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Abstract: The current requirements of many manufacturing companies, such as the fashion, textile,
and clothing industries, involve the production of multiple products with different processing routes
and products with short life cycles, which prevents obtaining deterministic setup and processing
times. Likewise, several industries present restrictions when changing from one reference to another
in the production system, incurring variable and sequence-dependent setup times. Therefore, this
article aims to solve the flexible job shop scheduling problem (FJSSP) considering due windows,
sequence-dependent setup times, and uncertainty in processing and setup times. A genetic algorithm
is proposed to solve the FJSSP by integrating fuzzy logic to minimize the weighted penalties for
tardiness/earliness. The proposed algorithm is implemented in a real-world case study of a fabric
finishing production system, and it is compared with four heuristics adapted to the FJSSP such as
earliest due date, critical reason, shortest processing time, and Monte Carlo simulation. Results
show that the performance of the proposed algorithm provides efficient and satisfactory solutions
concerning the objective function and computing time since it overperforms (more than 30%) the
heuristics used as benchmarks.

Keywords: genetic algorithm; flexible job shop; production scheduling; uncertainty; fuzzy logic; time
windows; earliness/tardiness; sequence-dependent setup times

1. Introduction

The assignment and sequencing of jobs to production resources represent a complex
process in most manufacturing companies, even more in flexible job shop systems where
the production scheduling problem has been proved to be a nondeterministic polynomial
time-hard problem (NP-hard problem) [1,2], and for which optimal solution algorithms can-
not provide solutions in reasonable computational times, especially for large and complex
production plants. When considering the FJSSP, the concept of a set of machines in series is
replaced by a set of work centers, where each work center contains a set of parallel machines
that can have different processing times. In the FJSSP, each job follows a production route
and can be processed on any machine that makes up a work center [3]. Moreover, the FJ[SSP
requires a detailed discussion of the scheduling of orders importance from the point of due
dates [4], implying the consideration of objective functions related to tardiness and earli-
ness [5,6]. However, many FJSSP models proposed in the literature assume conditions far
from reality, ignoring the recirculation of jobs in work centers or machines and considering
certainty in all the parameters used to perform the production schedule.
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In addition, the studies considering parameter uncertainty do not include variables
such as setup times dependent on the operation sequence. In most scheduling models,
processing time and due dates represent uncertain variables [7-11], and some studies use
fuzzy logic theory to create a hybrid genetic algorithm to minimize makespan [12]. Further-
more, production scheduling problems optimizing earliness and tardiness have increased
in relevance in recent years due to the growing interest in just-in-time production [13].
In realistic production scheduling problems, jobs finish as close as possible to due dates
or within time-windows, due dates (due windows) since the early completion of jobs
generates additional production and storage costs and inventory obsolescence; while late
completion causes lost sales [5,14]. Therefore, optimal scheduling minimizing earliness
and tardiness penalties can improve the economic effects of firms.

On the other hand, the complexity of the FJSSP requires the use of techniques that
provide solutions in reasonable computational times to NP-hard problems. These solu-
tions come from artificial intelligence techniques, which have been active in planning and
scheduling for four decades [15]. Therefore, many heuristics and metaheuristics such
as genetic algorithms, honey bee optimization, artificial bee colony, ant colony optimiza-
tion, particle swarm optimization, simulated annealing, and hybrid approaches have been
proposed to solve the FJSSP [16]. Chaudhry and Khan [17] performed a review of tech-
niques addressing the FJSSP, highlighting ant colony optimization (ACO), artificial bee
colony (ABC), artificial immune system (AIS), evolutionary algorithms, greedy randomized
adaptive search procedure (GRASP), Integer/Linear programming, neighborhood search
(NS), particle swarm optimization (PSO), simulated annealing (SA), tabu search (TS), math-
ematical programming, deterministic heuristics, hybrid techniques, and miscellaneous
techniques. Evolutionary algorithms represent the most used techniques in the literature
to solve the FJSSP and cover a wide variety of techniques including Biogeography-based
optimization (BBO), Differential evolution (DE), Evolution strategy (ES), Gene expression
programming (GEP), Genetic Algorithms (GA), Genetic programming (GP), Harmony
Search (HS), Learning classifier system (LCS), Memetic Algorithms (MA), and Estima-
tion of distribution algorithm (EDA). These techniques are effective for minimizing the
maximum completion time of the jobs, better known as makespan [18], and they can also
assume other objectives, such as reducing delivery times, minimizing tardiness, minimizing
earliness, minimizing resource costs, minimizing flow time, and minimizing the number of
tardy jobs [15,17].

Within artificial intelligence techniques, genetic algorithms are usually efficient for
the optimization of complex systems, represent a good solver for combinatorial problems,
provide a wide range of solutions [19], and have been used to solve many problems
related to the FJSSP [20], becoming a powerful and successful technique for solving of NP-
Hard problems due to the logic of evolutionary principles [21,22]. The genetic algorithm
as an evolutionary algorithm has advantages as it is relatively easy to understand and
apply and presents fault tolerance [23]. However, although it has been proven that this
metaheuristic efficiently solves complex optimization problems, the parameter values must
prevent premature convergences and promote the finding of global solutions instead of
local solutions [24,25].

Liu, Yang, Xing, and Lu [26] presented a study considering a flexible job shop system,
fuzzy parameters, and time windows, introduced a multi-objective programming problem
with fuzzy time windows, and solved the problem through a multi-group genetic algorithm.
Similarly, Zhang, Collart-Dutilleul, and Mesghouni [27] developed a model that incorpo-
rates time windows, capacity, and space constraints and uses mixed integer programming
to limit cyclic activities. Shi, Zhang, and Li [26] use a rolling window rescheduling strategy
and dynamic scheduling for the FJSSP with fuzzy delivery time, considering a trapezoidal
delivery window to minimize energy consumption, maximum makespan, and consumer
dissatisfaction, and solving this problem with an immune genetic algorithm.

