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Abstract: Current segmentation methods have limitations for multi-source heterogeneous iris seg-
mentation since differences of acquisition devices and acquisition environment conditions lead to
images of greatly varying quality from different iris datasets. Thus, different segmentation algorithms
are generally applied to distinct datasets. Meanwhile, deep-learning-based iris segmentation models
occupy more space and take a long time. Therefore, a lightweight, precise, and fast segmentation
network model, PFSegIris, aimed at the multi-source heterogeneous iris is proposed by us. First,
the iris feature extraction modules designed were used to fully extract heterogeneous iris feature
information, reducing the number of parameters, computation, and the loss of information. Then, an
efficient parallel attention mechanism was introduced only once between the encoder and the decoder
to capture semantic information, suppress noise interference, and enhance the discriminability of iris
region pixels. Finally, we added a skip connection from low-level features to catch more detailed
information. Experiments on four near-infrared datasets and three visible datasets show that the
segmentation precision is better than that of existing algorithms, and the number of parameters and
storage space are only 1.86 M and 0.007 GB, respectively. The average prediction time is less than
0.10 s. The proposed algorithm can segment multi-source heterogeneous iris images more precisely
and quicker than other algorithms.

Keywords: iris segmentation; heterogeneous iris; fast segmentation; iris recognition

1. Introduction

With the advantages of uniqueness, stability, and security of iris texture, iris recog-
nition [1] stands out among numerous biometric recognition technologies [2]. The iris
recognition process includes iris image acquisition, iris preprocessing, and iris feature ex-
traction and recognition [3,4]. Iris segmentation [5] is the accurate location of the iris region
in the whole image, which plays a decisive role in the subsequent iris feature expression
and recognition rate and is an important step in the entire iris recognition process. Due
to the quality differences caused by factors such as heterogeneous spectrum (visible and
near-infrared light) and different iris region sizes, the fast and accurate segmentation of
multi-source heterogeneous iris images brings new challenges to iris recognition.

The main traditional iris segmentation methods are the calculus circle template method
proposed by Daugman [6] and the Hough method based on edge detection [7]. Many
subsequent algorithms have been improved and innovated based on these two methods.
Traditional iris segmentation methods can only accurately segment the iris region under
ideal conditions. However, conditions are often non-ideal in practice, e.g., due to noise
interference from upper and lower eyelid occlusion, eyelash occlusion, and small grayscale
changes in the outer boundary of the iris. Traditional iris segmentation methods are
susceptible to these noises, leading to a great reduction in localization accuracy and thus
affecting the recognition results.
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With the development of deep learning in recent years, semantic segmentation meth-
ods based on deep neutral networks have been widely used in iris segmentation. Semantic
segmentation methods at present can be mainly divided into two kinds. One is based on
region classification, represented by Mask-RCNN [8]. The working principle is to combine
target detection and semantic segmentation. First, the target region is selected through
target detection algorithms such as Fast-RCNN [9] and Faster-RCNN [10]. Then, a classifier
such as SVM is used to classify the region to perform pixel classification. However, since
global semantic information is not considered, segmentation accuracy will decrease in
a slightly complex background. Another is semantic segmentation based on end-to-end
form, avoiding the problems caused by the generation of the target region. A deep neural
network is used to extract semantic information from images with annotation, learn and
infer the pixel category of the original images based on the information, and classify each
pixel in order to achieve the goal of semantic segmentation.

The existing end-to-end iris semantic segmentation methods are mostly based on
several typical convolutional neural networks, such as FCN [11], SegNet [12], and U-
Net [13]. Muhammad et al. [14] proposed a fully residual network model FRED-Net, which
segmented the true iris boundary without the extra cost of denoising as a preprocessing
step. Zhou et al. [15] proposed a neural network model, PI-Unet, for iris segmentation to
segment heterogeneous iris images. Wang et al. [16] put forward a deep-learning-based
iris segmentation method, IrisParseNet. A multi-task, joint approach was adopted to learn
iris features in order to solve the noise problem of iris images. Li et al. [17] proposed a
neural network, IRUNet, for robust iris segmentation in a non-cooperative environment
to locate the inner and outer iris boundaries, respectively. You et al. [18] proposed an
iris segmentation method, MFFIris-Unet, for heterogeneous noise, distinguishing noises
and iris targets. In summary, the iris segmentation algorithms based on deep learning
improve the shortcomings of the traditional iris segmentation algorithms to a certain
extent and enhance segmentation accuracy. However, the current deep-learning-based
iris segmentation network models incur a high cost in terms of a large parameter search
space and a long segmentation time, have requirements for hardware devices, and perform
poorly in multi-source heterogeneous iris segmentation.

