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Abstract: The multiple knapsack problem (0/1-mKP) is a valuable NP-hard problem involved in
many science-and-engineering applications. In current research, there exist two main approaches:
1. the exact algorithms for the optimal solutions (i.e., branch-and-bound, dynamic programming
(DP), etc.) and 2. the approximate algorithms in polynomial time (i.e., Genetic algorithm, swarm
optimization, etc.). In the past, the exact-DP could find the optimal solutions of the 0/1-KP (one
knapsack, n objects) in O(nC). For large n and massive C, the unbiased filtering was incorporated
with the exact-DP to solve the 0/1-KP in O(n + C′) with 95% optimal solutions. For the complex
0/1-mKP (m knapsacks) in this study, we propose a novel research track with hybrid integration of
DP-transformation (DPT), exact-fit (best) knapsack order (m!-to-m2 reduction), and robust unbiased
filtering. First, the efficient DPT algorithm is proposed to find the optimal solutions for each knapsack
in O([n2,nC]). Next, all knapsacks are fulfilled by the exact-fit (best) knapsack order in O(m2[n2,nC])
over O(m![n2,nC]) while retaining at least 99% optimal solutions as m! orders. Finally, robust unbiased
filtering is incorporated to solve the 0/1-mKP in O(m2n). In experiments, our efficient 0/1-mKP
reduction confirmed 99% optimal solutions on random and benchmark datasets (n δ 10,000, m δ 100).

Keywords: multiple 0/1-knapsack problem (0/1-mKP); efficient NP-hard problem solving; exact-DP
transformation; exact-fit (best) knapsack order; robust unbiased filtering

1. Introduction

Presently, a variety of NP-hard problems are involved in many real-world applications
and AI computing. Solving specific NP-hard problems (with high performance in efficient
time) for those applications is challenging. Some of the interesting NP-hard problems are
the 0/1-KP (knapsack problem), the 0/1-mKP (multiple m knapsacks), etc.

Formally, the 0/1-KP is defined as follows: Consider a set of n objects and a knapsack
capacity C, where each object j (=0, 1, . . . , n − 1) has profit pj and weight wj.

The objective of the 0/1-KP is to select some objects for the maximum total profit kept
in the knapsack that cannot exceed the knapsack capacity (C), defined in Equations (1)–(3).
Recently (2018), unbiased filtering [1] was proposed (for the 0/1-KP) to select outstanding
objects (from n objects) before applying the exact DP (dynamic programming) algorithm
on small remaining n′ (≤200) in efficient time for most optimal solutions (at least 95%) of
regular and irregular datasets.

Maximize ∑n−1
j=0 pjxj (1)

Subject to ∑n−1
j=0 wjxj ≤ C (2)

and xj ∈ {0, 1}; j = 0, 1, 2, . . . , n − 1 (3)

For the complex 0/1-mKP (m knapsacks), the objective is to select some objects for
multiple knapsacks (each selected object j (xij = 1) in a proper knapsack i) that cannot exceed
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each of the knapsack capacities (Ci; i = 1, 2, 3, . . . , m), see Figure 1 (one and m knapsacks),
for the maximized total profit, defined in Equations(4)–(6).

Maximize ∑m
i=1 ∑n−1

j=0 pjxij (4)

Subject to ∑n−1
j=0 wjxij ≤ Ci ; i = 1, 2, . . . , m; j = 0, 1, 2, . . . , n− 1 (5)

and ∑m
i=1 xij ≤ 1, xij {0, 1}; i, j (6)
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Figure 1. Two different 0/1-knapsack problems (n objects): (a) the popular 0/1-KP (one knapsack 
with capacity C) and (b) the complex 0/1-mKP (m knapsacks with capacity Ci, i = 1, 2, …, m). 

The 0/1-KP and 0/1-mKP are constructive for science and engineering applications, 
such as resource allocation [2,3], capital budgeting [4], production planning [5], multi-
container packing [6], risk balancing and assortment optimization [7], other applications 
in network systems [8–10], etc. However, finding the optimal solution of the 0/1-mKP is 
much harder than that of the 0/1-KP since each selected object (xij = 1) must specify a 
proper knapsack (Ki with capacity Ci; i ∈ {1,..., m}) from the available knapsacks. 

In popular 0/1-KP research, two approaches are extensively studied: 1. the exact 
approach for optimal solutions (but in exponential time) and 2. the fast approximate ap-
proach (but the optimal solution may not be found). In theory, the optimal solution of the 
0/1-KP can be computed by DP (dynamic programming) algorithms in O(nC) [11–15], or 
BnB (branch-and-bound) [16] and backtracking [17] algorithms in exponential time 
(O(2n)). In practice, approximate methods (i.e., greedy methods [18,19], kernel search 
[20,21], genetic algorithms [22,23], swarm optimization [24–28], hybrid methods [29–32], 
hyper-heuristic method [33], etc.) can find the good solutions in polynomial time. Re-
cently, the time-space reduction algorithm [1] was proposed to solve the 0/1-KP in O(n + 
C’) for large n by unbiased filtering to preselect the outstanding objects (from n objects) 
before applying the exact DP algorithm on remaining n’ and C’ (n’ ≤ 200, C’ << C, and 
massive C may not be a polynomial bound of n), which could find most optimal solutions 
(at least 95%) in experiments.  

In current KP-researches, a variety of 0/1-KPs have been studied, including the 
multiple KP (0/1-mKP) [34–36], no shared xij in m knapsacks (∑ 𝑤𝑥ିଵୀ ≤  𝐶), the mul-
tidimensional KP (0/1-MKP) [37–41], (∑ ∑ 𝑤𝑥ିଵୀୀଵ ≤  𝐶 shared xj in m knapsacks), and 
the multidimensional multiple-choice KP (0/1-MMKP) [42]. However, the exact solutions 
of those complex KPs could not be easily found on large n. Recently, the mathematical 
HyMKP [34] was proposed in O(mnC) for the 0/1-mKP with most optimal solutions (in τ 
s) on n ≤ 500. For large n and massive C, the existing meta-heuristic algorithms for the 
0/1-KP can be applied to solve the 0/1-mKP in polynomial time (but requiring the proper 
knapsack orders). For high performance, the exact DP could find the optimal solution of 
the 0/1-KP in O(nC) and O(m!nC) for the 0/1-mKP (with m! orders, C = max(Ci)) for at least 
99% optimal solutions (but for small m, n, and C). In this study, we are interested to solve 
the 0/1-mKP for large m, n, C with the proper orders in efficient time. Our hypothesis is 
“For each of m knapsacks, apply unbiased filtering before using the exact DP on re-
maining n’ and Ci’ can find most optimal solutions in efficient time”. 

1 Knapsack Capacity Cwjxj ≤ C,  xj∈{0,1}

m Knapsacks        1                  2                                         m

Capacities
. . .

C1 C2 Cm

wjx1j ≤ C1

Ci

C = max(Ci)wjx2j ≤ C2 wjxmj ≤ Cm

Figure 1. Two different 0/1-knapsack problems (n objects): (a) the popular 0/1-KP (one knapsack
with capacity C) and (b) the complex 0/1-mKP (m knapsacks with capacity Ci, i = 1, 2, . . . , m).

The 0/1-KP and 0/1-mKP are constructive for science and engineering applications,
such as resource allocation [2,3], capital budgeting [4], production planning [5], multicon-
tainer packing [6], risk balancing and assortment optimization [7], other applications in
network systems [8–10], etc. However, finding the optimal solution of the 0/1-mKP is
much harder than that of the 0/1-KP since each selected object (xij = 1) must specify a
proper knapsack (Ki with capacity Ci; i ∈ {1, . . . , m}) from the available knapsacks.