Other studies have added restrictions to the FJSSP models to adapt to realistic prob-
lems and seek to fulfill several objectives considering multi-objective uncertainty environ-
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ments [25,28]. In this sense, Jamrus et al. [29] propose a model where the processing time
can be exact or fuzzy depending on the availability of job data, and the FJSSP is solved
using a hybrid algorithm between a genetic algorithm and the particle swarm optimization
algorithm. In most of these models, the fuzzy variables receive triangular membership
functions due to the ease of their construction. Based on the abovementioned, this article
aims to address the FJSSP considering due-window and fuzzy setup times with triangular
membership functions to minimize the weighted penalties for tardiness/earliness through
a genetic algorithm.

The present study contributes in multiple ways: Firstly, it develops a methodology to
calculate the possibility of tardiness and earliness of a job, comparing the due-date time win-
dow with the fuzzy set of the completion time and using this result to calculate the penalty
of tardiness and earliness in the objective function. Secondly, the study adapts GA and
deterministic methods (heuristics and rules) for the specific assumptions of the proposed
FJSSP model. Thirdly, it presents a novel solution representation for each chromosome of
the GA in two ways, one to calculate the total penalty (objective function) and another for
the mutation and crossover operators to minimize the chance of infectable chromosomes,
reducing the use of repairing operators and the algorithm computing time. Fourthly, the
proposed algorithm solves a real-world case study in the textile sector, demonstrating the
algorithm’s applicability to industries with complex production systems.

2. FJSSP Description

Scheduling of job shop production is defined by four main research problems rep-
resented by Job Shop Scheduling Problem (JSSP), Flexible Job Shop Scheduling Problem
(FJSSP), Dynamic Job Shop Scheduling Problem (DJSSP), and Flow Shop Scheduling Prob-
lem (FSSP) [19]. The classical JSSP represents one of the most difficult workshop problems,
it assumes that there is no flexibility in the resources (including machines and tools) for
each operation of every job. The FJSSP is an extension of the classical job shop scheduling
problem allowing an operation to be processed by any machine from a given set [1]. The
FJSSP consists of assigning and sequencing 7 jobs in m work center, each work center
can have a different number of machines or resources, and each machine may process
more than one type of operation [30]. In the FJSSP, each job is formed by a sequence of
consecutive operations, each operation requires one machine, and each operation has to be
performed to complete the job. This problem covers two difficulties namely the machine
assignment problem (how to assign the operations on the machines) and the operation
sequencing problem (how to sequence the operations on the machines) [31]. The general
objective of the FJSSP is to improve the organization’s productivity while reducing pro-
duction consumption by switching over the selectable machine and taking full advantage
of the underutilized capacity, adjusting the processing workload on machines [32]. The
performance measures, restrictions, and characteristics the model must comply with must
be established to define the FJ[SSP model. The model proposed in this study is based on the
following assumptions:

e  All machines are available at the beginning of the scheduling horizon and can process
only one job simultaneously.

e No job can start an operation until the previously assigned has finished or until a
machine is available to perform that operation. Therefore, only one job operation can
be executed at a time.

e  Processing times are represented by fuzzy numbers and modeled by triangular mem-
bership functions.

e  Once an operation of a job has started on a machine, it will not be interrupted until it
finishes the total number of units of said job.

Staff is available to perform each operation.
Machine breakdown or downtime due to maintenance or repairs in the planning
horizon are not considered.

e  Setup times depend on the job sequence
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e  Setup times are represented by fuzzy numbers and modeled by triangular member-

ship functions.

e  Recirculation is allowed since a machine can perform several processes (not at the
same time), so a job can be processed several times on the same machine.

e A time window defines the expected completion time for each job (interval to deter-
mine whether a job is completed on time).

e  Machines in the same work center may have different processing times.

The mathematical model of the FJSSP is based on the study by Ortiz et al. [33] and
Demir and Isleyen [34], where the objective functions minimize the number of late jobs
and the Makes-pan, respectively. However, in these studies, the delivery dates are not
represented with time intervals but with exact dates, and they do not consider the time of
preparation depending on the sequence, for which we present adjustments to the mathe-
matical model. The indices, sets, data, variables, and mathematical model formulation to
optimize the FJSSP are as follows:

Indices
Ji Job index
h Job index
i Operation index
k Machine index
) Index of the positions in the sequencing
Parameters:
n Total number of jobs
m Total number of machines
Binary parameter to indicate whether operation 7 of the job j is
Ak performed on machine k
Pyj Processing time of operation i of the job j on machine k
Skjn Setup time in machine k if job j starts after completing job
M Very large number
dia Lower limit of the due window of job j
dip Upper limit of the due window of the job j
wj Weighting for job j
wT Weighting for tardiness
wg Weighting for earliness
Variables:
Binary variable to indicate whether operation 7 of job j on
Xijit machine k is sequenced in position
Viik Binary variable to assign operation j of job i on machine k
TMy Start time of machine k at position /
PS;; Total process time (includes setup time) of operation i of job j
TI; Start time of operation i of job j
G Completion time of job j
T; Tardiness of job j
E Earliness of job j
Model:
Z =Y Wi(T; Wr + E;WE) D
C] > TI,‘]‘ + PSij Vi, j 2)
Tj>Ci—dp V) ©)
Ej>dia—C; Vj 4)
Yi[(Puij + Skjn) X Vil = PSij Vi, jh (5)
TIij+PSij STIiJrlj Vi Vi=1,...,I-1 6)
TMk1+PSjj XXi]‘kl <TMp4y1 Vijk VIi=1,...,L-1 (7)