Targeting these problems and motivated by the above observations, we propose a
precise and fast segmentation network model, PFSegIris, for multi-source heterogeneous
iris images that can accurately segment iris regions of different sizes; weaken the influence
of different spectra and eyelid, eyelash occlusion noises; and enhance the discriminative
ability of iris region pixels, thereby, having a better universality for iris images collected
by different devices. First, the iris feature extraction module designed in this paper was
embedded in each layer of PFSegIris to extract rich iris information, in which convolution
kernels of different sizes obtain the information of iris regions of different sizes, reducing
the amount of parameters and meanwhile taking accuracy into account. Then, an efficient
parallel position and channel attention mechanism [19] was used, once in the middle, to
focus on the iris region pixels of small targets at different spectra. Finally, a skip connection
was added to make details such as edge features more precise. Images from one near-
infrared iris database, JLU-6.0, and two visible iris databases, CASIA-Iris-Lamp-v4 and
MICHE-I, were mixed for training. Several experiments were carried out for testing on four
near-infrared iris databases, JLU-6.0 [20], JLU-7.0 [20], CASIA-Iris-Interval-v4 [21], and
Mmu2 [22], and three visible iris databases, CASIA-Iris-Lamp-v4 [21], MICHE-I [23,24],
and UBIRIS.V2 [25–27]. The test results show that the iris segmentation algorithm proposed
can realize fast and precise segmentation for multi-source heterogeneous iris images.

Our main contributions can be summarized as follows:

1. Different from traditional methods and other iris segmentation algorithms based
on deep learning, a more precise segmentation algorithm, PFSegIris, was designed
to segment multi-source heterogeneous irises without any preprocessing or post-
processing. We proved that accurate iris segmentation can be realized for images
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with heterogeneous spectra (visible and near-infrared), different iris region sizes, and
uneven quality.

2. While ensuring accuracy, PFSegIris is lightweight, significantly reducing the number
of parameters, storage space, and calculations in comparison with other methods, and
the average prediction time on seven heterogeneous databases was less than 0.10 s,
which is a fast iris segmentation algorithm. In addition, the algorithm proposed can
be applied to devices with low computing performance and storage capacity.

Furthermore, the remainder of this paper is organized as follows. Section 2 presents
the proposed PFSegIris structure in detail. Experimental results and comparisons are
described in Section 3. Finally, Section 4 is the conclusion.

2. Methods

The overview of the proposed PFSegIris is shown in Figure 1. The overall process was
as follows:

1. An original iris image was directly input to the network model without any prepro-
cessing. The encoder downsampled the image until it could be represented by its tiny
features, which can fully constitute iris information of various sizes.

2. The parallel position–channel attention mechanism was used to enhance the feature
representation of iris region and suppress the influence of noise on iris segmentation.

3. The decoder upsampled the iris image to its original dimensions and predicted the
pixels of the iris region and the non-iris region.
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Figure 1. Overview of PFSegIris.

2.1. Encoder

The function of an encoder is to extract information about the location, shape, and
size of iris regions in multi-source heterogeneous iris images. Only when the encoder is
able to extract accurate and detailed iris features will the iris segmentation results be good.
Therefore, designing a suitable encoder for iris segmentation is of great importance to the
network model.

The encoder designed in this paper included four blocks, and each block included two
different iris feature extraction modules: iris-feature module1 and iris-feature module2,
which are shown in Figure 2a,b, respectively. The iris-feature modules include four layers:
a mixed depthwise convolution, a pointwise convolution, a pointwise convolution, and a
depthwise convolution, in which no activation function was added after the second and
the fourth layers.

Depthwise convolutions with kernels of different sizes encode the high-dimensional
features of the iris image, generating rich representations, which is superior to the tradi-
tional depthwise convolution suffering from the limitations of a single kernel size [28]. The
3 × 3 convolution kernels have a strong ability to perceive image details and can fully per-
ceive the iris in a small area, while the 5 × 5 convolution kernels have a larger receptive field
and can capture iris information in a larger area. Two pointwise convolutions were used to
encode information between channels, with channel reduction followed by expansion. The
depthwise convolution at the end can learn more abundant iris spatial information and,
thereby, exhibits better segmentation performance. In order to obtain more information
from the bottom layers and promote the propagation of gradient information cross layers,
shortcuts were used to connect high-dimensional representations with a large number of
channels and help the network avoid degradation as the depth increases. Table 1 shows
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the structure details of the iris-feature module. The structure of the encoder was able to
remarkably reduce the number of parameters and calculations of the model while taking
the segmentation accuracy into account, which greatly reduced the computation cost.
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Table 1. The structure details of the iris-feature modules. t: channel reduction factor; s: stride; C:
number of input channels; C’: number of output channels.

Input Dimension Operator Type Output Dimension

H × W × C
Dwise 3 × 3 Add,

BatchNorm,
Relu6

H × W × C
Dwise 5 × 5

H × W × C Conv 1 × 1, BatchNorm, Linear H × W × C
t

H × W × C
t Conv 1 × 1, BatchNorm, Relu6 H × W × C’

H × W × C’ Dwise 3 × 3, stride = s, BatchNorm, Linear H
s × W

s × C’

2.2. Parallel Dual Attention Mechanism

There are always two problems in segmentation for a multi-source heterogeneous iris:

1. due to the influence of different factors such as spectra and noises, the prediction
results of some pixels are likely to be affected; and

2. the sizes of the iris regions collected by different devices differ greatly, but the features
of different scales should be treated equally.

