as an
optimization model denoted as the two-echelon vehicle routing problem with drop box
facilities (2EVRP-DF). The 2EVRP-DF problem model is used to find the minimum value of
transportation costs that need to be incurred by vehicles that pick-up goods at intermediary
facilities, and travel costs that must be incurred by customers who travel to intermediary
facilities. In addition to calculating the cost of transportation, we also consider environ-
mental factors, namely by adding the carbon tax component and the emission coefficient to
the problem model, which is the main contribution of this study. Figure 1 illustrates the
reverse logistics considering the drop box facilities.
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Figure 1. Illustration of reverse logistics using drop box facilities.

The remainder of this paper is structured as follows. Section 2 reviews the literature
related to this research. Section 3 shows the formulation of the two-echelon 2EVRP-DF
model. Section 4 demonstrates the experimentation. Finally, Section 5 discusses the
conclusions and future research.

2. Literature Review

The basic formula for two-echelon vehicle routing problem (2EVRP) variants, intro-
duced by Perboli [13], is based on the two-echelon capacitated vehicle routing problem
(2E-CVRP). The study proposed a mathematical model for the 2E-CVRP. This model was
developed based on the classical capacitated vehicle routing problem (CVRP), considering
that the delivery is made from the depot to the customer through an intermediary facility
in a two-echelon system. Like the CVRP problem, 2E-CVRP is also NP-Hard [14]. Later,
Enthoven [15] introduced a two-echelon route problem model with cover options denoted
by 2EVRP-CO. The study considered cargo bicycles to deliver goods and locker facilities,
becoming intermediary facilities. Furthermore, the results of the 2EVRP-CO model showed
that the mileage of the cargo bike can be reduced by 60.4%. Dellaert [15] introduced
a two-echelon vehicle route problem with a time window denoted by 2E-VRPTW. The
2E-VRPTW formulation separated urban vehicle routes from urban transport routes as a
distinct component of the problem. The study reported that the approach successfully and
efficiently solved instances with five satellites and 100 customers. Baldacci [16] proposed a
2EVRP model taking into account work constraints. The goal was to obtain a valid lower
bound that breaks 2EVRP into a finite set of multi-depot vehicle routing problems. The
study showed promising results with the 2EVRP which can solve the 2EVRP benchmark
problem better than in earlier studies. Furthermore, the results showed that the algorithm
optimally solves 144 of 153 experimental institutions.

The 2EVRP has been extended to many variants. Liu [17] developed a mathematical
model and used a branch-and-cut algorithm to solve a two-echelon capacity vehicle route
with grouping constraints denoted by 2E-CVRPGC. This study examined the comparison
of the optimal solution between the 2E-CVRP and 2E-CVRPGC models. The results showed
that the difference between the optimal solutions was quite significant, with a percentage
difference of 38%. In addition, for clustered instances, the difference between 2E-CVRP and
2E-CVRPGC is 55%. Belgin [18] developed two-echelon vehicle routing problem models
with simultaneous delivery and retrieval (2E-VRPSPD). In the study, a mathematical model
for the problem was proposed and was strengthened using valid and adaptable inequalities
from the literature. The study used a hybrid heuristic based environment variable descent
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and a local search algorithm called VND-LS. The result showed effectiveness in finding a
good solution for 2EVRPSPD.

The application of the parcel locker in logistics activities has been modelled as a
network design or routing optimization problem. Deutsch and Golany [11] developed a
packet locker network design problem to solve the last mile distribution problem, selecting
the best number, location, and size of intermediate facilities. This study aimed to find the
maximum total system profit. The total profit was made up of the revenue from the end
customer using the service, deducting the fixed costs and the costs of setting up facilities,
discounted shipping costs for the customers, and the potential loss of customers who
do not wish to use facilities. Research conducted by Redi [10] developed a two-echelon
vehicle route problem model by considering the locker facility denoted by 2E-VRPLF. The
study compared the results of the 2E-VRPLF calculation with the home-delivery method,
indicating that 2E-VRPLF can reduce transportation costs by 70.4%.

In solving the 2E-CVRP problem, there are various approaches, such as exact ap-
proaches, heuristic methods or a combination of both [18]. The column generation tech-
nique has been generally used in the exact approach [16]. Examples of this technique are
branch and bound or branch and prices [19]. In comparison, the most heuristic method
belongs to the category of metaheuristics [20]. Recent developments use an exact approach
and a heuristic approach known as math-heuristics [13]. The proposed model in this
study is solved using a mathematical programming technique which has embedded an
exact approach. Furthermore, a simulated annealing (SA) heuristic is proposed to solve
2EVRP-DF. This is motivated by the success of SA algorithms in solving various VRP
variants [10,21–23]. It also addresses the inability of the exact solution approach in solving
larger size instances.