In popular 0/1-KP research, two approaches are extensively studied: 1. the exact
approach for optimal solutions (but in exponential time) and 2. the fast approximate
approach (but the optimal solution may not be found). In theory, the optimal solution of the
0/1-KP can be computed by DP (dynamic programming) algorithms in O(nC) [11–15], or
BnB (branch-and-bound) [16] and backtracking [17] algorithms in exponential time (O(2n)).
In practice, approximate methods (i.e., greedy methods [18,19], kernel search [20,21], genetic
algorithms [22,23], swarm optimization [24–28], hybrid methods [29–32], hyper-heuristic
method [33], etc.) can find the good solutions in polynomial time. Recently, the time-space
reduction algorithm [1] was proposed to solve the 0/1-KP in O(n + C′) for large n by
unbiased filtering to preselect the outstanding objects (from n objects) before applying the
exact DP algorithm on remaining n′ and C′ (n′ ≤ 200, C′ << C, and massive C may not
be a polynomial bound of n), which could find most optimal solutions (at least 95%) in
experiments.

In current KP-researches, a variety of 0/1-KPs have been studied, including the
multiple KP (0/1-mKP) [34–36], no shared xij in m knapsacks (∑n−1

j=0 wjxij ≤ Ci), the multi-

dimensional KP (0/1-MKP) [37–41], (∑m
i=1 ∑n−1

j=0 wijxj ≤ Ci shared xj in m knapsacks), and
the multidimensional multiple-choice KP (0/1-MMKP) [42]. However, the exact solutions
of those complex KPs could not be easily found on large n. Recently, the mathematical
HyMKP [34] was proposed in O(mnC) for the 0/1-mKP with most optimal solutions (in
τ s) on n ≤ 500. For large n and massive C, the existing meta-heuristic algorithms for the
0/1-KP can be applied to solve the 0/1-mKP in polynomial time (but requiring the proper
knapsack orders). For high performance, the exact DP could find the optimal solution of
the 0/1-KP in O(nC) and O(m!nC) for the 0/1-mKP (with m! orders, C = max(Ci)) for at least
99% optimal solutions (but for small m, n, and C). In this study, we are interested to solve
the 0/1-mKP for large m, n, C with the proper orders in efficient time. Our hypothesis is
“For each of m knapsacks, apply unbiased filtering before using the exact DP on remaining
n′ and Ci’ can find most optimal solutions in efficient time”.
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In this research, we introduce a novel research track (a hybrid approach of time-space
reduction) for solving the 0/1-mKP in efficient time with expected 99% optimal solutions.
In our hybrid approach, we propose the integration of DP transformation (reducing C to
C’), exact-fit (best) knapsack-order (reducing m! to m2), and 3. robust unbiased filtering
(for polynomial time). First, we propose the DP transformation (DPT) algorithm to find
the optimal solutions of the 0/1-KP (for each of m knapsacks) in O([n2, nC]), or O(n2) in
the best case and O(nC) in the worst case, before being applied for m knapsacks. Second,
for the 0/1-mKP (m knapsacks), we propose the exact-fit (best) knapsack order (in our
multi-DPT) in O(m2[n2, nC]) for achieving the good solutions as m! orders (at least 99%
optimal solutions). Third, robust unbiased filtering is incorporated to solve the 0/1-mKP
in polynomial time (O(m2n)) while retaining 99% optimal solutions. The correctness and
complexity of the DPT and multi-DPT algorithms are analyzed. In experiments, the original
multi-DPT and the multi-DPT + robust unbiased filtering are evaluated on random and
benchmark datasets (n ≤ 10,000, m ≤ 100).

The main parts of this paper are organized as follows: Section 2 reviews the related
work. Section 3 presents the DPT algorithm to find the optimal solutions of the 0/1-KP in
O([n2, nC]). Section 4 proposes the multi-DPT algorithm with the exact-fit (best) knapsack
order to solve the 0/1-mKP in O(m2[n2, nC]) and reduced to O(m2n) by our robust unbiased
filtering. Section 5 provides the algorithm analysis (correctness and complexity). Section 6
performs the experiments to evaluate the performance of our multi-DPT algorithm and
robust unbiased filtering. Section 7 concludes this study.

2. Related Work

For 0/1-mKP research, finding most optimal solutions (≥99% optimal performance)
in an efficient time is challenging. First, Section 2.1 reviews the exact DP algorithms to
find the optimal solutions of the 0/1-KP. Section 2.2 explores the time-space reduction
algorithm to solve the 0/1-KP in polynomial time. Section 2.3 reviews the recent QDGWO
(quantum-inspired differential evolution with adaptive grey wolf optimizer) for the 0/1-KP.
Section 2.4 explores the efficient mathematical HyMKP model for the 0/1-mKP.

2.1. 0/1-KP Solving by Dynamic Programming Algorithm

For 0/1-KP solving, let tp[C] be an array of total profits, soltp be a maximum total-profit,
soltw be a total-weight (≤C), and solx[n] be an array of solution X (xj = 0/1). Algorithm 1
presents the basic DP [11] with two functions (preprocessing and X-tracking on a 2D array
or a matrix (n × C)) to find the optimal solution (soltp, soltw, solx[n]) in O(nC). For example,
consider n = 6, C = 18, P = {42, 39, 38, 37, 35, 38}, and W = {10, 11, 11, 8, 10, 9}, Figure 2
displays the result of preprocessing (soltp = 79) and X-tracking (solx = {1, 4} from soltp = 79)
by applying Algorithm 1. However, using the 2D array (n× C) reserves a huge space, which
is not practical if C > n2. Thus, the fast DP (Algorithm 2) [11] uses a 1D array (of C elements)
to find soltp in O(nC) but without solx[n] since the 1D array of the last tp-result cannot
support the X-tracking (for all selected objects). Finally, the complete DP (Algorithm 3) [11]
(p. 24) uses a 1D array for the full optimal solution (soltp, soltw, solx[n]) by repeating the
fast DP (for k selected objects) in O(knC).
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d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 42 42 42 42 42 42 42 42 42
2 0 0 0 0 0 0 0 0 0 0 42 42 42 42 42 42 42 42 42
3 0 0 0 0 0 0 0 0 0 0 42 42 42 42 42 42 42 42 42
4 0 0 0 0 0 0 0 0 37 37 42 42 42 42 42 42 42 42 79
5 0 0 0 0 0 0 0 0 37 37 42 42 42 42 42 42 42 42 79
6 0 0 0 0 0 0 0 0 37 38 42 42 42 42 42 42 42 75 79

Figure 2. An example of 0/1-KP solving (n = 6, C = 18) of the basic DP (Algorithm 1): tp-results and
soltp = 79 (optimal) in an nxC-matrix and X-tracking for solx = {1, 4}.
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Algorithm 1: Basic DP with 2D array (for soltp, soltw, solx[n]) in O(nC).

1. for (d = 0 to C) tp [0,d] = 0;
2. for (j = 1 to n) do // preprocessing for soltp
3. for (d = 0 to wj−1) tp[j,d] = tp[j − 1,d];
4. for (d = wj to C) do
5. if (tp[j − 1,d-wj] + pj > tp[j − 1,d]) then tp[j,d] = tp[j − 1,d-wj] + pj;
6. else tp[j,d] = tp[j − 1,d];
7. end for d;
8. end for j;
9. soltp = tp[n,C];
10. d = C; j = n; solx = ∅; // X-tracking for solx
11. do// X-tracking for solx
12. while (tp[j,d] = tp[j − 1,d]) j = j − 1; // move up
13. solx = solx U {j}; pp = tp[j,d]-pj; j = j − 1;
14. while (tp[j,d − 1] ≥ pp and pp > 0) d = d − 1; // move left
15. while (pp > 0 and j ≥ 1).

Algorithm 2: Fast DP with 1D array (for soltp, soltw) in O(nC).

1. for (d = 0 to C) tp[d] = 0;
2. for (j = 1 to n) do // preprocessing for soltp
3. for (d = C down to wj) do
4. if (tp[d-wj] + pj > tp[d]) then tp[d] = tp[d-wj] + pj;
5. end for d;
6. end for j; soltp = tp[C].

Algorithm 3: Full DP with 1D array (for soltp, soltw, solx[n]) in O(knC).

1. solx = ∅; C’ = C; n’ = n;
2. do
3. for (d = 0 to C’) do tp[d] = 0;
4. for (j = 1 to n’) do // preprocessing for soltp
5. for (d = C’ down to wj) do
6. if (tp[d-wj] + pj > tp[d]) then
7. x[d] = j; tp[d] = tp[d-wj] + pj;
8. end for d;
9. end for j;
10. r = x[C’]; // find solx (a selected object)
11. solx = solx U {r}; k = k + 1;
12. n’ = r − 1; C’ = C’- wr;
13. while (C’> 0); // repeat for k selected objects
14. soltp = tp[C].