PFSegIris makes further improvement on segmentation effects by adaptively inte-
grating similar features at any scale from a global view through an efficient parallel dual
attention mechanism. The parallel dual attention module consisted of a position attention
module and a channel attention module, which assigned weights to the importance of infor-
mation in both position and channel dimensions. The position attention module was used
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to learn the spatial dependence of features, while the channel attention module was used
to learn the internal correlation between channels. This form of dual attention improved
the discrimination of pixels in small iris regions, suppressed the interference of irrelevant
information such as spectra and noises, and helped reduce gradient disappearance while
improving the capability and efficiency of iris feature representation.

2.2.1. Position Attention Module (PAM)

The position attention module is able to encode broader contextual information into
local features so as to enhance the representation ability of iris features. Figure 3 shows the
structure of the position attention module. The position attention module was calculated
according to Equations (1) and (2).

sji =
exp

(
Bi · Cj

)
N
∑

i=1
exp

(
Bi · Cj

) (1)

Ej = α
N

∑
i=1

(
sjiDi

)
+ Aj (2)

where A is the input of the module, which is fed into three convolution layers to generate
three new feature maps B, C, and D, with the same dimension C × H × W. Then we
reshaped B and C to dimension C × N, N = H × W. After that we performed a matrix
multiplication between the transpose of B and C to obtain s with dimensions N × N, and
applied a SoftMax operation. sji is the matrix element of the jth row and the ith column,
representing the impact of the ith position on the jth position. D was reshaped to dimension
C × N. We performed a matrix multiplication between D and s, reshaping the result to the
dimensions C × H × W. A sum operation was added with the feature map A to get the
output E, where α is a scale parameter, initialized as 0 and learning to assign more weight
gradually in the training process [29].
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It can be seen from Equations (1) and (2) that the resultant feature at each position was
the weighted sum of features from all positions and original features. Therefore, the PAM
had a global view of iris images and selectively fused the contexts based on the spatial
attention maps. Similar semantic features were integrated and benefited each other, which
promotes intra-class feature compactness and semantic consistency.

2.2.2. Channel Attention Module (CAM)

Each channel map of high-level iris features can be viewed as a response to a specific
class, and different semantic responses are interrelated. By taking advantage of the interde-
pendencies between channel maps, the interdependent feature maps can be enhanced, and
the semantic-specific feature representation can be improved. Figure 4 shows the structure
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of the channel attention module. The channel attention module was calculated according
to Equations (3) and (4).

xji =
exp

(
Ai · Aj

)
C
∑

i=1
exp

(
Ai · Aj

) (3)

Ej = β
C

∑
i=1

(
xji Ai

)
+ Aj (4)
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The difference from the PAM was that the calculation started directly on the original
features so that the relationship between different channel maps could be maintained.
The channel attention map dimension was obtained as C × C after applying a SoftMax
layer. β was also a scale parameter, initialized to 0, and the optimal utilization degree was
sought continuously with training. Equations (3) and (4) show that the output feature of
each channel was the weighted data of all channel features and original features, which
established the semantic dependencies between feature maps and helped to improve the
distinguishability of iris features.

2.3. Decoder

The decoder’s function is to convert the multi-source heterogeneous iris feature in-
formation extracted by the encoder into iris semantic information. The decoder performs
operations such as upsampling and convolution on the output feature map of the encoder
and finally classifies each pixel on the iris image using functions such as SoftMax in order
to distinguish pixels in the iris region from those in the non-iris region. Three kinds of
upsampling methods are commonly used in decoders for semantic segmentation, unpool-
ing, interpolation, and transposed convolution. Unpooling is a non-linear upsampling
method introduced in SegNet, which corresponds to the maxpooling operation used in
the encoder for recording the location of the maximum value. Although the calculation
time is reduced, a certain amount of memory space is occupied when storing the location
information. Interpolation can reduce the amount of computation, but at the same time, the
accuracy of segmentation decreases. Since the parameters in the transposed convolution
can be learned, the number of parameters and the amount of computation will increase to
a certain extent, but the segmentation effect will be more accurate.

Our decoder adopts four transposed convolution operations, which corresponds to the
depthwise convolutions with stride of 2 used in the encoder four times for downsampling.
The transposed convolution operation can improve iris segmentation accuracy, and it was
combined with the structure of iris-feature module2. Finally, only one skip connection was
used to fuse the low-level features to enrich the detailed information, further improving
the iris edge segmentation result.

The network structure of PFSegIris is shown in Figure 5. Table 2 presents the network
structure descriptions of PFSegIris.



Algorithms 2021, 14, 261 7 of 20

Algorithms 2021, 14, 261 7 of 20 
 

Our decoder adopts four transposed convolution operations, which corresponds to 

the depthwise convolutions with stride of 2 used in the encoder four times for downsam-

pling. The transposed convolution operation can improve iris segmentation accuracy, and 

it was combined with the structure of iris-feature module2. Finally, only one skip connec-

tion was used to fuse the low-level features to enrich the detailed information, further 

improving the iris edge segmentation result.  