3. Methods
3.1. The Mathematical Model

The problem is formulated as a mathematical optimization model, namely the two-
echelon vehicle routing problem with drop box facilities (2EVRP-DF). This model is divided
into two major parts, the first and the second echelon. The first echelon contains a collection
of drop box facilities and one depot, which is represented by a set of M = {1 ... |M|}. The
distance between nodes i to j is denoted as Csij, where i and j are part of |M|. Travel
costs from the first echelon will be multiplied by a fare R, so that the total cost for the first
echelon is calculated. In addition, the first echelon also adds the emission costs obtained
from the total distance Csij multiplied by the emission coefficient Ev (where v is the index
of vehicles) and multiplied by the carbon tax T. In the second echelon, there is a set of
customer N = {1 ... |N|}. The customer is associated with demand Dn where n ∈ N. The
assignment of customers is limited by the capacity of the drop box facility Qsm, where
m ∈ {2 . . . |M|}. The vehicle capacity Qvv also limits route decisions to the first echelon
where v is one of the vehicles, which is also represented by the set V = {1 ... |V|}. The
following are the decision variables contained in the 2EVRP-DF model.

3.1.1. Decision Variables

• Xi,j,v: equals 1 if the route from i to j is made, otherwise 0
• Zi: equals 1 if the drop box facility i is open, otherwise 0
• Si,j: equals 1 if the drop box facility i serving the customer j, otherwise 0
• Qi: The total amount of demand served in drop box facility i
• ai,v: The total amount demand in drop box facility i carried by the vehicle v

3.1.2. Problem Formulation

Formula (1) defines the objective function, which aims to find a solution with the
minimum total cost, consists of the first echelon’s transportation costs, the emission costs,
and the costs that the customer must incur regarding the drop box facility in the second
echelon. Constraints (2) and (3) ensure that the drop box facility is serviced once in the
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first echelon routing decision. Constraint (4) guarantees the continuity of the vehicles
in the first echelon. Constraints (5) and (6) make the vehicles start from and return to
the central depot after all drop box facilities have been visited. Constraints (7) and (8)
limit the capacity of drop box facilities by limiting the total customer requests assigned to
each facility. Constraint (9) ensures that only one drop box facility can serve customers.
Constraint (10) ensures continuity of flow. Constraint (11) ensures that the vehicle capacity
limit is sufficient to serve customer demand.

min R
|M|
∑

i=1

|M|
∑
j=i

|V|
∑

v=1
Csi,j ·Xi,j,v + T

|M|
∑

i=1

|M|
∑
j=i

|V|
∑

v=1
Csi,j ·Xi,j,v· Ev + R

|N|
∑

i=1

|M|
∑

j=2
Cci,j ·si,j

+T
|N|
∑

i=1

|M|
∑

j=2
Cci,j ·si,j· E2

(1)

∑|M|
i=1 ∑|V|

v=1Xi,j,v = zj ∀j ∈ {2 . . . |M|} (2)

∑|M|
j=1 ∑|V|

v=1 Xi,j,v = zi ∀i ∈ {2 . . . |M|} (3)

∑|M|
i=1 Xi,l,v −∑|M|

j=1 Xl,j,v = 0 ∀l ∈ {2 . . . |M|}, ∀v ∈ {1 . . . |V|} (4)

∑|M|
j=2 X1,j,v ≤ 1 ∀v ∈ {1 . . . |V|} (5)

∑|M|
i=2 Xi,1,v ≤ 1 ∀v ∈ {1 . . . |V|} (6)

∑|N|
i=1 Di · si,j ≤ Qj ∀j ∈ {2 . . . |M|} (7)

Qj ≤ Qsj · zj ∀j ∈ {2 . . . |M|} (8)

∑|M|
j=2 sij = 1 ∀i ∈ {1 . . . |N|} (9)

ai,v + Qj − L .
(
1− xi,j,v

)
≤ aj,v ∀i ∈ {1 . . . |M|}, ∀j ∈ {2 . . . |M|}, ∀v ∈ {1 . . . |V|} (10)

∑|M|
i=1 ∑|M|

j=2 xi,j,v · Qj ≤ Qvv ∀v ∈ {1 . . . |V|} (11)

3.1.3. Transportation Fare

It is assumed that the transportation rates (R) are IDR 3000 per km. This transportation
fare is taken into account as a multiplier of the distance in the first and second echelons to
obtain the transportation cost per km. This tariff value is based on research conducted by
Frans [24] that determined transportation fares based on Ability to Pay and Willingness
to Pay.