2.2. 0/1-KP Solving by Time-Space Reduction Algorithm

In 2018, time-space reduction (TSReduction) algorithm [1] (p. 198) was proposed to solve
the 0/1-KP in O(n + C′) for large n by focusing on unbiased filtering. That reduction method
(Algorithm 4) consists of three main steps: 1. find the best three initial solutions; 2. perform
object classification and unbiased filtering; and 3. apply the full DP on the remaining
objects (n’ ≤ 200); see Equations (7)–(9). The advantages of the TSReduction algorithm are the
efficient time complexity O(n + C′) and the good performance (95% optimal solutions). See
an example (n = 20, C = 100) of the 0/1-KP solved by the TSReduction algorithm in Figure 3
(soltp = 656 (optimal)).
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α = min (0.7 ×|Group2|, 20) (8) 
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Step 1
[P/W] X 8 16 1 9 6 0 4 18 2 17 12 11 14 10 19 3 5 13 7 15

W 3 4 5 3 4 6 8 8 8 7 7 8 11 8 9 10 11 10 11 10
P 45 54 55 31 32 43 55 50 45 37 36 40 54 37 38 42 39 35 38 34 tw tp

GH1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 99 652
GH1+ 0 1 0 0 0 0 100 656

[P] X 1 4 16 14 18 8 2 0 3 11 5 19 7 17 10 12 13 15 6 9
W 5 8 4 11 8 3 8 6 10 8 11 9 11 7 8 7 10 10 4 3
P 55 55 54 54 50 45 45 43 42 40 39 38 38 37 37 36 35 34 32 31 tw tp

GH2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 91 560
GH2+ 0 0 1 1 0 0 0 0 1 100 627

[W] X 8 9 16 6 1 0 17 12 4 18 2 11 10 19 3 13 15 14 5 7
W 3 3 4 4 5 6 7 7 8 8 8 8 8 9 10 10 10 11 11 11
P 45 31 54 32 55 43 37 36 55 50 45 40 37 38 42 35 34 54 39 38 tw tp

GH3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 98 640
GH3+ 0 0 0 1 0 0 99 652

Step 2
X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

GH1+ 5 5 5 5 5 0 5 0 5 5 5 5 5 0 5 0 5 5 5 0
GH2+ 3 3 3 3 3 3 0 0 3 3 3 3 0 0 3 0 3 3 3 0
GH3+ 1 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1

dw 9 9 9 8 9 3 6 0 9 9 9 9 6 0 9 0 9 9 9 1

Step 3
X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 tw tp

solx 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 100 656

Initial solutions (by GH) and improved solutions (by GH+)

Object classification and unbiased filtering

DP on n'(6)= {3,5,7,12,13,19}, C'=17

Filtering-in (13)={0,1,2,4,6,8,9,10,11,14,16,17,18},  Filtering-out(1)={15}

Figure 3. An example of 0/1-KP solving (n = 20, C = 100) by TSReduction (Algorithm 4), soltp = 656
(optimal).

Algorithm 4: Time-space reduction for 0/1-KP in O(n + C’).

Step 1: Apply the GH (greedy heuristic) algorithm by sorting 3 features (P/W, P, W) for top 3
initial solutions in O(n). Note: Sorting (in each GH) relies on the major-minor keys.

- For P/W-decreasing sort, a major key is P/W and 2 minor keys are P & W.
- For P-decreasing sort, a major key is P and a minor key is W.
- For W-increasing sort, a major key is W and a minor key is P.

Step 2: Object classification and unbiased filtering in O(n).
2.1 Improve 3 initial solutions by the GH+ algorithm.
2.2 Compute dynamic weight (dw) by integrating 3 solutions of GH1

+ to GH3
+ (to support

unbiased selection), where dw = wx1 + wx2 + wx3; wx1 = 5, wx2 = 3, and wx3 = 1 if (xj = 1);
otherwise wx = 0 (when xj = 0).

2.3 Classify objects and perform unbiased filtering (Group 1 (dw = 9), Group 2 (dw = 8, 6, 5),
Group 3 (dw = 4, 3, 1), and Group 4 (dw = 0)).

- Filtering in/out (to reduce n’ ≤ 200): Select worth objects (xi = 1) with dw = 9
(selected by all 3-GH policies).

- Select other objects (xi = 1) with dw = 8, 6, 5, except uncertain α (in Group 2) and do
not select worst objects (xi = 0) with dw = 0, except β (in Group 4).

Step 3: Apply the DP in O(C′) on remaining n′ = α + |Group3| + β.

n’ = α + |Group3| + β ≤ 200 (7)

α = min (0.7 ×|Group2|, 20) (8)

β = min (0.7 ×|Group4|, 200 − |Group3| − α) (9)

2.3. 0/1-KP Solving by Quantim-Inspired Differential Evolution Algorithm

Recently, the QDGWO (Quantim-inspired differential evolution with adaptive grey
wolf optimizer) algorothm (Figure 4) [43] was proposed in 2021 for solving the 0/1-KP by
adopting the quantum computing principles plus mutation and crossover operations. In
that study, the adaptive mutation operations, the crossover operations, and the quantum
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observation are combined to generate new solutions as trial individuals in the solution
space. In experiments, the fast convergent of QDGWO (on n = 50 to n = 3000 objects)
was compared with the existing quantum-based methods (QEA, AQDE, and QSE) using
maximum 1000 iterations. The QDGWO results outperformed those of existing Q-based
algorithms. However, the QDGWO algorithm could not guarantee the optimal solutions,
especially on the irregular datasets.
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Figure 4. Framework of QDGWO (Quantum-inspired Differential (QD) evolution with adaptive Grey
Wolf Optimizer (GWO)).

2.4. 0/1-mKP Solving by Mathematical HyMKP Algorithm

For solving the 0/1-mKP (m knapsacks, n objects), the mathematical HyMKP model
(Algorithm 5) [34] (p. 893) was proposed. That hybrid model includes the MULKNAP (well-
known partial BnB) program and the create-reflect-multigraph-MKP (Algorithm 6) [34]
(p. 891) and two decomposition methods. Algorithm 6 was modified from the arc-flow
model and the reflect model in O(mnC), C = max(Ci), i = 1, 2, . . . , m, by starting with
decreasing weights (of n items/objects) for the good initial-solution (in m knapsacks). Then,
that solution was improved by the knapsack-based decomposition with v iterations (in τ

secs.). In the past, such mathematical models were used to solve the classical stock problem
(CSP: 1999-2017) and the cutting and packing problems (1970–1977). In experiments (on OR-
benchmark datasets), the mathematical HyMKP algorithm (with time complexity O(mnC))
yielded 99.9% optimal solutions (in τ secs.) for small n ≤ 500.

Algorithm 5: Mathematical HyMKP model.

Step 1: perform the existing preprocessing: Instance reduction, Capacity lifting, and Item dominance.
Step 2: call MULKNAP branch-and-bound (BnB) for τ secs.
if (the solution is optimal) then return.
Step 3: call Create-reflect-multigraph-MKP (Algorithm 6).
Step 4: for (i = 1 to v) do
execute the knapsack-based decomposition.
if (an optimal solution has been obtained) then return.
else add the resulting no-good-cut.
end for i
Step 5: if (the instance is not solved) then
execute the reflect-based decomposition and return.
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Algorithm 6: Create-reflect-multigraph-MKP in O(mnC).