The network structure of PFSegIris is shown in Figure 5. Table 2 presents the network 

structure descriptions of PFSegIris.  

 

 

Figure 5. The network structure of PFSegIris. 

2.4. Positioning of Iris Inner and Outer Circles 

The positioning process for the inner and outer circles of the iris used the mask im-

ages output from the proposed PFSegIris, which accurately divided the effective region 

of iris and contained the position and radius information for the iris and pupil. In this 

paper, the contour detection method [30] was used to localize the inner and outer circles 

of the iris, and the coordinate and radius of the iris and pupil area were calculated. The 

difference between the localization algorithm in this paper and other iris localization al-

gorithms is that the detection of the inner and outer circles was performed directly on the 

binary iris mask images rather than on original iris images, avoiding the interference of 

eyelashes, eyelids, and lighting. The iris mask localization image is shown in Figure 6a, 

and its corresponding original iris localization image is shown in Figure 6b. 

  
(a) (b) 

Figure 5. The network structure of PFSegIris.

Table 2. Network structure descriptions of PFSegIris. The input image dimension of 480 × 640 × 3
are taken as an example.

Input
Dimension Operator Type t Stride Output

Dimension

480 × 640 × 3 Iris-feature module1 2 2 240 × 320 × 64
240 × 320 × 64 Iris-feature module2 6 1 240 × 320 × 64
240 × 320 × 64 Iris-feature module1 6 2 120 × 160 × 128

120 × 160 × 128 Iris-feature module2 6 1 120 × 160 × 128
120 × 160 × 128 Iris-feature module1 6 2 60 × 80 × 256

60 × 80 × 256 Iris-feature module2 6 1 60 × 80 × 256
60 × 80 × 256 Iris-feature module1 6 2 30 × 40 × 512
30 × 40 × 512 Iris-feature module2 6 1 30 × 40 × 512
30 × 40 × 512 PAM, CAM 30 × 40 × 512
30 × 40 × 512 Add 30 × 40 × 512
30 × 40 × 512 Transposed Conv 2 60 × 80 × 256
60 × 80 × 256 Iris-feature module2 6 1 60 × 80 × 256
60 × 80 × 256 Transposed Conv 2 120 × 160 × 128

120 × 160 × 128 Iris-feature module2 6 1 120 × 160 × 128
120 × 160 × 128 Transposed Conv 2 240 × 320 × 64
240 × 320 × 64 Iris-feature module2 6 1 240 × 320 × 64
240 × 320 × 64 Transposed Conv 2 480 × 640 × 1
480 × 640 × 1 Iris-feature module2 6 1 480 × 640 × 1
480 × 640 × 1 Conv 1 × 1 1 480 × 640 × 1
480 × 640 × 1 Add 480 × 640 × 1
480 × 640 × 1 BN + Sigmoid 480 × 640 × 1

2.4. Positioning of Iris Inner and Outer Circles

The positioning process for the inner and outer circles of the iris used the mask images
output from the proposed PFSegIris, which accurately divided the effective region of iris
and contained the position and radius information for the iris and pupil. In this paper, the
contour detection method [30] was used to localize the inner and outer circles of the iris,
and the coordinate and radius of the iris and pupil area were calculated. The difference
between the localization algorithm in this paper and other iris localization algorithms is
that the detection of the inner and outer circles was performed directly on the binary iris
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mask images rather than on original iris images, avoiding the interference of eyelashes,
eyelids, and lighting. The iris mask localization image is shown in Figure 6a, and its
corresponding original iris localization image is shown in Figure 6b.
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3. Experiments and Analysis
3.1. Experimental Details

The proposed multi-source heterogeneous iris fast segmentation network, PFSegIris,
was trained and tested using the TensorFlow 2.0 deep learning framework. We used an
NVIDIA GTX 1080Ti GPU for training, and we trained the PFSegIris for 40 epochs. The
mini-batch size was 4. Training was performed from scratch with original images without
any pre-trained model. The optimizer was SGD with the initial learning rate of 0.01 and
0.9 momentum, and the standard weight decay was set to 0.0005.

3.2. Iris Datasets and Data Augmentation

A total of seven different iris datasets were used in the experiments, four of which
were taken in near-infrared and three in visible light, containing images of iris regions of
different sizes under various shooting conditions. In these seven datasets, images of the
left and right irises from the same subject were classified into two classes, which meant that
the left and right irises of the same subject could be randomly used with equal probability.
The samples of seven iris datasets are shown in Figure 7. The use of seven iris datasets is
described below.

1. The JLU-6.0 iris dataset is characterized by large iris regions with various quality
iris images, taken at close range and in near-infrared light. We selected 100 classes
for the experiments. After data augmentation, the total number of images used was
10,006, of which the training set contained 7004 images, the validation set contained
2001 images, and the test set contained 1001 images.