3.1.4. Carbon Tax & Emission Coefficient

The model considers transportation costs incurred by companies in the first echelon
and the emission costs due to pollution generated by vehicles. Ratnawati [25] formulated
and proposed an initial carbon tax rate in Indonesia of IDR 80,000 per ton of CO2, equivalent
to IDR 80 per kg of CO2. Thus, we use IDR 80 per kg of CO2 as the carbon tax amount
in this research. Furthermore, Kiris [26] showed that vehicle emission coefficients are
related to vehicle type and fuel consumption. For example, a diesel auto 24 mpg vehicle
with fuel consumption of 9.8 L/100 km has an emission coefficient of 0.2691 kg CO2/km.
Thus, this study considers the same type of vehicle with the same emission coefficient of
0.2691 kg CO2/km.

This study also estimates the emission coefficients of customers’ vehicles at the sec-
ond echelon for experimental purposes. It uses the emission coefficient proposed by
Fontaras [27], which is 122.7 CO2 g/km. Later on, this is converted in kg/km, becoming
0.1227 CO2 kg/km.
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3.2. Solving 2EVRP-DF with Simulated Annealing

This study proposed a simulated annealing algorithm to solve the 2EVRP-DF. The
main characteristic of SA is its ability to get out of the local optimal by allowing the
exploration of a worse solution, even a solution that is unfeasible (with a small probability).
The probability of accepting a worse solution is determined by a formula that considers the
gap of solution quality with the earlier solution and the parameter denoted as temperature.
Several other studies have proven that SA successfully solved the problem of VRP and its
variants [28–30].

The data used in SA to solve the 2EVRP-DF problem in this study is the same with the
ones used in the GUROBI solver, such as the total number of customers, the total number
of drop boxes, the total demand of each customer, and the distance between drop boxes
and between each customer to each drop box facility. The objective results by the GUROBI
solver are then reshaped into the form of a representation solution so that SA can initiate
the solution and then perform the optimization process. Parameter settings and procedures
of SA will be discussed in detail in the next subsection.

3.2.1. SA Parameters

In the application of the SA algorithm, there are four parameters needed. The first
parameter is the initial temperature denoted by T0. The second parameter is the final
temperature, which is Tf. The third parameter is Alpha which is the coefficient to control the
reduction of temperature. The last parameter is Iiter, representing the number of iterations
in finding a new solution at a specific temperature. These parameters need to be fine-tuned.
In later discussion, the fine-tuned process for parameters of the SA algorithm shows that it
can lead to a better solution quality in an acceptable computational time.

3.2.2. SA Procedure

In the SA algorithm, there are two phases: the initiation phase and the improvement
phase. The initiation phase begins with determining the initial solution X, which is carried
out randomly. In this phase also, the temperature T is set to the initial temperature T0 and
the best solution of X is denoted by XBest. Then, the new solution Y is generated based on
the initial solution X in the improvement phase. After obtaining a new solution Y, then Y
is compared with X. If the objective value of Y is better than X, then X will be replaced by
Y. On the other hand, the SA algorithm will be used to calculate formula (12), denoted by p,
to help determine whether Y will replace X or not. Then, it will look for a random value
between 0 to 1, symbolized as r. If the value of r is less than p, then X will be replaced
with Y. At each iteration, XBest is updated if there is a new best solution found. After Iiter
number of iterations, the temperature T is updated using formula (13). The SA algorithm
will stop when the temperature T is less than the final temperature Tf. The overall process
of SA is shown in Figure 2.

p = exp
(

f (y)− f (x)
T

)
(12)

T = T ∗ Alpha (13)
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Figure 2. Flowchart of the SA optimization process.

3.2.3. SA Neighborhood

To form a new solution Y, SA uses the neighborhood mechanism consisting of swap,
insert, and reverse. Swap is a mechanism for randomly exchanging positions between two
nodes in the solution. Insert is a mechanism to randomly reposition one node at a specific
position in the solution. The reverse is a mechanism for randomly selecting two nodes at
random and to flip the sequence of nodes between the two selected nodes.

3.2.4. SA Solution Representation

The solution of 2EVRP-DF is represented by a series of numbers consisting of the
drop box facilities denoted by the set {1, 2, ..., |M|}; −1 dummy zeros represent vehicles
returning to the depot to empty capacity, set {|M|, ..., |M| + |N|} represents the customer,
and −2 dummy zeros represent the customer assignment separator to the drop box facility.
Figure 3 illustrates the solution representation for 2EVRP-DF.