TMy < TI; (1 - Xij,d) XM Yijk I ®)
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TMkl S TMkl (1 — Xijkl) x M V i,j, k, l (9)
10)
11)

Vi < Axij Vi, k
iy Xim =1 Vkl

(

(
YiVig =1 Vij (12)
Y Xiju = VigVi,j k (13)
Tlj, PS; >0 Vi, (14)
TMy >0 Ykl (15)
Tj, E} 20 Vj (16)
Xijk € {0,1} Vi jk I (17)
Vi € {0,1} Vi jk (18)

Equation (1) minimizes the total weighted penalty of the jobs given by lateness and
promptness, where the earliness of a job is defined as the maximum between zero and
the difference between the lower limit of the due window and the completion time of
said job Ej = Max( 0, djs — C; ), and the tardiness of a job is defined as the maximum
between zero and the difference between the completion time and the upper limit of the
due window of said job Tj = Max (0, Cj —d; ). Although the proposed model deals
with two performance measures, these are represented in a single objective function (total
penalty) that relates them through weights, which allows lateness and promptness to be
assessed differently according to the decision-maker preferences. Constraint (2) calculates
the completion time of the operations of each job. Constraints (3) and (4) define respectively
the tardiness and earliness of each job based on the limits of the due dates. Constraint (5)
ensures that the total processing time of each job includes the machine processing time
and the setup time. Constraint (6) guarantees the compliance of precedence of operations.
Constraint (7) ensures that machines can perform one operation at a time. Constraints
(8) and (9) guarantee that any operation starts when the assigned machine is available,
and the previous operation is completed. Constraint (10) establishes the relationship
between the assigned machines and the operations assigned to those machines. Constraint
(11) guarantees that each operation of each job is assigned to a position on a machine.
Constraints (12) and (13) ensure that each operation is processed on the assigned machine
and position. Constraints (14)—(18) define the variable domains.

3. Genetic Algorithm and Fuzzy Logic for the FJSSP

No efficient algorithm provides an optimal solution in short computing times to a
combinatorial optimization problem such as the FJSSP, so it is necessary to use alternatives
to complex and analytical methods [10,17]. These models provide optimal solutions in
reasonable computational times only for small instances, which is infeasible for realistic
problems, so metaheuristics are suggested to find feasible solutions in reasonable computing
times [24]. Adaptive algorithms for production scheduling in fuzzy environments have
delivered good results and have provided excellent solutions; therefore, genetic algorithms
have become one of the most used metaheuristics to generate efficient and high-quality job
sequences in flexible job shop systems [20,21,29,35]. Thus, this study proposes a genetic
algorithm with fuzzy logic that follows the ones described in Figure 1 and detailed below.
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Input 1
Input 2

e O

¥

Select the best beta chromosomes using

Model input information the elitism operator

¥ ¥
L . Apply crossover and mutation
Generate initial population randomly PPy
operators
¥ ¥
For each alpha chromosome, calculate Use the repair mechanism for alpha
its respective beta chromosome chromosomes

L2

Assess the fitness of each beta
chromosome

Iterations = Maximum
iterations

Select best beta chromosome and

generate results report

T W O

Figure 1. Flowchart for the genetic algorithm.

Step 1. Enter the weight of each job j (W;), the due window of each job (d;4,d;p),
processing routes, available machines, processing times, sequence-dependent setup times,
weight of tardiness (wr) and earliness (wg). Enter the genetic algorithm parameters such as
Population (PB), Iterations (N), Elitism rate (ET), Crossover rate (PC), Mutation rate (MR).

Step 2. Generate the initial population randomly (number of chromosomes) based
on the parameter PB, then calculate the number of operations required to complete all the
scheduled jobs. In this step, PB chromosomes are randomly generated and are called alpha
chromosomes. Each alpha chromosome represents a solution to the proposed scheduling
problem; each gene has an input to assign a job randomly and establish the sequence to
perform the operations, and another input to store a random number between 0 and 1 to
assign the machine that performs the respective operation. A representation of an alpha
chromosome is shown below in Figure 2.

Genel Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 Gene9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17

3

1

3

5 4 4 2 2 1 2 2 3 5 1 1 5 4

0.66

093

0.31

080 [ 073 | 075 | 091 | 056 | 021 | 099 | 096 | 038 | 044 [ 041 | 0.80 | 0.06 | 0.10

Figure 2. Illustration of an alpha chromosome.

Step 3. Since the alpha chromosome is used to perform the crossover and mutation
operators, the beta chromosome facilitates the evaluation of the objective function (fitness
value). This chromosome representation enhances offspring feasibility, only requiring
the repair of chromosomes by the number of operations per job. The beta chromosomes
result from the alpha chromosomes by assigning in input 2 of each gene the machine that
performs the operation for the job assigned in input 1. The machine assignment shown in
Figure 3 compares the value stored in input 2 of the alpha chromosome with the probability
assigned to each machine enabled to perform the operation indicated in input 1. All
machines enabled to perform an operation receive the same selection probability. As an
example, Figure 4 indicates the sequencing of jobs corresponding to the beta chromosome
from Figure 3, where job 3 is shown to be assigned three operations, the first operation is
assigned to machine 2 (j3-O1), the second operation is assigned to machine 4 (j3-O;), and
the third operation is assigned to machine 7 (j3-O3).
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Input 1
Input 2

Genel Gene2 Gene3 Gene4 Gene5 Gene6 Gene7 Gene8 Gene9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17

3

1

3

5 4 4 2 2 1 2 2 3 5 1 1 5 4

M,

M;

M,

Mg M7 Mz M3 M5 M4 Mg Mz M7 Ml M5 MZ M4 M4

Figure 3. Illustration of a beta chromosome.