2. The JLU-7.0 iris dataset has smaller iris regions compared with JLU-6.0 iris dataset
and also has various quality iris images taken at close range and in near-infrared light.
In all, 78 classes were selected for experiments, and after data augmentation, the total
number of images was 986 for the test set entirely.

3. The iris images from the CASIA-Iris-Interval-v4 iris dataset are of high quality, with
detailed features of the iris clearly visible, taken at close range and in near-infrared
light. Overall, 120 classes were selected. A total number of 960 images were used
after augmentation, all of which were used for testing.

4. The CASIA-Iris-Lamp-v4 iris dataset intentionally introduced ambient lighting varia-
tions, acquiring iris images with non-linear deformation. Since most of irises are from
Orientals, the iris regions are heavily obscured by the upper and lower eyelids and
eyelashes. Images were taken at close range and in visible light. We chose 120 classes
for experiments. There were totally 9600 images after data augmentation, of which
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the training set contained 6720 images, the validation set contained 1920 images, and
the test set contained 960 images.

5. The UBIRIS.V2 iris dataset introduced more noises such as defocus blur, contact lens
occlusion, and hair occlusion, taken at long distance and in visible light. From this
dataset, 100 classes were selected. After data augmentation, 1000 images were used
for the test set.

6. The main feature of the MICHE-I iris dataset is that it was acquired by mobile devices,
containing more realistic noises. Most of images were obtained under unconstrained
conditions, closer to realistic situations. We used 75 classes and 9360 images totally af-
ter augmentation. The training set contained 6552 images, the validation set contained
1872 images, and the test set contained 936 images.

7. The Mmu2 iris dataset has iris images from people of different races and ages in Asia,
the Middle East, Africa, and Europe; with pupil spots, hair, eyelashes, eyebrows, and
other noises; taken at close range and in near-infrared light. After augmentation,
974 iris images were all used for testing with 100 classes.

In order to avoid overfitting of the proposed PFSegIris and improve the generalization
ability of the model, we performed data augmentation on the iris datasets used for exper-
iments. Targeting the accurate segmentation of multi-source heterogeneous iris images
and considering the actual application scenarios of iris recognition, the following data
augmentation methods were designed and used.

1. Randomly flip horizontally with the probability of 0.5.
2. Randomly rotate within a certain angle with the probability of 0.8. The rotation angle

we used was a maximum of 30 degrees to the left and right.
3. Randomly resize with the probability of 0.8. Four different scales of 0.5, 0.75, 1.25,

and 1.5 times of the original images were used.
4. Randomly enhance the brightness and contrast with the probability of 0.5. The values

that define the minimum and maximum adjustment of image brightness were 0.5 and
1.5. The values that define the minimum and maximum adjustment of image contrast
were 0.5 and 1.
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3.3. Evaluation Indexes

In order to evaluate the effectiveness of the proposed algorithm, the evaluation in-
dexes [31] used in the experiments are described below.

1. mIoU (mean Intersection over Union) is a commonly used performance index in
semantic segmentation, which is the average of the ratio of the intersection and union
of the two sets of real and predicted values. The value of mIoU is in the range of [0, 1].
The closer the value is to 1, the higher the accuracy of segmentation is. mIoU was
calculated using Equation (5).

mIoU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(5)

where pii denotes the pixel whose real pixel is i predicted to be i, and pij denotes the
pixel whose real pixel is i predicted to be j. k + 1 is the number of classes.

2. mPA (mean Pixel Accuracy) is a simple promotion of PA (Pixel Accuracy), which
calculates the proportion of correctly classified pixels in each class and averages it
over all classes. The value of mPA is in the range of [0, 1]. The closer the value is to 1,
the higher the accuracy of segmentation is. mPA was calculated using Equation (6).

mPA = 1
k+1

k
∑

i=0

pii
k
∑

j=0
pij

(6)
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where pii denotes the pixel whose real pixel is i predicted to be i, and pij denotes the
pixel whose real pixel is i predicted to be j. k + 1 is the number of classes.

3. Precision and Recall are a pair of contradictory measures, and F1-score is the harmonic
average of the two. The value of F1-score is in the range of [0, 1]. The closer the value
is to 1, the higher the accuracy of segmentation is. F1-score was calculated using
Equation (7).

F1 − score = 2 · precision · recall
precision + recall

(7)

4. Time complexity:

• FLOPs is the abbreviation of floating point operations. A smaller value of FLOPs
indicates that the network model is less computational intensive.

• Average Time is the average time to predict an iris mask image. The smaller the
value of Average Time is, the better performance the practical application has.

5. Space complexity:

• Params is the total number of weight parameters of all parameter layers in the
network model. The smaller the value of Params is, the smaller the number of
parameters of the network is.

• Storage Space is the storage space of the network model. The smaller the Storage
Space value is, the better the practical application of the model is.