The procedure for finding a solution based on this representation is as follows. First,
two lists are created to be introduced into a representation solution, namely a list of drop
box facilities and a list of customers. The list of drop box facilities will contain the order
of facilities visited by vehicles from the depot. In addition, there is a dummy node with
a value of −1, which indicates that the vehicle returns to the depot to empty its vehicle
capacity then goes to the next drop box facility. The second list is the customer list. This
second list describes the assignment of customers to go to the specified drop box facility. In
this list there are also dummy nodes with a value of −2, which are the separators between
customers assignments in the second echelon.
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Figure 3 illustrates the representation of the solution. Take examples of data pro-
vided for solution representation in Tables 1 and 2. In the examples illustrated, each
drop box facility has a capacity of 15, demand from customers is 5, and the capac-
ity of vehicles carrying goods is 15. As previously mentioned, the list of solutions
{2,5,1,−1,4,11,−2,6,−2,7,−2,8,9,10} is divided into two, namely the list of drop box fa-
cilities and the list of customers. The list of drop box facilities will contain {2,5,1,−1,4}.
On the other hand, the customer list is {11,−2,6,−2,7,−2,8,9,10}. Based on an example list
of drop box facilities and customers, the following solutions can be explained. The first
facility visited by the vehicle is the drop box facility 2. Then the vehicle goes to the drop
box 5 facility, and then to the drop box facility 1. Then, the vehicle returns to the depot to
empty the vehicle and then goes to drop box 4 as the last route. Furthermore, based on the
customer list, demand from customer 11 will be handled by the drop box 2 facility, demand
from customer 6 will be handled by the drop box 5 facility, demand from customer 7 is
handled by the drop box 1 facility, and demands from customers 8, 9, and 10 are handled
by the drop box 4 facility. The drop box 3 facility is not visited by vehicles, because all
customers have been served.

Table 1. Example of location, capacity, and demand for 2EVRP-DF.

Node Facilities
& Customers Latitude Longitude Capacity Demand

0 −6.2701 106.8376 - -
1 −6.25631 106.8126 15 -
2 −6.25693 106.8518 15 -
3 −6.25465 106.8138 15 -
4 −6.28424 106.8118 15 -
5 −6.25153 106.8247 15 -
6 −6.24495 106.8287 - 5
7 −6.26012 106.8155 - 5
8 −6.2746 106.8212 - 5
9 −6.28718 106.8012 - 5
10 −6.27253 106.8207 - 5
11 −6.24853 106.8441 - 5
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Table 2. Illustration of cost matrix between nodes in 2EVRP-DF.

Nodes 0 1 2 3 4 5 6 7 8 9 10 11

0 0 3.16 2.15 3.14 3.26 2.51 2.96 2.68 1.88 4.45 1.89 2.5
1 3.16 0 4.33 0.23 3.11 1.43 2.18 0.53 2.24 3.66 2.01 3.58
2 2.15 4.33 0 4.21 5.37 3.06 2.88 4.03 3.92 6.53 3.86 1.27
3 3.14 0.23 4.21 0 3.3 1.24 1.96 0.64 2.36 3.88 2.13 3.41
4 3.26 3.11 5.37 3.3 0 3.91 4.75 2.71 1.49 1.22 1.63 5.34
5 2.51 1.43 3.06 1.24 3.91 0 0.86 1.39 2.59 4.74 2.38 2.17
6 2.96 2.18 2.88 1.96 4.75 0.86 0 2.23 3.4 5.6 3.19 1.75
7 2.68 0.53 4.03 0.64 2.71 1.39 2.23 0 1.73 3.4 1.49 3.41
8 1.88 2.24 3.92 2.36 1.49 2.59 3.4 1.73 0 2.62 0.24 3.85
9 4.45 3.66 6.53 3.88 1.22 4.74 5.6 3.4 2.62 0 2.7 6.4
10 1.89 2.01 3.86 2.13 1.63 2.38 3.19 1.49 0.24 2.7 0 3.72
11 2.5 3.58 1.27 3.41 5.34 2.17 1.75 3.41 3.85 6.4 3.72 0

4. Results & Discussion

The 2EVRP-DF model in this study was solved using the GUROBI solver (a MILP
solver), coded in the AMPL mathematical programming language (AMPL/GUROBI). The
experiment was conducted on a PC with an Intel(R) Core(TM) i5 processor at 3.60 GHz, 8 Gb
RAM, and running on a Windows 10 64-bit operating system platform. The computational
experiments aimed to demonstrate the improvement benefit of considering 2EVRP-DF and
the effectiveness of the proposed SA in resolving 2EVRP-DF. The following subsections
describe the test instances, parameter settings, and computational results.

4.1. Test Instances

Testing data was taken from a drop box dataset located around the Jakarta area [31],
and reverse geolocation is carried out using the Google API to obtain its latitude and longi-
tude. For customer locations, uniform random distribution using python programming is
carried out around the drop box locations within a radius of 10 km. For small instances,
the number of drop box facilities ranges from 5 to 30 and the number of customers ranges
from 6 to 25. Meanwhile, for large agencies, the number of drop box facilities is 92, and
the number of customers ranges from 70 to 150. After obtaining the drop box facilities
and customers’ location, the distance between the drop box facility and the customer is
calculated using the haversine formula.