Machine Sequence
M j5-O2
M, j3-01 | j4-Oo j2-O4 | j1-O4
M; 71701 | j2-O4
My 73-02 1 j1-O2 | j5-O3 | j4-O3
Ms j2-O2
Ms j1-Os3
My j4-On j3-Os3
Mg j5-O1 j2-Os3

Figure 4. Sequencing of jobs from the beta chromosome.

Step 4. The fuzzy completion time q of each job j must be calculated to assess
the fitness of each beta chromosome. As shown in Equation (19), the completion time
for a selected gene is calculated as the start time of the operation (maximum between
the available time of machine i TM; and the cumulative completion time of job j up to
the evaluated gene CNJ ) plus the setup time in machine i SA;Z] and the processing time of
operation o of job j in machine i 1% The available time of machine i will be updated with
the completion time of job j that has been processed in this machine (TM; = éj). In the
proposed methodology, the fuzzy sets used have triangular membership functions such
that 5] = (C;"f , C]’-’wd C;Mp ) . The elements that make up the triangular fuzzy number are
shown in Figure 5, and these can be calculated following Equations (20)—(22).

6]- :max(a, TM)+13;,+STZJ (19)
i =max (Y, TM") + P + ALY (20)
Co? = max (CJ™, TM]™) + Piiot + A (21)
G =max (G, TM]"P) + PP + AL F (22)
Possibility
1
G
0 Time
- d sup
C_Lnf ijo C]

J

Figure 5. Triangular membership function for the completion time of job j.

Likewise, it is necessary to calculate the fuzzy tardiness and earliness of each job to
obtain the fitness of each chromosome. It requires comparing C; with the limits of the
due window (d} 4, djp). The fuzzy tardiness (T}) is determined by intercepting C; with the
tardiness interval (IT)) that starts at d;p and is not bounded by an upper value ( dig, +00).
The fuzzy earliness of each job j (E;) is determined by the intercept of C; with the earliness
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interval (/E;) that starts at zero and ends at d jA (0 ,d i A). Figure 6 illustrates the different
cases in which fuzzy delay and fuzzy promptness can be configured. Figure 6a shows
the first case where there is the possibility of completing job j early (earliness) or late
(tardiness), but there is also the possibility of completing job j within the due window
(on time and without penalties). Figure 6b shows the second case where job j cannot be
delivered early (earliness) or late (tardiness), assuming a 100% possibility that job j will
be completed within the due window despite considering uncertainty. Figure 6¢ shows
the third case where job j cannot be completed late (tardiness), but there is a possibility
that job j will be delivered early (earliness); however, when C;up < djy, there is a 100%
possibility that job j will be completed early. Figure 6d shows the fourth case where job j
cannot be delivered early (earliness), but there is a possibility that job j will be completed

late (tardiness); however, when C;nf > d]-B, there is a 100% possibility that job j will be
completed late.

Possibility Possibility
Em Lo | 15 .
1 1
Ej = 0 T=0
E g g
0 = Time 0 Time
C]mf djs dja ijf ot G dg
Possibility Possibility (b)
IE; 7 IE; 7
1 _ 1
=0
J F =
> g g
0 Time 0 - Time
ijf de C}_mad stup d]B de ijf ijﬂd ij stu.l?

(c) (d)

Figure 6. Cases of fuzzy tardiness and fuzzy earliness for each job j (a) tardiness or earliness;
(b) no tardiness or earliness; (c) earliness; (d) tardiness.

Consequently, in some cases, it cannot be assured with certainty that a job j will be
completed with earliness or tardiness, and in some cases, this possibility can be very high or
low. Thus, when calculating the total weighted penalty of a job j, the possibility of occurrence
of an advance P}IE or a delay P]-T will be considered. For this, Equation (23) describes the
membership function pc;(x) of the fuzzy completion time CNTj, Equations (24)—-(26) show
the centroid method to defuzzify the fuzzy earliness, and Equations (27)—(29) show the
centroid method to defuzzify the fuzzy tardiness and obtain a real number where E;-‘ and T]*
represent the defuzzification value of earliness and tardiness of job j, xpg;(x) and xprj(x)
represent the membership function of the fuzzy earliness and tardiness.

0 six < c;”f
X Ci”f . f
] . AN d
W szC]. <x< C}"o
pej(x) =9 9, (23)
G : ~mod sup
SUP ~mod siC! <x<C;
¢ —C]. ] ]
0 six > C]S.up

Ef = Jsp xpej(x)dx_ fop xpicj(x)dx (24)

Jsp mEj(x) Jsg mej(x)
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 Jspmei(x)dx [op pej(x)dx

PE = = 25
T g™ Jsxng () =
E; = (dja — E}) x PF (26)

. Jir xprj(x)dx fir xpcj(x)dx
TF = = 27
S bt Jar () @)
pr _ Jsriri(x)dx _ Jor pej(x)dx -
[ T £ R RET ey 2%
1) = (1 ~di) x 2] @)

Once the earliness and tardiness of job j (E; and Tj) are obtained, Equation (30) calcu-
lates the total weighted penalty of the beta chromosome 7 or fitness value, considering the
weight of earliness (WE), the weight of lateness (Wr), and the weighting of job j (W)).

Z, = Sy Wi(T; Wr + EjWe) (30)

Step 5. After evaluating the beta chromosomes, they are ordered from lowest to
highest according to their fitness value (total weighted penalty), and the best chromosomes
are selected to form part of the next generation using the elitism rate (ET x PB).

Step 6. The crossover operator completes the next generation by randomly selecting
two alpha chromosomes from the current population (parents), then determining with the
crossover probability (PC) whether the crossover operation is performed on the parents; or
two offspring are generated identically to the parents. In the case of applying the crossover
to the selected parents, a single crossing point is randomly chosen to divide each parent into
two crossing sections, which are exchanged to form two offspring, as shown in Figure 7.