1. N = ∅; As = ∅; Ar = ∅; Ac = ∅; Al = ∅; A = ∅; s = 0; C = max(Ci)i = 1,2,...,m
2. for (l = 1 to C/2) do T[l] = 0;
3. T[s] = 1; N = N ∪ {s};
4. for (j = 1 to n) do
5. for (l = C/2 − 1 down to 0) do
6. if (T[l] = 1) then
7. if (l + wj ≤ C/2) then
8. As = As∪{l,l + wj,j,0)}; T[l + wj] = 1; N = N ∪ {(l + wj)};
9. for (i = 1 to m) do
10. if (l + wj > C/2 and l ≤ Ci-(l + wj)) then
11. Ar = Ar ∪ {l,Ci-(l + wj),j,i)}; N = N ∪ {(Ci-(l + wj))};
12. end for i;
13. end if;
14. end for l;
15. end for j;
16. for (i = 1 to m) do N = N ∪ {Ci/2};
17. for (i = 1 to m) do Ac = Ac ∪ {(Ci/2,Ci/2,0,i};
18. for (l∈N) do Al = Al ∪ {(l,l’,0,0): l’ = min(e∈N: e > l)};
19. A= As ∪ Ar ∪ Ac ∪ Al;
20. return N, A;

In particular, the arc-flow model was modified to fill a knapsack as a path in a graph,
where arcs were items/objects. The looping conditions of Algorithm 6 (Lines 4–15) are
similar to the basic DP (Algorithm 1) for each of m knapsacks with time complexity in
O(mnC). Let (d, e, j, i) denote an arc in a set A from nodes d to e (Lines 8, 11 and 17–19).

As = {(d, d + wj, j, 0), 1 ≤ j ≤ n} is the set of standard item arcs.
Ar = {(d, Ci-(d + wj), j, i), 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the set of reflected item arcs (satisfying

d + wj > Ci/2 and d ≤ Ci-wj).
Ac = {(Ci/2, Ci/2, 0, i)} is the set of reflected connection arcs.
Al = {(d, e, 0, 0), d < e} is the set of loss arcs.
For solving the 0/1-mKP (in theory), the existing researches were focused on the

exact algorithms, such as the branch-and-bound algorithm [35] and the mathematical
HyMKP [34], where their performance results were compared to the (known) optimal
solutions but those algorithms could execute in reasonable time on small n ≤ 500 only.

For large n (in practice), each of the efficient meta-heuristic algorithms [26,30,32,43]
proposed for the 0/1-KP (i.e., GA, swarm optimization, quantum computing, hybrid
method, etc.) can be applied to solve the 0/1-mKP (for each of m knapsacks) with proper
orders. For example, we can apply the recent QDGWO [43]) for the 0/1-KP (one knapsack)
to the 0/1-mKP (m knapsacks). However, that meta-heuristic algorithm cannot guarantee
the optimal solution for each knapsack, especially on the irregular datasets, and hence the
total profit from many knapsacks (m > 10) may be near-optimal only.

Therefore, to solve the 0/1-mKP (m > 10) for large n, we are interested to find the high
optimal performance in efficient time by our hybrid approach. In this study, our proposed
algorithms (in the hybrid approach) are

1. Exact DP transformation (DPT) algorithm (in Section 3) to find the optimal solutions
of the 0/1-KP (in each knapsack).

2. m!-to-m2 knapsack-order reduction (in Section 4.1.2) to define the exact-fit (best)
knapsack order for the 0/1-mKP (m knapsacks).

3. Robust unbiased filtering (in Section 4.2) to improve/reduce time complexity to
polynomial time while retaining the high optimal performance.
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In this 0/1-mKP research, we propose “a novel research track (a hybrid approach
of the exact DPT + robust unbiased filtering) to solve the 0/1-mKP in efficient time with
expected at least 99% optimal solutions”. We start with our exact-DP transformation for
0/1-KP in O([n2, nC]) over O(nC) for each knapsack (in Section 3) before being applied
to 0/1-mKP (m knapsacks) with the exact-fit (best) knapsack order in O(m2[n2, nC]) over
O(m![n2, nC]) in Section 4 and reduce it to O(m2n) by our efficient unbiased filtering.

3. 0/1-KP Solving by DP Transformation to List-Based Time-Space Reduction

First, in our new research track (for solving the 0/1-mKP), we propose the DP trans-
formation to list-based time-space reduction (DPT-ListTSR) algorithm to find the optimal
solutions of the 0/1-KP in O(n2) in the best case and O(nC) in the worst case. Our DPT-
ListTSR algorithm was renovated from the basic DP (Algorithm 1). That original DP can
find the optimal solution of the 0/1-KP in O(nC) by using the 2D-array (n × C) in all (best,
average, and worst) cases. In this study, the DPT-ListTSR algorithm can find the optimal
solution of the 0/1-KP by introducing the lists of effective nodes (e-nodes) in efficient O([n2,
nC]). The contribution of our DPT-ListTSR is the forward reduction (F-reduction) in the
preprocessing (for the (original) e-nodes) and the backward reduction (B-reduction) in the
X-tracking (for the tight bound of the original e-nodes).

Next, to simplify our DPT-ListTSR process (the preprocessing in Section 3.1 and the
X-tracking in Section 3.2), the following data structures and proper functions are predefined.
See a corresponding example of our DP transformation in Figure 5 (n = 5, C = 18).

The e-node is an effective node with improved tp (total profit) by object j at capacity d
that is more than tp at previous capacity d − 1.

The original e-node is the original improved e-node by object j at capacity d (not by
object j + 1 at the same d).

The F-list (forward list) is a list of e-nodes (used in object j − 1 and object j).
The B-list (backward list) is a list of original e-nodes (for X-tracking).
F-reduction is a function used to reduce e-nodes to the original e-nodes.
B-reduction is another function applied after finding xj = 1 in X-tracking (to simplify

the remaining X-tracking process).

3.1. Preprocessing of the DPT-ListTSR Algorithm

In our preprocessing (Algorithm 7), two (temporary) F-lists of e-nodes (the previous
F-list j − 1 and the current F-list j) must be built first; see Figure 5 (j = 0 to n − 1). Since
the previous F-list j − 1 can inherit all e-nodes of object 0 to object j − 1, the current F-list j
can be constructed from F-list j − 1 (to inherit the previous e-nodes and fulfill the current
F-list j with new e-nodes before keeping only the original e-nodes in another B-list Lj). Our
preprocessing can reduce the computing time and the using space on a variety of datasets,
such as O(n2) in the best case and O(nC) in the worst case, as proven in Section 5.2. The
current F-list j of object j (wj, pj) can be created in two main steps. In Step 1 (Algorithm 7:
Line 3), some e-nodes (cn = (tp, d)) from the head of F-list j − 1 are copied to F-list j (while
(cn.tp < pj and cn.d < wj)). In Step 2 (Algorithm 7: Lines 4–10 (to fulfill F-list j with new
e-nodes)), from each e-node (en) of F-list j − 1 (head to tail) Step 2.0 checks to inherit each
remaining e-node (from step 1) to F-list j (in a proper location) if it is worth (see detail
in Section 5.1), Step 2.1 computes (d = en.d + wj, tp = en.tp + pj), and Step 2.2 adds new
e-node to tails of F-list j and B-list j if (d ≤ C and tp > TP). In this step, the desired TP (at
d = en.d + wj) can be decoded (from d and n1 in F-list j − 1).
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Figure 5. An example of preprocessing (n = 5, C = 18): (a) nxC array (tp) by the basic DP and (b) two
F-lists and n B-lists by DPT-ListTSR for objects j = 0–4.
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Algorithm 7: Preprocessing of the DPT-ListTSR algorithm.

1. create initial F-list j − 1 (for j = 0) with one e-node (tp = 0,d = 0);
2. for (j = 0 to n − 1) do // to fulfill F-list j of object j
3. initial copy e-nodes (cn) of F-list j − 1 to F-list j (while (cn.tp < pj & cn.d < wj)); // Step 1
4. e-node en = head(F-list j − 1);
5. for (each e-node (en) in F-list j − 1) do (from head to tail) // Step 2
6. inherit remaining e-node (if it is worth) to F-list j (in a proper location); // Step 2.0
7. compute d = en.d + wj; tp = en.tp + pj; n1 = en; // Step 2.1
8. n1 = decode(n1,d); n2 = n1.next; TP = n1.tp (if n1.d ≤ d < n2.d);
9. if (d ≤ C & tp > TP) add new e-node to tails of F-list j and B-list j; // Step 2.2
10. end for (F-list j − 1);
11. end for j;
12. soltp = max (ori-en.tp) of original e-node in B-list j;

For example (n = 5, C = 18), P = {4, 10, 6, 9, 8} and W = {8, 15, 4, 5, 12}, Figure 5a shows
the B-list reduction (right) of seven original e-nodes (see detail in Figure 5b), compared to
total profits = n× C = 90 elements (left) of the basic DP. Figure 5b displays the preprocessing
of DPT-ListTSR from j = 0 to 4.