3.4. Experimental Results and Analysis
3.4.1. Mixed Iris Dataset for Training and Testing

In this experiment, the training set and validation set iris images of the three datasets
JLU-6.0, CASIA-Iris-Lamp-v4, and MICHE-I were selected and mixed to form a mixed iris
training set and validation set. Then, training, validation, and testing were performed.
Figure 8 shows the loss curves of the proposed PFSegIris on the mixed iris training set
and validation set. Figure 9 shows the accuracy curves of PFSegIris on the mixed iris
training set and validation set. Figure 10 shows the iris segmentation results of PFSegIris
on the JLU-6.0, CASIA-Iris-Lamp-v4, and MICHE-I test sets, respectively. Table 3 gives the
evaluation indexes of PFSegIris on the JLU-6.0, CASIA-Iris-Lamp-v4, and MICHE-I test
sets, respectively.
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Figure 10. The segmentation results of PFSegIris on the JLU-6.0, CASIA-Iris-Lamp-v4, and MICHE-I
test sets, respectively: (a) original images; (b) ground truth; (c) segmentation results; (d) merged images.

Table 3. The evaluation indexes of PFSegIris on the JLU-6.0, CASIA-Iris-Lamp-v4, and MICHE-I test
sets, respectively.

Dataset mIoU/% mPA/% F1-Score/% Average Time/s

JLU-6.0 97.38 99.33 98.68 0.12
CASIA-Lamp 97.15 98.97 97.91 0.10

MICHE-I 96.24 97.11 97.13 0.06

Conclusions can be obtained as follows after the analysis of Figures 8–10 and Table 3:

1. The loss and accuracy curves converged fast with increasing epochs in the process of
training and validation, and the curves were stable without oscillations, indicating
that the model did not overfit, which avoids the emergence of complex models.

2. PFSegIris performed well on all three kinds of heterogeneous iris images and handled
the details of small targets well. It performed best on the JLU-6.0 iris dataset. The
main reason was that the JLU-6.0 dataset has high-quality near-infrared images with
large iris area, while the other two are visible-light iris images with more noise.

3. The average prediction times of the three heterogeneous iris images were all short.
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3.4.2. Cross-Dataset Evaluation of PFSegIris

To further verify that the iris segmentation algorithm designed in the paper has
universality and fast segmentation performance for multi-source heterogeneous iris images,
the model trained on a mixed iris dataset in Section 3.4.1 was tested directly on the four
datasets JLU-7.0, CASIA-Iris-Interval-v4, UBIRIS.V2, and Mmu2, respectively. Figure 11
shows the cross-dataset segmentation results of PFSegIris on the four datasets JLU-7.0,
CASIA-Iris-Interval-v4, UBIRIS.V2, and Mmu2, respectively. Table 4 shows the cross-
dataset evaluation indexes on the four datasets.
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Figure 11. The cross-dataset segmentation results of PFSegIris on the JLU-7.0, CASIA-Iris-Interval-v4,
UBIRIS.V2, and Mmu2 iris datasets, respectively: (a) original images; (b) ground truth; (c) segmenta-
tion results; (d) merged images.

Table 4. The cross-dataset evaluation indexes of PFSegIris on the JLU-7.0, CASIA-Iris-Interval-v4,
UBIRIS.V2, and Mmu2 iris datasets, respectively.

Dataset mIoU/% mPA/% F1-Score/% Average Time/s

JLU-7.0 97.06 98.56 97.68 0.11
CASIA-Interval 98.27 99.40 99.13 0.10

UBIRIS.V2 96.69 97.30 97.29 0.09
Mmu2 96.82 97.62 97.47 0.09

Conclusions can be obtained as follows after the analysis of Figure 11 and Table 4:

1. The test results on four cross-datasets were still good, indicating that PFSegIris had
learned the real iris features, had a certain migration ability and generalization ability,
and had universality for multi-source heterogeneous iris image segmentation.

2. Among the four heterogeneous datasets, the effect of the CASIA-Iris-Interval-v4 was
remarkably better than that of the other three datasets. The reason was that the images
from CASIA-Iris-Interval-v4 were of high quality in near-infrared light, with large iris
regions and almost no noise interference. Iris images from UBIRIS.V2 had more noise
and therefore showed less generalization ability.

3. Fast segmentation was still realized on four cross-dataset iris images.
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3.4.3. Comparison with Existing Segmentation Algorithms

In this experiment, deep-learning-based algorithms FCN-8s [11], U-Net [13], FRED-
Net [14], PI-Unet [15], and MFFIris-Unet [18] were each selected to be trained and tested
on multi-source heterogeneous iris datasets. The test results were compared with PFSegIris
on several evaluation indexes. Four datasets were selected for the experiment, which
were JLU-6.0, CASIA-Iris-Lamp-v4, UBIRIS.V2, and MICHE-I. Table 5 gives the evaluation
indexes of different algorithms on four iris datasets. Table 6 gives the comparison of
different algorithms in terms of Params, Storage Space, and FLOPs.

Table 5. The evaluation indexes of different algorithms on four iris datasets.