Furthermore, as previously mentioned regarding common practice in reverse logistics,
we also calculate the distance from the customer to the depot using the haversine formula.
We assume that the R rate in the second echelon is also the same as in the first echelon,
so to get the cost in common practice we multiply the customer’s distance by the rate of
Rp3000 per km.

4.2. Parameter Setting

In parameter settings, we used the one factor at a time (OFAT) procedure to set one
parameter sequentially at a time. The OFAT procedure proved to be effective for selecting
parameters for the SA algorithm [32]. In this experiment, each parameter has several
options to choose from as follows.

• Initial Temp. (T0): 30, 60, 90
• Final Temp. (Tf ): 5, 0.5, 0.05
• Alpha: 0.25, 0.5, 0.9, 0.99
• Iiter: 25N, 50N, 100N, 250N, 300N (N = number of customers)

Figure 4a shows the experimental determination of the T0 parameter, while the other
parameters are fixed. The T0 determination experiment shows the number 90 in the search
for the minimum objective value in an acceptable time. Then the search for the Tf parameter
was carried out with the value T0 = 90, and the other parameters were fixed. Figure 4b
shows that the obtained Tf is equal to 0.5, in order to obtain a minimum objective value,
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also in an acceptable time. For the Alpha and Iiter parameters the same procedure is used as
T0 and Tf. After setting the parameters, from the experimental results, the values of T0 = 90,
Tf = 0.5, Alpha = 0.99, and Iiter = 100N. After all these processes, the final parameters are as
follows: T0 = 90, Tf = 0.5, Alpha = 0.99, and Iiter = 100N. Figure 4 shows the analysis of the
effect of each SA parameter on the objective value and computation time.
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4.3. Computational Results

The computational experiment was divided into four parts. The first part provides
an analysis of the convergence property of the SA algorithm. The second part is the
experiment with small size instances of 2EVRPD-DF. The third part is the experiment with
large size instances of 2EVRPD-DF. In the second and third part of the experiment, the
results obtained by GUROBI, SA, and common practice are compared. Finally, the last part
provides a sensitivity analysis of the impact of the increasing number of customers on the
emission cost, considering the use of 2EVRPD-DF (result of GUROBI and SA) compared to
common practice.

For the first part of the experiment, the small size instance was used, containing 5 to
30 customers and 6 to 25 drop box facilities. The solution comparison of the 2EVRP-DF
problem is between AMPL and the proposed SA algorithm. The numerical results are
shown in Table 3 Columns 1 & 2 specify the number of customers, and the number of
drop box facilities at each instance. Columns 3 to 9 are the results of the calculation of the
2EVRP-DF model, solved using the GUROBI. Columns 3 and 4, respectively, contain the
total of the distances in the first and second echelon. Columns 5 and 6, respectively, contain
the total emissions generated from the first and second echelon. Column 7 contains the total
transportation costs obtained from the sum of the total distances of the first and second
echelon, which is then multiplied by the transportation fare. Column 8 contains the total
emission costs obtained from the total emissions produced in the first and second echelon,
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which is then multiplied by the carbon tax. Column 9 is the total cost of transportation
and emission costs. The next seven columns are the solutions generated by the SA, each
of which has the same definition as the result of the GUROBI solver calculation. The last
column is the difference between the total cost generated by the GUROBI solver and the
solution generated by SA.

The numerical results using the GUROBI solver have shown optimal solution. Fur-
thermore, the numerical results of the proposed SA algorithm have also demonstrated the
same results as GUROBI, where the difference in total costs between GUROBI and SA is
0. This indicates that the developed SA algorithm has been validated, because the results
given are not smaller or larger than the optimal solution generated by GUROBI.

The second part of the experiment was conducted with the large size instance which
has a number of customers of from 70 to 150 and a number of drop box facilities of as
many as 92. Each customer has a demand at random value between 1–15 kg, and each
drop box facility has a static capacity of 180 kg. Table 4 shows a comparison of the
total costs between the 2EVRP-DF model (generated from the GUROBI solver and SA
algorithm), and common practice where customers go directly to the depot to drop their
items. The total cost generated from the 2EVRP-DF model provides better results than
common practice, with an average of 71.95% and 72.09%. This result shows that using
the 2EVRP-DF model can provide an average cost advantage of 72.02% compared to the
common practice. Furthermore, the SA algorithm gives slightly better results of total costs
compared to GUROBI with an average difference of only 0.51%. This is possible because
the calculations performed by the GUROBI solver are near optimal. On the other hand,
from the computational time point of view, the SA algorithm gives better results than
GUROBI with an average computation time of 298.24 s, equivalent to 4.97 min, where the
average computational time of GUROBI reaches 23,409.36 s, equivalent to approximately
6.5 h.