� For object j = 0 (w0 = 8, p0 = 4), Step 1 copies the first e-node cn = (tp, d) = (0, 0) of F-list
j − 1 to F-list j (since cn.tp < p0 and cn.d < w0). In Step 2 (from head of F-list j − 1), at
e-node en = (0, 0), Step 2.1 computes d = en.d + w0 = 8, tp = en.tp + p0 = 4, and decode
TP = 0 [(n1.d = 0, n1.tp = 0), (n2.d = C = 18, n2.tp = 0)]. Since d < C and tp = 4 > TP = 0,
Step 2.2 adds new e-node = (4, 8) in F-list j = 0 and B-list L0.

� For object j = 1 (w1 = 15, p1 = 10), Step 1 copies (0, 0), (4, 8) of F-list j − 1 to F-list j
(while cn.tp < p1 and cn.d < w1). In Step 2, at e-node en = (0, 0) of F-list j − 1, compute
d = 15, tp = 10, TP = 4 ((n1.d = 8, n1.tp = 4), (n2.d = C = 18, n2.tp = 4)). Since tp = 10 >
TP = 4, add new e-node (10, 15) in F-list j = 1 and B-list L1. At en = (4, 8), d = 8 + 15
= 23 > C (no new e-node added).

� For object j = 2 (w2 = 4, p2 = 6), Step 1 copies (0, 0) of F-list j − 1 to F-list j. In Step 2, at
en = (0, 0) of F-list j − 1, d = 4, tp = 6 > TP = 0, add new e-node (6, 4) in F-list j = 2 and
B-list L2. At en = (4, 8) of F-list j − 1, d = 8 + 4 = 12, tp = 4 + 6 = 10 > TP = 4, add new
e-node (10, 12). At en = (10, 15), d = 15 + 4 = 19 > C (no new e-node added).

� For object j = 3 (w3 = 5, p3 = 9), Step 1 copies (0, 0), (6, 4) of F-list j − 1 to F-list j. In
Step 2, at en = (0, 0) of F-list j − 1, d = 5, tp = 9 > TP = 6 (add new e-node (9, 5)). At
en = (6, 4) of F-list j − 1, d = 4 + 5 = 9, tp = 6 + 9 = 15 > TP = 6 (add new e-node (15, 9)).
At en = (10, 12), d = 17, tp = 19 > TP = 10 (add new e-node (19, 17)).

� For object j = 4 (w4 = 12, p4 = 8), Step 1 copies (0, 0), (6, 4) of F-list j − 1 to F-list j. In
Step 2, at en = (0, 0) of F-list j − 1, compute d = 12, tp = 8 < TP = 15 (no new e-node
added). At en = (6, 4), compute d = 4 + 12 = 16, tp = 6 + 8 = 14 < TP = 15 (no new e-node
added). At en = (9, 5), add this remaining (worth) e-node to F-list j and compute d = 5
+ 12 = 17, tp = 9 + 8 = 17 < TP = 19 (no new e-node added). At en = (15, 9), add this
remaining e-node to F-list j and compute d = 9 + 12 = 21 > C (no new e-node added).
At en = (19, 17), add this remaining e-node to F-list j and compute d = 17 + 12 = 29 > C
(no new e-node added).

Figure 6 shows another example (n = 15, C = 40), P = {17, 14, 14, 15, 12, 16, 13, 15, 16,
18, 22, 24, 21, 13, 11} and W = {11, 14, 7, 5, 10, 12, 5, 8, 5, 11, 9, 10, 8, 5, 6}. The 223 e-nodes
(black + gray) and 103 original e-nodes (black) are reduced over nC = 15 × 40 = 600 cells.
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Figure 6. An example (n = 15, C = 40) of initial reduction (15 × 40-array (=600) to e-nodes (=223)) and
original e-nodes (=103) after F-reduction.

3.2. X-Tracking of the DPT-ListTSR Algorithm

Our X-tracking for solx[n] (Algorithm 8) works on the B-lists (of the original e-nodes),
similar to the effective-tps in the 2D array of the basic DP (Algorithm 1: Lines 9–15). On
B-list X-tracking, moving left/up (from the B-list Ln−1) is processed by the back pointer in
each B-list Lj. Moreover, to simplify the remaining of the X-tracking (after selecting any
xj = 1), the B-reduction (Algorithm 8: Line 4) is used to delete some of the original e-nodes
of B-lists 0 to j − 1 (if e-node.d ≥ node-j.d) after selecting xj (of node-j(tp, d)).

Algorithm 8: X-tracking (for solx) on B-lists of the DPT-ListTSR algorithm.

1. start from B-list Ln−1 up to Lj(tp = soltp); tp = Lj.tp; tw = Lj.tw;
2. while (tp > 0 & j ≥ 0) do
3. solx = solx∪{j}; // union a select object j (xj = 1) with node-j(tp, d);
4. call B-reduction (delete e-node(tp, d) of L0 to Lj−1 if e-node.d ≥ node-j.d);
5. tp = tp-pj; tw = tw-wj; // update remaining (tp, tw);
6. j = moveLEFT-UP(n, C, j, tp, tw, L); // move to next e-node(tp, d = tw);
7. end while.

Figure 7a displays an example of X-tracking (n = 5) on B-lists (Figure 5). From list
Ln−1, moving starts from n − 1 = 4 with tp = 19 (tw = 17) to select x3 = 1. Next, with tp = 10
(tw = 12) after selecting x2 = 1, B-reduction deletes an unused e-node (tp = 10, d = 15) in
list L1 (since e-node.d (= 15) > node-j.d (= 12)) and finally selects x0 = 1. Figure 7b shows a
complex example of X-tracking and B-reduction (n = 15) on B-lists (dark color in Figure 6),
i.e., after selecting x13 = 1, seven original e-nodes (at j = 0–12, d = 39–40) in B-lists are deleted,
after selecting x11 = 1, 14 original e-nodes (at j = 0–10, d = 34–38) in B-lists are deleted,
after selecting x10 = 1, 21 original e-nodes (at j = 0–9, d = 24–33) in B-lists are deleted, after
selecting x8 = 1, 8 original e-nodes (at j = 0–7, d = 15–23) in B-lists are deleted, etc.
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Figure 7. X-tracking and B-reduction: (a) an example (n = 5) of X-tracking for selecting j = 3, 2, 0 and
(b) an example(n = 15) of X-tracking and B-reduction for selecting j = 13, 11, 10, 8, 6, 3.

4. 0/1-mKP Solving by Multi-DPT-ListTSR Plus Unbiased Filtering in Efficient Time

To solve the 0/1 mKP, we propose an efficient novel research track (Figure 8a) by
starting with the exact DP in exponential time O(m!nC) and ending with polynomial time
O(m2n) by our efficient unbiased filtering, while retaining 99% optimal solutions. To
solve this complex NP-hard problem (0/1-mKP), we propose three effective algorithms:
1. the multi-DPT-ListTSR algorithm (for m knapsacks) by applying the exact DPT-ListTSR
algorithm (in Section 3), 2. the exact-fit (best) knapsack order (with m!-to-m2 reduction
by applying the DPT-ListTSR) to achieve the good results as m! orders, and 3. robust
unbiased filtering (for polynomial time). Moreover, Figure 8b presents a variety of
our parallel reduction models based on medium and coarse grains (p ≤ m processors).
First, in Section 4.1, we propose the multi-DPT-ListTSR algorithm to find 99% optimal
solutions (of the 0/1-mKP) in O(m2[n2, nC]) and hence O(m[n2, nC]) in parallel (p = m
processors). Second, in Section 4.2, robust unbiased filtering is incorporated with our
multi-DPT-ListTSR in O(m2(n + C′)) or O(m2n) with C′ (<<C) < large n and O(mn) in
parallel (p = m processors).
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Figure 8. (a) Our novel research track for solving 0/1-mKP in polynomial time with 99% optimal
solutions and (b) our multi-DPT-ListTSR algorithm and efficient parallel models.