Method Dataset mIoU/% F1-Score/% Average Time/s

FCN-8s

JLU-6.0 85.35 92.16 0.29
CASIA-Lamp 83.24 90.73 0.28

UBIRIS.V2 77.72 86.85 0.15
MICHE-I 77.29 87.67 0.19

U-Net

JLU-6.0 89.01 93.98 0.96
CASIA-Lamp 87.45 92.04 0.92

UBIRIS.V2 82.21 91.77 0.61
MICHE-I 81.54 90.25 0.58

FRED-Net

JLU-6.0 94.08 95.78 0.34
CASIA-Lamp 92.50 94.63 0.31

UBIRIS.V2 91.89 93.84 0.28
MICHE-I 91.03 93.15 0.25

PI-Unet

JLU-6.0 95.58 97.03 0.21
CASIA-Lamp 94.35 96.68 0.18

UBIRIS.V2 92.33 95.52 0.27
MICHE-I 93.67 94.26 0.35

MFFIris-Unet

JLU-6.0 96.17 97.56 0.15
CASIA-Lamp 95.76 97.28 0.12

UBIRIS.V2 95.32 96.62 0.11
MICHE-I 94.75 96.59 0.09

PFSegIris

JLU-6.0 97.38 98.68 0.12
CASIA-Lamp 97.15 97.91 0.10

UBIRIS.V2 96.69 97.29 0.09
MICHE-I 96.24 97.13 0.06

Table 6. Comparison of different algorithms in terms of Params, Storage Space, and FLOPs.

Method Params/M Storage Space/GB FLOPs/G

FCN-8s 134.27 0.500 83.42
U-Net 31.03 0.116 62.06

FRED-Net 9.7 0.036 19.5
PI-Unet 2.96 0.011 1.60

MFFIris-Unet 1.95 0.007 0.74
PFSegIris 1.86 0.007 0.65

Conclusions can be obtained as follows after the analysis of Tables 5 and 6:

1. Compared with other methods, PFSegIris achieved higher segmentation accuracy on
multi-source heterogeneous iris images, with mIoU reaching 97.38%, 97.15%, 96.69%,
and 96.24% and F1-score reaching 98.68%, 97.71%, 97.29%, and 97.13% on four iris
datasets of JLU-6.0, CASIA-Iris-Lamp-v4, UBIRIS.V2, and MICHE-I, respectively,
further verifying the universal applicability of the algorithm proposed for multi-
source heterogeneous iris segmentation.
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2. Compared with other network models, PFSegIris had a faster segmentation speed on
multi-source heterogeneous iris images. It is an algorithm that can quickly segment
multi-source heterogeneous iris.

3. Compared with the classic semantic segmentation methods and the latest lightweight
iris segmentation methods, the proposed algorithm has fewer parameters, less storage
space, and less computation with obvious application advantages.

3.4.4. Ablation Study

To verify the effectiveness of each component of the proposed algorithm in improving
the performance of iris segmentation, four different networks were designed for the ablation
study. The baseline network was the network structure without a parallel dual attention
mechanism. Two different networks were designed by adding the position attention
module and the channel attention module, respectively, to the baseline network. The
evaluation indexes of the four networks were compared on four heterogeneous iris datasets,
and the results are shown in Table 7. Figure 12 shows the test results of the baseline network
and the PFSegIris on the four datasets.

Table 7. The evaluation indexes of different networks on four iris datasets.

Network Dataset mIoU/% F1-Score/% Average Time/s

Baseline

JLU-6.0 96.42 97.78 0.24
CASIA-Lamp 96.27 96.83 0.21

UBIRIS.V2 95.80 96.47 0.19
MICHE-I 95.41 96.39 0.11

Baseline + PAM

JLU-6.0 96.85 98.03 0.16
CASIA-Lamp 96.63 97.14 0.14

UBIRIS.V2 96.29 96.90 0.12
MICHE-I 95.85 96.72 0.08

Baseline + CAM

JLU-6.0 97.03 98.32 0.14
CASIA-Lamp 96.85 97.55 0.13

UBIRIS.V2 96.41 97.01 0.11
MICHE-I 96.03 96.95 0.07

PFSegIris

JLU-6.0 97.38 98.68 0.12
CASIA-Lamp 97.15 97.91 0.10

UBIRIS.V2 96.69 97.29 0.09
MICHE-I 96.24 97.13 0.06

Conclusions can be obtained as follows after the analysis of Table 7 and Figure 12:

1. After adding the attention mechanism to the baseline network, the average time to
predict heterogeneous iris images was greatly reduced.

2. With the attention mechanism, the model had higher accuracy than baseline segmen-
tation, and both mIoU and F1-score were improved. The channel attention module
had a stronger boosting performance than the position attention module.

3. It can be seen from the subjective vision that the baseline did not work well for iris
segmentation with more noises and small targets, while our algorithm performed
well and accurately segmented small iris regions on heterogeneous iris images, avoid-
ing the interference of noise such as lighting. Thus, this experiment illustrates the
effectiveness of the parallel dual attention mechanism combination to improve the
segmentation precision of multi-source heterogeneous iris images.
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Figure 12. The segmentation results predicted by baseline and PFSegIris on four iris datasets:
(a) original images; (b) ground truth; (c) segmentation results of baseline; (d) segmentation results
of PFSegIris.