Parent1
Section A Section B
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene §Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17
Input 1 3 1 3 5 4 4 2 2 1 2 2 3 5 1 1 5 4

Input 2 0.66093(031]080(073[075]091056]021] 099 [ 096 | 038 | 044 | 041 ( 0.80 | 0.06 | 0.10

Parent 2
Section A Section B
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene §Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17
Input 1 1 5 4 3 3 2 2 4 3 5 1 1 4 1 2 5 2

Input 2 0.1810.24]090]0.8310.83]034]021]|094|044| 047 | 036 | 024 | 023 | 067 | 051 | 0.39 | 043

Offspring 1
Section A - Parent 1 Section B - Parent 2
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene §Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17
Input 1 3 1 3 5 4 4 2 2 3 5 1 1 4 1 2 5 2

Input 2 0.66093(031]080(073[075]091|056]044| 047 [ 036 | 024 | 023 | 0.67 [ 051 | 039 | 043

Offspring 2
Section A - Parent 2 Section B - Parent 1
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene §Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17
Input 1 1 5 4 3 3 2 2 4 1 2 2 3 5 1 1 5 4

Input 2 0181024 (090]|083|083(034]021094]1021] 099 [ 096 | 038 | 044 | 041 ( 080 | 0.06 | 0.10

Figure 7. Crossover operator based on single crossing point.
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The mutation operator is applied after creating the offspring alphas, generating a
random number for each offspring. If this random number is less than the probability of
mutation MR, the mutation operation is performed using the swapping mutation method
(exchange mutation), where two randomly chosen genes are exchanged through a SWAP
movement [36,37] (see Figure 8).

Offspring 2

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17
Input 1 1 5 4 3 3 2 2 4 1 2 2 3 5 1 1 5 4
Input 2 0.18]1 0241090 0.83]10.83(0.34]0.21(0941] 0211 0.99 0.96 0.38 0.44 0.41 0.80 0.06 0.10

+ SWAP movement i)
Offspring 2 Mutated

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17

Input 1 1 5 4 3 1 2 2 4 1 2 2 3 5 3 1 5 4

Input 2 0.18]1 0241090083 (0.41|034|021]094])021| 099 | 096 | 038 | 044 | 0.83 | 0.80 | 0.06 | 0.10

Figure 8. Mutation operator based on SWAP movements.

Step 7. After applying the crossover or mutation operator, infeasible offspring may
be generated because one or more jobs do not have assigned the number of operations
they require, so a job j appears more or fewer times in the offspring than the number
of operations it must perform. As shown in Figure 9, the repair mechanism randomly
exchanges one of the remaining operations for a missing one.

Infeasible Offspring
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17
Input 1 3 1 3 5 3 4 2 2 1 2 2 3 5 1 1 5 4

Input 2 06610931031 080(073[075({091]056]021]| 099 | 096 [ 038 | 044 | 041 | 0.80 | 0.06 | 0.10

Jobj 1 2 3 4 5
Required operations
Assigned operations 4 4 4 2 3
Repaired Offspring

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 Gene 7 Gene 8 Gene 9 Gene 10 Gene 11 Gene 12 Gene 13 Gene 14 Gene 15 Gene 16 Gene 17

Input 1 3 1 3 5 4 4 2 2 1 2 2 3 5 1 1 5 4
Input 2 0.66]0931031)|080(073[075]091]056]021| 099 | 096 [ 038 | 044 | 041 [ 0.80 | 0.06 | 0.10

Figure 9. Repair mechanism.

Step 8. The algorithm returns to Step after creating offspring alpha from the crossover
and mutation operations to generate the respective beta chromosome. The fitness value is
calculated for each chromosome in the new generation using Step 4.

Step 9. After performing all the iterations N of the algorithm, the best beta chromosome
with the lowest total weighted penalty is selected as the best global solution. Then, the
corresponding Gantt chart is created to represent the production schedule.

In summary, the basic structure of the proposed GA for the FJSSP is presented below
in the Algorithm 1 through its pseudo-code.
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Algorithm 1 Genetic Algorithm for the FJSSP

Input Data();
Bestglobal()
Generate_initial_population()
Forp:=1toPB
Calculate Beta Function();
Beta Fitness Function();
If Mobj(p) < bestfit then
bestfit: = Mobj(p);
Bestglobal(): = chromosome_beta(p);
End if
End for
For i: =1 to Iterations
x: =0;
Sort population();
Elitism operator();
Forl: =1 to int(PB x ET)
x=x+1;
New_population(x): = Sorted_population(l);
End for
Crossover Operator();
Mutation Operator();
Forl: =1 to int(PB x (1 — ET))
If Crossover(l) unfeasible then
Correction mechanism();
End if
x=x+1;
New_population(x): = Offspring(l);
End for
Forp: =1to PB
Calculate Beta Function();
Beta Fitness Function();
If Mobj(p) < bestfit then
bestfit: = Mobj(p);
Bestglobal(): = chromosome_beta(p);
End if
End for
End for
Output Data();

4. Experiments

A scheduling problem was approached in a company dedicated to providing fabric
finishing services to test the effectiveness of the proposed genetic algorithm in realistic
environments. The production system has six processes or stages, 19 machines, some of
which can perform more than one process (recirculation condition), and different processing
routes for the products to be processed. The setup times are dependent on the schedule
sequence due to color changes in the fabrics, and two scenarios of 20 and 30 jobs make
up the production schedule. Figure 10 shows the production system highlighting the six
processes, the machines enabled by each process, and the routes established within the
production plant.