4.1. Efficient Multi-DPT-ListTSR Algorithm for Solving 0/1-mKP

The 0/1-mKP is one of the hardest KPs since it is difficult to find the optimal solutions
in O((m + 1)n) by the BnB algorithm, except on small n. For large n, we study the DPT-ListTSR
algorithm (in Section 3) first for the 0/1-KP since its optimal solution can be computed
in O([n2, nC]) in each knapsack (or the internal effect for the 0/1-mKP (m knapsacks)).
Next, we can use m! orders (m knapsacks) directly (for the external effect) in our multi-
DPT-ListTSR algorithm for at least 99% optimal solutions in O(m! [n2, nC]) since the more
orders there are, the higher the optimal precision. However, that exponential complexity
cannot support large m, n, and C. Thus, we propose two efficient order reductions: 1. the
top nine (knapsack) orders in O(m[n2, nC]) for the regular datasets and 2. the exact-fit (best)
knapsack order in O(m2[n2, nC]) for the irregular datasets.

4.1.1. Top Nine Knapsack Orders for Regular Datasets

Initially, the top nine (knapsack) orders are introduced in our multi-DPT-ListTSR
algorithm, which are good enough to solve the 0/1-mKP with 99% optimal solutions for
the regular datasets. Each of the top nine orders is obtained by sorting m capacities (Ci, i = 1,
2, 3, . . . , m). For example (m = 5), the forward order (F) of capacities C = (66, 26, 80, 96, 70)
is (1, 2, 3, 4, 5), and the top three orders are increasing (inc) = (2, 1, 5, 3, 4), decreasing (dec)
= (4, 3, 5, 1, 2), and combined inc-dec = (2, 4, 1, 3, 5). In this study, the top nine effective
orders include increasing (inc), decreasing (dec), combining inc-dec, combining dec-inc,
forward (F), backward (B), odd-even (of F), odd-even (of inc), and odd-even (of dec); see
a corresponding example in Figure 9. Moreover, each result of the top nine orders can
be improved by the Latin square (LS) of m permutations to achieve at least 99% optimal
solutions (for the regular datasets). In practice, the partial LS (first nine permutations) of
the top nine orders are used to preserve the complexity in O(m[n2, nC]) for m > 9.
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Figure 9. An example of the top nine (knapsack) orders and their Latin squares (of m permutations)
for m = 5 knapsacks and C = (66, 26, 80, 96, 70).

Algorithm 9 (multi-DPT-ListTSR) is proposed to solve the 0/1-mKP for each order (of
top nine orders/Latin squares of nine orders) in O(m[n2, nC]). Moreover, in some cases,



Algorithms 2022, 15, 366 14 of 34

there are different Xs (in X-tracking from many soltws of max soltp), called the nonunique
solution Xs, in each knapsack. For the 0/1-KP, X-tracking can start at (soltp, min soltw) or
(soltp, max soltw) for different Xs. For the 0/1-mKP (Algorithm 9: Lines 5–6), knapsack
i (≤ m − 1) should start at (soltp, max soltw) to allow the better result for the remaining
knapsacks, while the last one (i = m) can start at (soltp, min soltw). For example, given a
dataset (n = 25, m = 4, C = (20, 30, 40, 50), P = {17, 10, 14, 18, 14, 15, 27, 11, 12, 16, 24, 13, 22,
26, 15, 16, 18, 22, 19, 24, 21, 13, 14, 11, 28}, and W = {11, 4, 14, 3, 7, 5, 4, 4, 10, 12, 6, 5, 7, 6, 8,
5, 11, 9, 5, 10, 8, 5, 3, 6, 8}). In knapsacks K1 − K2, there are unique X-tracking results, but
nonunique X-results occur in knapsack K3 (C3 = 40, n* = 15, j = {0, 2, 4, 5, 8, 9, 11, 14, 15, 16,
17, 19, 20, 21, 23}). Figure 10a shows the result (393) when starting X-tracking at (103, 39),
min soltw = 39 in K3. Figure 10b shows the optimal result (398) when starting X-tracking
at (103, 40), max soltw = 40 in K3, leading to the better result in knapsack K4 (select j = 0
(w0 = 11, p0 = 17) instead of j = 8 (w8 = 10, p8 = 12) in Figure 10a). Note: In parallel (p = m),
we can assign one order per processor for at most m permutation orders (for independent
computing for p solutions (at the same time) before selecting the best result).
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Algorithm 9: Multi-DPT-ListTSR for one proper order: O(m[n2,nC]).

1. n* = n;
2. for (i = 1 to m) do
3. apply DPT-ListTSR (n* objects) on knapsack i (Ki);
4. call Algorithm 7; // preprocessing (of DPT-ListTSR)
5. if (i < m) start X-tracking at (max tp, max tw);
6. else (i = m) start X-tracking at (max tp, min tw);
7. call Algorithm 8; // X-tracking (of DPT-ListTSR) for max tp
8. Total profit = Total profit + max tp;
9. update n* (exclude ki selected objects of knapsack i);
10. end for i;
11. return Total profit.

4.1.2. The Exact-Fit (Best) Knapsack Order for Regular and Irregular Datasets

For the irregular datasets, we may use all possible m! orders to find at least 99%
optimal solutions in O(m! [n, nC]) but m! orders work on small m only. Thus, for large
m, to achieve the optimal precision as m! orders, we propose the exact-fit (best) knapsack
order (Algorithm 10) in O(m2[n2, nC]), where both internal and external effects must be
solved by the exact DPT-ListTSR algorithm. For the external effect (among m knapsacks),
the DPT-ListTSR algorithm is used for computing the exact (TPi, TWi) in each of available
knapsacks before selecting Ki with the best exact-fiti = min(dFiti), where different Fiti (dFiti)
= Ci − TWi, ∀i ≤ m. For instance, Figure 11 shows the exact-fit (best) order for m = 5,
C = (66, 26, 80, 96, 70), n = 33, P = {18, 44, 7, 21, 22, 29, 42, 24, 36, 17, 13, 23, 12, 25, 15, 41, 15,
19, 33, 5, 8, 18, 28, 25, 12, 30, 19, 14, 48, 25, 16, 23, 25}, and W = {6, 12, 16, 12, 14, 14, 5, 12, 12,
15, 10, 17, 14, 9, 19, 5, 7, 12, 8, 14, 14, 15, 14, 12, 7, 6, 13, 15, 10, 14, 8, 12, 10}. In Figure 11b,
the best order (2, 4, 1, 5, 3) is computed in m(m + 1)/2 = 15 steps by our exact DPT-ListTSR
algorithm to achieve the optimal result (726).

� In the first Ki selection, there are m dFiti-results (in m = 5 steps) with two min(dFits) = 0
(in K2, K3) and K2 (min C2) is selected (see conditions in Step 2 of Algorithm 10).

� In the second Ki selection, there are 4 dFiti-results and K4 (min(dFit4) = 0) is selected.
� In the third Ki selection, there are 3 dFiti-results and K1 (min(dFit1) = 0) is selected.
� In the fourth Ki selection, there are 2 dFiti-results and K5 (min(dFit5) = 0) is selected.
� In the fifth Ki selection, the last K3 (min(dFit3) = 0) in the last step is selected.

Moreover, for critical decisions in some datasets, there are equal min(dFiti)s in Ki′ − Ki′′ .
Then, three extra policies (Step 2 in Algorithm 10) are introduced to find the best of the
three best results (for the good results as m! orders as much as possible).

Algorithm 10: multi-DPT-ListTSR (the exact-fit (best) knapsack order).

Step 1: apply DPT-ListTSR for (TPi,TWi) on each of m knapsacks in O(m[n2, nC]) and O([n2, nC])
in parallel (p = m).

Step 2: select best Ki with min(dFiti); dFiti = Ci -TWi (i = 1, 2, . . . , m).
In Step 2, for critical min(dFiti), each of the three policies is applied.