In the third part of the experiment, a convergency analysis of the SA algorithm
is similar to that of previous studies [33,34]. We compared the convergency of the SA
algorithm with other metaheuristics algorithms, in this case a Genetic Algorithm (GA).
The instances are selected from the large size dataset which has 70 customers and 92 drop
box facilities.

Figure 5 shows the convergency of the SA and GA algorithm in finding a solution
at a predetermined time, from 0 s to 3000 s. From 0 to 300 s, it is shown that both the
SA and GA algorithm is able to search for minimal solutions. For SA, there is a drastic
change in the solution at 240, with a total objective of 618,378 and 616,670 in 630 s. Later
in the iteration, the SA algorithm made good improvements, but progressing slowly as it
approached steady-state. At the final part of the iteration, the SA algorithm shows the same
solution until the end of the experiment and shows a convergence property. Meanwhile,
GA shows a slower process than SA. The improvement of the solution in GA is shown at
840 and 1890 s with the objective value of 620,123 and 619,556, respectively. At the final
part of the iteration, GA also shows the same solution until the end of the experiment and
shows a convergence property.

The parameters required by GA are population size, crossover rate, and mutation rate,
which are 2000, 0.6, and 0.01, respectively. This means that the probability of population
crossover mechanism is 60% and the chance of mutation mechanism is 1%.
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The comparison of total objective of SA and GA is shown in Table 5. Both SA and
GA demonstrate a good optimization process in finding a minimum solution with the
2EVRP-DF model. SA gives an average total objective of 887,762.69, while GA provides
889,652.29. Although the average difference in the objective values looks small, in solving
the 2EVRP-DF model SA outperforms GA by 0.21%, which is in line with several previous
studies where SA was able to outperform other metaheuristics algorithms, especially in
VRP problems [35–38].

In a further analysis regarding emission costs, the computational results from the
2EVRP-DF model were promising compared to common practice. Table 6 shows the
detailed emission calculations for the 2EVRP-DF model and common practice. The 2EVRP-
DF model shows that the average total emissions produced by vehicles in the first and
second echelon are 47.80 (GUROBI) and 47.56 (GUROBI), where the total emission in
common practice averages 133.60. Furthermore, Figure 6 shows that, as more customers
are added to the system, the amount of carbon emissions also increases. However, when
compared to the 2EVRP-DF model, common practice generates much higher emission
costs compared to the 2EVRP-DF. For this reason, it can be concluded that the 2EVRP-DF
model can have a positive impact on the environment by reducing the amount of carbon
emissions released by vehicles.
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Table 3. Comparison of results between GUROBI & SA on small size instance.

Customer
(N)

Total
Demand

(kg)

Drop Box
(M)

2EVRP-DF—GUROBI 2EVRP-DF—SA

DifferenceE1
(km)

E2
(km)

Emission
E1 (kg
CO2)

Emission
E2 (kg
CO2)

Transport
Cost (IDR)

Total
Emission

Cost (IDR)

Total
Cost

(IDR)

E1
(km)

E2
(km)

Emission
E1 (kg
CO2)

Emission
E2 (kg
CO2)

Transport
Cost (IDR)

Total
Emission

Cost (IDR)

Total
Cost

(IDR)

5 40 25 3.80 5.23 9.03 1.02 27,090 82 27,172 3.80 5.23 1.02 0.64 27,090 133 27,223 0
10 73 25 7.70 7.49 15.19 2.07 45,570 166 45,736 7.70 7.49 2.07 0.92 45,570 240 45,810 0
15 95 25 7.88 10.22 18.10 2.12 54,300 170 54,470 7.88 10.22 2.12 1.25 54,300 270 54,570 0
20 124 25 10.62 13.16 23.78 2.86 71,340 229 71,569 10.62 13.16 2.86 1.61 71,340 358 71,698 0
25 143 25 10.82 15.29 26.11 2.91 78,330 233 78,563 10.82 15.29 2.91 1.88 78,330 383 78,713 0
30 174 6 12.80 41.04 30.28 3.44 90,840 275 91,115 13.05 41.04 3.51 5.04 162,270 684 162,954 0
30 174 11 13.05 31.46 54.09 3.51 162,270 281 162,551 13.42 31.46 3.61 3.86 134,640 598 135,238 0
30 174 16 13.42 29.29 44.88 3.61 134,640 289 134,929 13.56 29.29 3.65 3.59 128,550 580 129,130 0
30 174 21 13.56 18.27 42.85 3.65 128,550 292 128,842 13.65 18.27 3.67 2.24 95,760 473 96,233 0
30 174 25 13.65 17.48 31.92 3.67 95,760 294 96,054 12.80 17.48 3.44 2.14 90,840 448 91,288 0

Table 4. Comparison of results between 2EVRP-DF and common practice on large size instance.