In order to execute and evaluate the proposed genetic algorithm, this study considers
a 2k design of experiments for parameter tuning, taking as experimental factors the popu-
lation (30, 50), number of iterations (1000, 2000), mutation rate (0.03, 0.1), and crossover
rate (0.8, 0.9) based on the values proposed by Coello [38], Teekeng and Thammano [39],
and Ruiz [40], and considering the conditions of the productive system addressed. The
results of the parameter tuning are shown in Table 1. The number of jobs to be tested
is equivalent to 20 and 30 production orders (jobs) because it represents an appropriate
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size of operations for the fabric finishing plant, in which processing times are high for
each production order. The tardiness and earliness weighting parameters of the objective
function for the production system are wr = 1 and wr = 0.4.

Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

‘ Machine R1 ‘ ‘ Machine T1 ‘ ‘ Machine S1 ‘ ‘ Machine R1 ‘ ‘ Machine E1 ‘ ‘ Machine V1 ‘

‘ Machine R2 ‘ ‘ Machine T2 ‘ ‘ Machine S2 ‘ ‘ Machine R2 ‘ Machine V2
‘ Machine R3 ‘ ‘ Machine T3 ‘ ‘ Machine S3 ‘ ‘ Machine R3 ‘ Machine V3

‘ Machine R4 ‘ ‘ Machine T4 ‘ Machine R4

‘ Machine R5 ‘ ‘ Machine T5 ‘ Machine R5

Machine T6 Process 2 — Process 3 — Process 4 — Process 6

Machine T7 Route2 > Process 1 - Process 2 — Process 3 — Process 4 - Process 6
Process 2 — Process 3 — Process 4 — Process 5- Process 4 - Process 6

Figure 10. Fabric finishing production system.

i

Table 1. Genetic algorithm parameter values.

Parameter Value
Elitism rate 0.1
Mutation rate 0.1
Crossover rate 0.9
Population 50

Iterations 2000

The genetic algorithm was compared with four heuristics to evaluate the effectiveness
and performance of solving the FJSSP. The selected heuristics were EDD (Earliest Due
Date), CR (Critical Reason), SPT (Shortest Processing Time), and Monte Carlo simulation.
These heuristics were used in the production scheduling problems addressed by Salazar
and Figueroa [41], Wang and Li [35], and Gonzalez [42]. Likewise, three of these heuristics
represent conventional priority rules (EDD, SPT, CR) that have been used by Ojstersek,
Tang, and Buchmeister [4]. The adaptation of each heuristic to the flexible job shop system
with fuzzy processing times and due windows is explained below.

4.1. Heuristic EDD

The heuristic EDD sequences the jobs according to the due date. This heuristic favors
the highest priority jobs; however, it does not take advantage of reducing the setup times
when successively processing jobs from the same family [43].

The first step of the heuristic calculates the average delivery time of each job j d; by
averaging the lower limit of the time window d;4 and the upper limit of the time window
d;p, then the jobs are ranked from lowest to highest according to this value. In Step 2, the
jobs are sequenced according to the ranking obtained in Step 1, forming a chromosome
as in the genetic algorithm, with the difference that all the operations of each job j are
located according to their average delivery time. Figure 11 shows an example of a solution
(chromosome) sequencing five jobs (1, 2, 3, 4, and 5), which have 4, 4, 3, 3, and 3 operations,
respectively. The order of the jobs according to their average delivery time is 3, 5, 2, 1,
and 4.
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Input 1
Input 2

5 5 5 2 2 2 2 1 1 1 1 4 4 4

M,

My

Mg [ Mg Mg | Mg [ Ms | Mg | Mz | Ma | Mg | Mg | Mo | My | Mo | My

Figure 11. Solution example with the heuristic EDD.

In Step 3, the machine with the shortest time to complete the operation is assigned, al-
lowing it to complete the operation in the shortest time. For this, it is necessary to defuzzify
the processing times of the operation in each machine and the sequence-dependent setup
times (for triangular functions, average the lower value, the mode value, and the upper
value). Equation (31) shows that this result is added to the maximum between the available
start time of the evaluated machine and the completion time of the previous operation
of the processed job. After assigning the machines, the EDD heuristic solution shows the
sequence of jobs, operations, and assigned machines (see Figure 11). In Step 4, the fitness of
the chromosome constructed with the EDD heuristic is evaluated using the same procedure
proposed to assess a beta chromosome generated by the proposed genetic algorithm.

C{Jles f

] — max (C;Iefu, TMdEfu) +P{{efu +Adefu

i jio il (31)

4.2. Heuristic CR

The CR heuristic builds a sequence of jobs, ordering them from lowest to highest
according to the value of the ratio between the remaining time to their delivery commitment
and the remaining process time [41]. In the proposed problem, the remaining time to the
delivery commitment of each job j is equal to the average delivery time of each job j, and
the remaining processing time of each job j is equal to the sum of the average times of the
operations that must be performed on different machines. For the problem addressed in
this study, the CR heuristic is based on the following steps.

Calculate the average delivery time, total processing time, and sort jobs. For each job j,
the average delivery time d;); must be calculated by averaging the lower limit of the time
window d;4 and the upper limit of the time window d;. Then the expected total processing
time P].t"t“l shown in Equation (32) must be calculated by adding the average processing
times of each operation of job j. To calculate the average processing times in operation o of
job j (P].’;mm) shown in Equation (33) it is necessary to calculate the defuzzified processing

time for job j on machine k (P]ﬁf "), where Xjok represents a binary variable that takes the

value of 1 when machine k is enabled to perform operation o of job j. The critical ratio is
calculated for each job (CR;) using Equation (34) and the jobs are ranked from lowest to
highest according to this value. After sorting the jobs j according to the critical ratio, steps
2,3, and 4 are applied in the same way as the EDD heuristic, thus obtaining the sequence
and assignment for the FJSSP.