Policy 1: if (there are equal min(dFiti)s), select best Ki with min(Ci);
if (there are equal min(Ci)s), select best Ki with max(TPi);
Policy 2: if (there are equal min(dFiti)s), select best Ki with max(TPi/TWi);
if (there are equal max(TPi/TWi)s), select best Ki with min(Ci);
if (there are equal min(Ci)s), select best Ki with max(TPi);
Policy 3: if (there are equal min(dFiti)s), select best Ki with max(TPi);
if (there are equal max(TPi)s), select best Ki with min(Ci);

Step 3: update unselected n* = n − k and m’ = m − 1.
Step 4: repeat Step 1–3 on n* and m’ until m’ = 1.
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Figure 11. (a) The exact-fit policy for the best knapsack order and (b) an example of n = 33, m = 5,
C = (66,26,80,96,70) to find the best order (2,4,1,5,3) in m(m + 1)/2 = 15 steps and the optimal
result (726).

In parallel, the multi-DPT-ListTSR (the exact-fit (best) order) can be processed in O(m[n2,
nC]) by p = m. However, O(mnC) in the worst case is not efficient for large m, n, and C.
Thus, in Section 4.2, robust unbiased filtering (our key contribution) is presented in efficient
O(m2n) by p = 1 and O(mn) by p = m while retaining 99% exact precision.

4.2. Efficient Robust Unbiased Filtering for Polynomial Time Reduction

In our novel research track (Figure 8a), the contribution in polynomial time is achieved
by robust unbiased filtering in O(m2(n + C′)) or O(m2n) on C′ (<<C) < large n while retaining
99% optimal solutions. Our (fast and efficient) unbiased filtering can select the outstanding
objects (from n objects), and only uncertain objects (n’ < 300) are considered by the DPT-
ListTSR algorithm (in each knapsack). For the 0/1-mKP, the parameter (γ, α, β)-setting
(in Equations (10)–(14)) was our key contribution to retain 99% optimal precision, as in
our previous work (Algorithm 4) [1]. Usually, the critical and uncertain objects (γ, α, and
β) could not be easily found. In this study, we performed the experiment on a variety of
datasets (including the critical datasets) to classify objects into four groups (see Figure 12)
before performing the efficient unbiased filtering. Variables (γ, α) refer to some critical
objects (in Groups 1–2), another variable β refers to other critical objects (in Group 4), and
most uncertain objects (U) are in Group 3.
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n′ = γ + α + U + β < 300 (10)

γ = min (10, 0.15 × |Group1|); max γ = 10 (11)

α = min (25, 0.85 × |Group2|); max α = 25 (12)

β = min (50, 0.70 × |Group4|); max β = 50 (13)

U = min (200, |Group3|); max U = 200 (14)

From the four groups of object classification (in Figure 12), the dynamic critical region
was studied to limit the critical/uncertain objects (n′ < 300) after filtering while retaining
99% optimal precision. For large n, the variable n′ is γ + α + β + U = 10 + 25 + 50 + 200 = 285
since for large C there are a large number of filtering-in objects (xj = 1) and for small C
there are a large number of filtering-out objects (xj = 0). Efficient filtering (in Algorithm
11: Line 3) is required (in each Ki) before applying the DPT-ListTSR algorithm to n′ and Ci’.
Note: n′ ((temporary) remaining objects after filtering) and n* (remaining objects for next
knapsack) are different. For example, Figure 13 shows the result of object classification for
filtering (n = 25, m = 2, C = (30, 40), P = {17, 10, 14, 18, 14, 15, 27, 11, 12, 16, 24, 13, 22, 26, 15,
16, 18, 22, 19, 24, 21, 13, 14, 11, 28}, and W = {11, 4, 14, 3, 7, 5, 4, 4, 10, 12, 6, 5, 7, 6, 8, 5, 11,
9, 5, 10, 8, 5, 3, 6, 8}) with four-group classification (P/W-rank in each group). Figure 14
demonstrates the result of filtering-in three objects (6, 13, 3) in knapsack K1 (C = 30) and
(temporary) filtering-out four objects (0, 9, 8, 2). For the remaining n′ = 18 and C′ = 17, the
DPT-ListTSR selects three objects (22, 10, 24). Then, there are remaining n* = 19, including
(0, 9, 8, 2). For knapsack K2 (C = 40), the filtering selects three objects (18, 12, 15), and the
DPT-ListTSR selects five objects (5, 7, 11, 21, 1) from n′ = 14, C2

′
= 18. The result of our

multi-DPT-ListTSR + robust filtering is 256 (optimal). In addition, for the irregular datasets,
our robust unbiased filtering can select some of n objects before packing the remaining n′

(<300) by the DPT-ListTSR in each knapsack. Figure 15 shows the optimal solution (726)
by our efficient filtering, similar to Figure 11 (by our original multi-DPT-ListTSR). See the
experimental results of regular and irregular datasets in Section 6.

Algorithms 2022, 15, x FOR PEER REVIEW 17 of 35 
 

4.2. Efficient Robust Unbiased Filtering for Polynomial Time Reduction 
In our novel research track (Figure 8a), the contribution in polynomial time is 

achieved by robust unbiased filtering in O(m2(n + C’)) or O(m2n) on C’ (<<C) < large n 
while retaining 99% optimal solutions. Our (fast and efficient) unbiased filtering can se-
lect the outstanding objects (from n objects), and only uncertain objects (n’ < 300) are 
considered by the DPT-ListTSR algorithm (in each knapsack). For the 0/1-mKP, the pa-
rameter (γ, α, β)-setting (in Equations (10)–(14)) was our key contribution to retain 99% 
optimal precision, as in our previous work (Algorithm 4) [1]. Usually, the critical and 
uncertain objects (γ, α, and β) could not be easily found. In this study, we performed the 
experiment on a variety of datasets (including the critical datasets) to classify objects into 
four groups (see Figure 12) before performing the efficient unbiased filtering. Variables 
(γ, α) refer to some critical objects (in Groups 1–2)), another variable β refers to other 
critical objects (in Group 4)), and most uncertain objects (U) are in Group 3. 

n’ =  γ + α + U + β < 300 (10)

γ =  min (10, 0.15 × |Group1|); max γ = 10 (11)

α  =  min (25, 0.85 × |Group2|); max α = 25 (12)

β  =  min (50, 0.70 × |Group4|); max β = 50 (13)

U  =  min (200, |Group3|); max U = 200 (14)

From the four groups of object classification (in Figure 12), the dynamic critical re-
gion was studied to limit the critical/uncertain objects (n’ < 300) after filtering while re-
taining 99% optimal precision. For large n, the variable n’ is γ + α + β + U = 10 + 25 + 50 + 
200 = 285 since for large C there are a large number of filtering-in objects (xj = 1) and for 
small C there are a large number of filtering-out objects (xj = 0). Efficient filtering (in Al-
gorithm 11: Line 3) is required (in each Ki) before applying the DPT-ListTSR algorithm to n’ 
and Ci’. Note: n’ ((temporary) remaining objects after filtering) and n* (remaining objects 
for next knapsack) are different. For example, Figure 13 shows the result of object classi-
fication for filtering (n = 25, m = 2, C = (30, 40), P = {17, 10, 14, 18, 14, 15, 27, 11, 12, 16, 24, 
13, 22, 26, 15, 16, 18, 22, 19, 24, 21, 13, 14, 11, 28}, and W = {11, 4, 14, 3, 7, 5, 4, 4, 10, 12, 6, 5, 
7, 6, 8, 5, 11, 9, 5, 10, 8, 5, 3, 6, 8}) with four-group classification (P/W-rank in each group). 
Figure 14 demonstrates the result of filtering-in three objects (6, 13, 3) in knapsack K1 (C = 
30) and (temporary) filtering-out four objects (0, 9, 8, 2). For the remaining n’ = 18 and C’ = 
17, the DPT-ListTSR selects three objects (22, 10, 24). Then, there are remaining n* = 19, in-
cluding (0, 9, 8, 2). For knapsack K2 (C = 40), the filtering selects three objects (18, 12, 15), 
and the DPT-ListTSR selects five objects (5, 7, 11, 21, 1) from n’ = 14, C2′ = 18. The result of 
our multi-DPT-ListTSR + robust filtering is 256 (optimal). In addition, for the irregular 
datasets, our robust unbiased filtering can select some of n objects before packing the 
remaining n’ (<300) by the DPT-ListTSR in each knapsack. Figure 15 shows the optimal 
solution (726) by our efficient filtering, similar to Figure 11 (by our original mul-
ti-DPT-ListTSR). See the experimental results of regular and irregular datasets in Section 6. 