3.4.5. Comparison with Traditional Iris Positioning Algorithm

In order to further verify the accuracy of the algorithm proposed for multi-source
heterogeneous iris segmentation, a comparative experiment was carried out with the widely
used method OSIRIS V4.1 [32]. The contour detection method was performed on the mask
images of the four heterogeneous iris test sets and positioning images of the iris area were
obtained. The number of images with wrong position area was calculated. The original iris
images of four heterogeneous iris test sets were input into OSIRIS V4.1, respectively, and
the number of images with wrong position area was calculated. In this experiment, the
three iris datasets, MICHE-I, UBIRIS.V2, and Mmu2, were not used because OSIRIS V4.1 is
not applicable to iris images containing lots of realistic noises and taken from non-Asians
As the positioning effect is very poor and there is no comparability. The experimental
results are shown in Table 8. The comparison of positioning results of PFSegIris and OSIRIS
V4.1 for four heterogeneous iris test sets is shown in Figure 13.

Table 8. Comparison of experimental results.

Dataset Method Error Number Error Rate

JLU-6.0
PFSegIris 23 0.023

OSIRIS V4.1 285 0.285

JLU-7.0
PFSegIris 33 0.033

OSIRIS V4.1 382 0.387

CASIA-Interval
PFSegIris 16 0.017

OSIRIS V4.1 127 0.132

CASIA-Lamp PFSegIris 29 0.030
OSIRIS V4.1 368 0.383
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inal images; (b) mask positioning images; (c) PFSegIris positioning images; (d) OSIRIS V4.1 position-
ing images.

We can see from Table 8 and Figure 13 that the proposed PFSegIris can divide the
iris regions more accurately than the traditional positioning method. This is because the
segmentation algorithm in this paper can avoid the problems of noise interference caused
by eyelashes, eyelids, and lighting in the traditional method.

3.4.6. Qualitative Comparison of Extreme Images

Since most of the evaluation indexes above are of statistical significance, it is hard to
evaluate the robustness of the algorithm proposed for extremely difficult cases. Therefore,
we selected some representative hard samples from datasets and performed a qualitative
comparison of the algorithms to obtain an objective and comprehensive evaluation.

In order to compare the performance of algorithms on hard samples, we randomly
selected five hard samples with specular reflection, eyelid occlusion, eyelash occlusion,
slanted eyes, and out-of-focus blur from the five different datasets JLU-7.0, CASIA-Iris-
Lamp-v4, UBIRIS.V2, MICHE-I, and Mmu2. The three algorithms with the best results in
Section 3.4.3 were used for comparison with the PFSegIris, which were MFFIris-Unet [18],
PI-Unet [15], and FRED-Net [14]. Figure 14 shows the comparison of test results of PFSegIris
and the other three algorithms on the five hard samples.

As can be seen from Figure 14, the proposed algorithm shows better segmentation
results than the other three segmentation algorithms on five hard samples. Since the near-
infrared images are less affected by ambient light, iris contours in these images are more
obvious compared with those in the visible-light images. The segmentation performance
of the proposed algorithm on the visible and near-infrared spectral iris images was more
balanced than in other algorithms, and the segmentation results were closer to the ground
truth with finer and smoother inner and outer iris edges. Therefore, it illustrates that
PFSegIris performs more robustly in the face of challenging and hard samples and can
identity the location of iris regions more accurately.
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Figure 14. Test results comparison of PFSegIris and other three algorithms on five hard samples from JLU-7.0, CASIA-Iris-
Lamp-v4, UBIRIS.V2, MICHE-I, and Mmu2, respectively: (a) original images; (b) ground truth; (c) segmentation results
of PFSegIris; (d) segmentation results of MFFIris-Unet; (e) segmentation results of PI-Unet; (f) segmentation results of
FRED-Net.

4. Conclusions

With respect to the problem that various iris segmentation methods work well for
distinct iris datasets and poorly for multi-source heterogeneous iris images, a precise and
fast segmentation algorithm, PFSegIris, was proposed for multi-source heterogeneous iris
images. The algorithm fully extracted the information of iris images using the lightweight
iris feature extraction module designed in this paper. The efficient parallel dual attention
module suppressed the influence of noise and other interference factors, and further
enhanced the discriminability of pixels in the iris region. A low-level skip connection
supplemented the edge feature information. Experimental results on seven heterogeneous
iris datasets from different sources showed that the proposed algorithm is superior in
precision and speed to existing deep-learning-based iris segmentation algorithms and
traditional positioning algorithms, with F1-score up to 99.13% and mIoU up to 98.27%. The
shortest time was 0.06 s. The Params, Storage Space, and FLOPs of PFSegIris were only
1.86 M, 0.007 GB, and 0.65 G.

The algorithm proposed in the paper is able to segment multi-source heterogeneous
iris quickly and precisely, providing sufficient and reliable feature information for the
subsequent recognition process, which is of good practical application value on low-
performance computing devices such as mobile terminals.
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