Pjtotul — Z(?:lp]irom (32)
K defu
prom __ Li=1 onk jok 33
jo - K X, ( )
Ek:l jok
d.
_ %M
CRf - ptotal (34)
]

4.3. Heuristic SPT

This heuristic indicates that the priority of the jobs to be processed must depend on
the shortest processing time. In Step 1, calculate the total processing time for each job j
Pjt”t”l using Equation (32), and then calculate the average processing time in operation o of

job j (P]-’;mm) shown in Equation (33). Jobs are ranked from lowest to highest based on ijt“l .
Then, Steps 2, 3, and 4 of the EDD heuristic are applied, thus obtaining the sequence and
assignment for the FJSSP.
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Input 1
Input 2

4.4. Monte Carlo Simulation

The Monte Carlo simulation randomly generates N solutions to select the schedule
with the best result in the objective function. In Step 1, N chromosomes are created, and
the jobs are randomly assigned to establish the sequence of operations. Figure 12 shows an
example of a solution (chromosome) sequencing five jobs (1, 2, 3, 4, and 5), which have 4, 4,
3, 3, and 3 operations, respectively. Then, Step 3 and Step 4 of the EDD heuristic are applied
to each chromosome, obtaining the fitness value of each solution. Finally, the solution that
provides the best fitness value is selected. A total of 2000 iterations (random solutions) will
be used to compare this heuristic with the proposed genetic algorithm.

5 4 4 2 2 1 2 2 3 5 1 1 5 4

Mg | M7 | Mo | Ma [ Ms | My | Mg | My | My | My Ms | Mo | My | My

Figure 12. Solution example with the Monte Carlo simulation.

The genetic algorithm and heuristics used as benchmarks were coded in Visual Studio
2013 developed by Microsoft Corporation (Redmond, Washington, USA), and the experimental
instances were tested on a PC (CPU Intel Xeon (4-Core) E3-1220v5-3.0GHz, 16 GB RAM).

5. Results

When executing the different selected heuristics and comparing them with the pro-
posed genetic algorithm, the following results were obtained in the scenarios considering
20 and 30 jobs. Table 2 shows the efficiency of the proposed algorithm over the selected
heuristics, highlighting that the proposed genetic algorithm exceeds the benchmark so-
lution by an average of 34.56%, obtaining savings of up to 43.81% compared to the SPT
heuristic when considering 20 jobs and providing savings of up to 38.57% compared to a
heuristic widely used in production systems such as the EDD heuristic when considering
30 jobs. Therefore, the proposed genetic algorithm provides efficient solutions to realistic
problems in flexible job shop systems with sequence-dependent setup times.

Table 2. Results for the GA compared to the benchmarks.

. Total Weighted Penalt % Savings
Algorithm j=20 ® j= 30 j=20 ® j=30
Genetic algorithm 44294 980.95 - -
Heuristic EDD 672.33 1420.79 34.12% 30.96%
Heuristic SPT 788.25 1596.87 43.81% 38.57%
Heuristic CR 626.18 1423.51 29.26% 31.09%
Monte Carlo Simulation 666.94 1510.56 33.59% 35.06%

Likewise, Tables 3 and 4 show the completion time of the jobs that make up the best
solution obtained with the genetic algorithms when considering 20 and 30 jobs, respectively,
which generated a weighted penalty value equal to 442.93 and 980.95.

Figure 13a,b respectively shows the evolution of the fitness value with the genetic
algorithm throughout the generations (iterations) planned for the 20 and 30 jobs within
the production system of the fabric finishing plant. Therefore, the algorithm is convergent
because as the number of iterations (generations) increases, the solution obtained notably
improves its total weighted penalty value. For the case of 20 jobs, after 1700 iterations,
the improvements are reduced, while in the case of 30 jobs, upon reaching 2000 iterations,
significant advances continue appearing in the objective function.
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Table 3. Completion time for the best solution considering 20 jobs.

Due Window Completion Time

Job j dia dp G; C;nf C;nod C;up
1 64 72 55.6 51.3 55.4 60.1
2 78 102 97.2 90.9 96.7 104.1
3 58 72 61 56.4 60.9 65.6
4 50 62 32.6 30.3 32.4 35.1
5 98 110 99.1 91.8 98.5 107
6 80 92 63 58.2 62.9 67.8
7 106 116 103.6 97.1 103.1 110.8
8 200 216 165.5 152.6 164.7 179.1
9 128 136 119.1 111 1184 127.9
10 224 232 117.7 109.8 117 126.3
11 193 215 120.7 1125 120 129.6
12 267 287 122.6 114.2 1219 131.7
13 272 288 163.9 151.2 163.1 177.3
14 296 312 1294 119.9 128.6 139.6
15 192 208 146.5 135.8 145.8 157.9
16 360 376 162.8 150.3 162.1 176.1
17 288 304 140.9 130.9 140.3 151.6
18 260 272 156.4 1444 155.7 169.2
19 318 328 159.6 147.3 158.9 172.7
20 198 209 99.6 93.1 99.1 106.6

Table 4. Completion time for the best solution considering 30 jobs.
Due Window Completion Time

Job j dia dp G C;nf C;nod C;up
1 64 72 34.5 321 34.4 36.9
2 78 102 100.7 93.1 100.4 108.5
3 58 72 99.4 91.9 99 107.1
4 50 62 107.5 99.1 107.1 116.2
5 98 110 114.9 105.5 114.5 1245
6 80 92 29.2 27.4 29 31.1
7 106 116 135.7 125.6 135.3 146.2
8 200 216 138 127.8 137.6 148.6
9 128 136 121.8 112.2 1214 131.7
10 224 232 102.1 94.5 101.7 110.1
11 193 215 119.8 109.9 119.3 130
12 267 287 63.6 60 63.2 67.7
13 272 288 161 148.1 160.6 174.4
14 296 312 177 163.1 176.5 1914
15 192 208 179.8 166.3 179.3 193.9
16 360 376 149.9 138.3 149.5 162.1
17 288 304 161.7 1494 161.3 174.3
18 260 272 180.5 166.3 179.9 195.2
19 318 328 171.3 157.8 170.8 185.2
20 198 209 173.6 160 173.1 187.7
21 312 317 160 147.2 159.5 173.3
22 174 182 104.6 96.8 104.2 1129
23 222 230 168 155.5 167.6 180.9
24 342 350 181.5 167.8 181 195.7
25 400 404 163.5 150.4 163 177
26 406 420 178 164.6 1775 192
27 392 400 140.6 130.1 140.1 1514
28 440 448 182.1 167.9 181.5 197
29 296 304 183 169.1 182.5 1974
30 416 424 177.7 163.8 177.2 192.2
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Figure 13. Objective function vs. iterations in the genetic algorithm considering (a) 20 jobs and (b) 30 jobs.