Customer
(N)

Total
Demand

(kg)

Drop Box
(M)

2EVRP-DF—GUROBI 2EVRP-DF—SA Common Practice (CP)
Cost Diff.

GUROBI—
CP
(%)

Cost Diff.
SA—CP

(%)

Cost Diff.
GUROBI—

SA
(%)

Time Diff.
GUROBI—

SA
(s)

Transport
Cost (Rp)

Emission
Cost

(IDR)

Total
Cost

(IDR)

Solved
Time (s)

Transport
Cost (Rp)

Emission
Cost

(IDR)

Total
Cost

(IDR)

Solved
Time

(s)

Transport
Cost

(IDR)

Total
Emission

Cost
(IDR)

Total
Cost

(IDR)

70 527 92 618,894 2833 621,727 23,822.00 613,822 2825 616,647 135.20 1,817,917 5948 1,823,866 65.91 66.19 0.82 23,686.80
80 630 92 712,940 3219 716,159 27,824.40 712,044 3209 715,253 163.00 2,240,801 7332 2,248,133 68.14 68.18 0.13 27,661.40
90 704 92 763,551 3391 766,942 26,585.00 762,265 3386 765,651 229.60 2,551,443 8348 2,559,792 70.04 70.09 0.17 26,355.40
100 786 92 814,160 3549 817,709 27,099.00 812,360 3529 815,889 246.90 2,929,518 9585 2,939,103 72.18 72.24 0.22 26,852.10
110 873 92 874,412 3734 878,146 24,057.20 871,158 3727 874,885 287.70 3,242,748 10,610 3,253,358 73.01 73.11 0.37 23,769.50
120 964 92 951,347 4050 955,397 23,137.00 951,347 4050 955,397 314.70 3,647,314 11,934 3,659,248 73.89 73.89 - 22,822.30
130 1035 92 1,010,491 4262 1,014,753 13,455.20 1,008,732 4239 1,012,971 393.90 3,951,341 12,929 3,964,270 74.40 74.45 0.18 13,061.30
140 1101 92 1,095,068 4568 1,099,636 18,812.40 1,078,093 4502 1,082,595 427.30 4,344,548 14,215 4,358,763 74.77 75.16 1.55 18,385.10
150 1194 92 1,159,221 4812 1,164,033 25,892.00 1,145,798 4776 1,150,574 485.90 4,673,080 15,290 4,688,371 75.17 75.46 1.16 25,406.10

Average 888,898 3824 892,722 23,409.36 883,958 3805 887,763 298.24 3,266,523 10,688 3,277,212 71.95 72.09 0.51 23,111.11
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Table 5. Comparison of total objective between SA and GA.

Customer
(N)

Total
Demand

(kg)

Drop Box
(M)

2EVRP-DF—SA 2EVRP-DF—GA

DifferenceE1
(km)

E2
(km)

Emission
E1 (kg
CO2)

Emission
E2 (kg
CO2)

Transport
Cost (IDR)

Total
Emission

Cost (IDR)

Total
Cost

(IDR)

E1
(km)

E2
(km)

Emission
E1 (kg
CO2)

Emission
E2 (kg
CO2)

Transport
Cost (IDR)

Total
Emission

Cost (IDR)

Total
Cost

(IDR)

70 527 92 69.78 134.82 18.78 16.54 613,822 1502 616,647 69.06 136.52 18.58 16.75 616,729 2827 619,556 0.47
80 630 92 75.13 162.22 20.22 19.90 712,044 1617 715,253 75.74 161.91 20.38 19.87 712,940 3220 716,159 0.13
90 704 92 76.20 177.89 20.50 21.83 762,265 1640 765,651 76.27 177.86 20.52 21.82 762,393 3388 765,781 0.02
100 786 92 74.38 196.41 20.01 24.10 812,360 1601 815,889 75.52 195.87 20.32 24.03 814,159 3548 817,708 0.22
110 873 92 74.88 215.51 20.15 26.44 871,158 1612 874,885 74.56 216.52 20.06 26.57 873,254 3731 876,985 0.24
120 964 92 80.02 237.09 21.53 29.09 951,347 1723 955,397 80.02 237.09 21.53 29.09 951,346 4050 955,396 0.00
130 1035 92 80.15 256.10 21.57 31.42 1,008,732 1725 1,012,971 80.22 256.48 21.59 31.47 1,010,112 4245 1,014,357 0.14
140 1101 92 83.25 276.11 22.40 33.88 1,078,093 1792 1,082,595 84.14 276.13 22.64 33.88 1,080,807 4522 1,085,329 0.25
150 1194 92 87.68 294.25 23.60 36.10 1,145,798 1888 1,150,574 87.17 296.43 23.46 36.37 1,150,814 4786 1,155,601 0.43

Average 77.94 216.71 20.97 26.59 883,957.67 3805.02 887,762.69 78.08 217.20 21.01 26.65 885,839.39 3812.90 889,652.29 0.21

Table 6. Emission cost comparison between 2EVRP-DF and common practice.

Customer
(N)

Total
Demand

(kg)

Drop Box
(M)

2EVRP-DF—GUROBI 2EVRP-DF—SA Common Practice (CP)

E1
(km)

E2
(km)

Emmision
E1 (kg
CO2)

Emmision
E2 (kg
CO2)

Total
Emission
(kg CO2)

Emission
Cost (IDR)

E1
(km)

E2
(km)

Emmision
E1 (kg
CO2)

Emmision
E2 (kg
CO2)

Total
Emission
(kg CO2)

Emission
Cost (IDR)

Transport
Cost (IDR)

Total
Emission

Cost (IDR)

Total Cost
(IDR)

70 527 92 69.03 137.27 18.58 16.84 35.42 2833 69.78 134.82 18.78 16.54 35.32 2825 605.97 74.35 5948
80 630 92 75.74 161.91 20.38 19.87 40.25 3219 75.13 162.22 20.22 19.90 40.12 3209 746.93 91.65 7332
90 704 92 76.24 178.28 20.52 21.87 42.39 3391 76.20 177.89 20.50 21.83 42.33 3386 850.48 104.35 8348
100 786 92 75.52 195.87 20.32 24.03 44.35 3549 74.38 196.41 20.01 24.10 44.11 3529 976.51 119.82 9585
110 873 92 74.53 216.94 20.06 26.62 46.68 3734 74.88 215.51 20.15 26.44 46.59 3727 1080.92 132.63 10,610
120 964 92 80.02 237.09 21.53 29.09 50.63 4050 80.02 237.09 21.53 29.09 50.63 4050 1215.77 149.18 11,934
130 1035 92 81.56 255.27 21.95 31.32 53.27 4262 80.15 256.10 21.57 31.42 52.99 4239 1317.11 161.61 12,929
140 1101 92 84.09 280.93 22.63 34.47 57.10 4568 83.25 276.11 22.40 33.88 56.28 4502 1448.18 177.69 14,215
150 1194 92 86.95 299.46 23.40 36.74 60.14 4812 87.68 294.25 23.60 36.10 59.70 4776 1557.69 191.13 15,290

Average 78.19 218.11 21.04 26.76 47.80 3824 77.94 216.71 20.97 26.59 47.56 3805 1088.84 133.60 10,688
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5. Conclusions

This study proposes a two-echelon vehicle routing problem with a drop box facility
(2EVRP-DF) which is modeled as an integer linear programming problem. The 2EVRP-DF
demonstrates the utilization of drop box facilities to carry out reverse logistics activities in
urban areas. This study also considers environmental aspects by considering the amount
of carbon emissions released by vehicles, and compares the results of 2EVRP-DF with a
common practice model where, in reverse logistics activities, customers go directly to the
depot rather than intermediate facilities. Numerical examples are carried out to show the
effectiveness of using the drop box facility compared to common practice. The use of drop
boxes in the 2EVRP-DF model allows an average reduction in total costs (transportation
and emissions) of 72.02%. In addition, it is also seen that there is a drastic increase in the
number of emissions released by vehicles in common practice, where this does not occur in
the 2EVRP-DF model.

Furthermore, the experiment using SA to solve the 2EVRP-DF problem model presents
less significant results compared to GUROBI. The average difference in solutions between
GUROBI and SA is only 0.51%, but in terms of time SA can provide a more acceptable
computation time compared to GUROBI which reaches 6.5 h. However, the computational
results still need to be tested on more complex characteristics of problems that might occur
in practice or real life. In the comparison between SA and GA in solving 2EVRP-DF, SA
also outperforms GA in finding a minimum objective solution by an average difference
of 0.21%.

For further research, it is recommended to explore various metaheuristic algorithms to
solve 2EVRP-DF problems, because there are growing number of developments regarding
metaheuristic algorithms available in the literature. It will also be more interesting if a
combination of algorithms such as a hybrid algorithm between SA and GA can solve the
problem. In term of problem characteristics, it is interesting to consider uncertainty factors
such as travel time, demand, and locker availability in the model.
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