In addition to the analysis of the objective function of this study, Tables 5 and 6 present
other performance indicators such as the number of tardy jobs (based on possibilities),
and the average possibility of tardy jobs, where it is considered that a job j has tardiness
possibility when C]s.up > djp. Based on the results, the solution obtained with the GA
provides only one job that can be late with a 0.50% chance when considering 20 jobs,
while five jobs can be late with a 10.72% chance when considering 30 jobs. Likewise,
the GA provides average savings of 79.6% in the number of late jobs compared to the
benchmarks considering 20 jobs and maximum savings of 83.3% compared to the SPT
heuristic. Similarly, GA provides average savings of 65.0% in the number of tardy jobs
compared to the benchmarks considering 30 jobs and maximum savings of 70.6% compared
to the SPT heuristic. Regarding the average possibility of tardy jobs, GA provides average
savings of 95.8% compared to the benchmarks considering 20 jobs and average savings
of 76.2% considering 30 jobs. Thus, it is confirmed that the proposed GA, in addition
to providing satisfactory solutions in the weighted tardiness and earliness penalty, also
provides satisfactory solutions regarding the possibility and number of tardy jobs.

Table 5. Number of tardy jobs for the GA compared to the benchmarks.

Number of Tardy Jobs Based

o .
on Possibilities o Savings

Algorithm
j=20 j=30 j=20 j=30
Genetic algorithm 1 5 - -
Heuristic EDD 5 15 80.0% 66.7%
Heuristic SPT 6 17 83.3% 70.6%
Heuristic CR 4 12 75.0% 58.3%
Monte Carlo Simulation 5 14 80.0% 64.3%

Table 6. Average possibility of tardy jobs for the GA compared to the benchmarks.

Average Possibility of Tardy Jobs % Savings
Algorithm : ; X .
j=20 j=30 j=20 j=30
Genetic algorithm 0.50% 10.72% - -
Heuristic EDD 12.05% 47.06% 95.9% 77.2%
Heuristic SPT 13.96% 52.16% 96.4% 79.4%
Heuristic CR 9.55% 39.05% 94.8% 72.5%
Monte Carlo Simulation 12.79% 44.14% 96.1% 75.7%

Regarding computing time, the genetic algorithm requires an average of 10.5 min
to find the best solution when considering 20 jobs and 2000 iterations, while it requires
17.6 min to find the best solution when considering 30 jobs and 2000 iterations. When
comparing the computing time for 20 jobs against 30 jobs (50% increase in the number
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References

of jobs), the computing time increases on average by 68.3%, showing the combinatorial
complexity and NP-hard nature of the FJSSP with sequence-dependent setup times. In
this sense, it is relevant that decision-makers consider the trade-off between the solution
quality and the computing time of the genetic algorithm to obtain satisfactory solutions in
reasonable times for production systems.

6. Conclusions

This study addresses for the first time FJSSP in fuzzy environments considering
parameters and constraints of real production systems such as sequence-dependent setup
times, due windows, recirculation, and consideration of earliness and tardiness in objective
functions. Due to the complexity of the FJSSP, it is necessary to use artificial intelligence
techniques such as genetic algorithms, which provide satisfactory solutions in reasonable
computation times. One of the main contributions of this article is the proposal of a genetic
algorithm and four heuristics since they represent one of the first approaches to tackle the
FJSSP considering the realistic conditions presented in this study and applied to a fabric
finishing production system.

When comparing the results of the proposed genetic algorithm with different heuris-
tics, it was possible to verify that, in all cases, the proposed methodology exceeded the
performance of the heuristics by more than 30%, which shows the effectiveness of the
proposed algorithm. Additionally, the GA provides satisfactory solutions regarding the
possibility and number of tardy jobs. Moreover, the computing time of the genetic algo-
rithm is viable for operating environments; therefore, it can be used daily in flexible job
shop systems once the production orders are available. These results showed that the pro-
posed genetic algorithm provides the best solutions for the FJSSP, outperforming heuristics
widely used in production systems. Consequently, this study reduces the penalties related
to earliness and tardiness and flexible job shop systems, increasing customer service and
storage costs, inventory obsolescence, and lost sales.

Despite the contributions of the study, it still has some flaws. In the future, datasets
such as BRdata [44], Kacem data [45], BCdata [46], and HUdata [47] can be used to test
the efficiency and effectiveness of the proposed GA, and compare its performance with
other metaheuristics such as ACO, ABC, AIS, NS, SA, TS, PSO, hybrid metaheuristics,
and other evolutionary algorithms. Likewise, future studies could include orthogonal
experiments for parameter tuning for both the genetic algorithm and the metaheuristics
used as benchmarks. Future works could consider changes in work speed, limitations in
transportation and storage within the production system, machine downtime, and stockout
probabilities. Moreover, the proposed algorithm could be complemented with a local search
algorithm to improve the fitness of the chromosomes and reduce the number of iterations
necessary to find a satisfactory solution.
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