 
Figure 12. Four groups of object classification and efficient filtering for remaining n’ < 300. 

dw = 9 dw = 8,6,5 α dw= 0
Group1 Group2 Group4 

γ
Group3
dw = 4,3,1

5010(xj = 1) (xj = 1)
β

(xj = 0)(xj= 0)

Dynamic Critical Region (n’ = γ+(α+U)+β < 300)

25   200

Figure 12. Four groups of object classification and efficient filtering for remaining n′ < 300.

Algorithms 2022, 15, x FOR PEER REVIEW 18 of 35 
 

 

 
Figure 13. An example (n = 25, m = 2, C = (30, 40)) and object classification for knapsack1 (K1). 

 
Figure 14. An example of robust unbiased filtering before applying DPT-ListTSR on n’ in K1 and K2. 

 
(a) 

 
(b) 

3 GH+ solutions and dw (dynamic weight) for filtering
X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
P 17 10 14 18 14 15 27 11 12 16 24 13 22 26 15 16 18 22 19 24 21 13 14 11 28
W 11 4 14 3 7 5 4 4 10 12 6 5 7 6 8 5 11 9 5 10 8 5 3 6 8

P/W 1.5 2.5 1 6 2 3 6.8 2.8 1.2 1.3 4 2.6 3.1 4 2 3.2 1.6 2 4 2.4 2.6 2.6 4.7 1.8 3.5
GH1+ 0 0 0 5 0 0 5 0 0 0 5 0 0 5 0 0 0 0 0 0 0 0 5 0 5
GH2+ 0 0 0 0 0 0 3 0 0 0 0 0 3 3 0 0 0 0 3 0 0 0 0 0 3
GH3+ 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
dw 0 1 0 6 0 0 9 1 0 0 5 0 3 9 0 0 0 0 4 0 0 0 6 0 8

Group 1 (dw=9)       
Group 2 (dw=8,6,5) 
Group 3 (dw=4,3,1)
Group 4 (dw=0)

Object Classification for Robust Filtering

18, 12  7,  1

6, 13
3, 22, 10, 24

15,5,20,11,21,17,19,4,14,23,16,0,9,8,2

γ = 0  
α = 3 

β = 11 
U = 4 

6,13,3 22,10,24,18,12,7,1,15,5,20,11,21,17,19,4,14,23,16
Filtering-in

0,9,8,2
n’ (temporary) Filtering-out

3
3

18
4
6

27
6
10

24
6
13

26
3

22

14
8
24

28

j
wj
pj

Knapsack 1
(C1=30) tp1=137

tw1=30

(Remaining n’=18, C1’=17)
22,10,24,18,12,7,1,15,5,20,11,21,17,19,4,14,23,166, 13, 3

Filtering-in

0, 9, 8, 2
(temporary) Filtering-out

n = 25

5
5

15
5
11

13
5
15

16
5
18

19
Knapsack 2
(C2=40)

j
wj
pj

4
1

10
4
7

11
7

12

22
5
21

13
tp2=119
tw2=40

n*= 19
(Remaining n’=14, C2’=18)

5,7,20,11,21,1,17,19,4,14,23,16,0,918, 12, 15
Filtering-in

8, 2
(temporary) Filtering-out

and  tp=137+119=256tw=30+40=70

...

xj=1

xj=1

xj=1

Knapsack 1: C1

xj=1

Knapsack 2: C2

Knapsack 3: C3

Knapsack m: Cm

dFit1=C1-TW11-TW12

dFit2=C2-TW21-TW22

dFit3=C3-TW31-TW32

dFitm=Cm-TWm1-TWm2

select Ki by best exact-Fiti = min(dFiti)
(i = 1, 2, 3, …, m) 

if equal min(dFiti)s,select Ki with min(Ci)
if equal min(Ci)s,select Ki with max(TPi)

Major key

Minor keys

P1

P2

P3

Pm

..

Object classification  Filtering-in DPT-LiistTSR (n’, Ci ’) in each Ki

...

0,5,30,32

7,16,23,30,32

K1: C1 = 66
K3: C3 = 80
K4: C4 = 96
K5: C5 = 70

(dFit1=C1–TW1=1)
2nd selected Ki (in the exact-fit (best) order) by p=m’=m-1 (in parallel), m’=4 

TP1=197 (102+95), TW1=65 (29+36)

(dFit3=C3–TW3=1)TP3=226 (138+88), TW3=79 (41+38)

(dFit4=C4–TW4=0)TP4=261(156+105),TW4=96 (47+49)

(dFit5=C5–TW5=1)TP5=206 (113+93), TW5=69 (32+37)

0,8,30,32

3,4,22,29

4,5,29,31

K1: C1 = 66
K3: C3 = 80
K5: C5 = 70

(dFit1=C1–TW1=0)
3rd selected Ki (in the exact-fit (best) order) by p=m’=m-2 (in parallel), m’=3 

TP1=126 (29+97), TW1=66 (14+52)

(dFit3=C3–TW3=0)TP3=148 (52+96), TW3=80 (26+54)

(dFit5=C5–TW5=2)TP5=127 (28+99), TW5=68 (4+64)

3,22,29,31

10,12,24,26

K3: C3 = 80

K5: C5 = 70

(dFit3=C3–TW3=2)

4th selected Ki (in the exact-fit (best) order) by p=m’=m-3 (in parallel), m’=2 

TP3=113 (60+53), TW3=78 (39+39)

(dFit5=C5–TW5=0)TP5= 97 (41+56),  TW5=70 (26+44)

11,21,24

K3: C3 = 80 (dFit3=C3–TW3=0)
5th selected Ki (in the exact-fit (best) order) by p=1, m’=1 

TP3= 81 (35+46),  TW3=80 (30+50)11,14,20

select K4 

select K1 

select K5 

select K3 

1,8,13,18

0,1,13,23,32

0,8,13,16

K1: C1 = 66

K3: C3 = 80

K4: C4 = 96
K5: C5 = 70 (dFit5= C5–TW5=3)

1st selected Ki (in the exact-fit (best) order) by p=m (in parallel), m=5 

TP5=299 (161+138),TW5=67 (26+41)

(dFit2=C2–TW2=0)TP2=161 (83+78),  TW2=26 (10+16)

(dFit3=C3–TW3=0)TP3=332 (238+94), TW3=80 (46+34)

(dFit4=C4–TW4=1)TP4=367 (230+137),TW4=95 (46+49)

select K2 K2: C2 = 26 25,28

(dFit1=C1–TW1=2)TP1=292 (161+131),TW1=64 (26+38)

0,13,23,32

6,15, 
25,28 0,1,8,18

6,15

1,6,15,18, 
25,28
6,8,15,18, 
25,28
6,15,
25,28

1,13,18

1,8,13,18

0,1,8,13,18

1,8,18

5

5,31

22

4,17,26

4,17

9,21

(TP2=161) 

(TP4=261) 

(TP1=126) 

(TP5= 97) 

(TP3= 81) 

Filtering-in

Filtering-in

Filtering-in

Filtering-in

Filtering-in

dFit2=0  C2=26

dFit3=0  C3=80

equal min(dFits)

dFit4=0

dFit1=0  C1=66

dFit3=0  C3=80

equal min(dFits)

dFit5=0

dFit3=0

Figure 13. An example (n = 25, m = 2, C = (30, 40)) and object classification for knapsack1 (K1).
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Figure 14. An example of robust unbiased filtering before applying DPT-ListTSR on n′ in K1 and K2.
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Figure 15. (a) The exact-fit policy plus efficient filtering for the best knapsack order and (b) an
example of n = 33, m = 5, C = (66, 26, 80, 96, 70) to find the best order (2, 4, 1, 5, 3) in m(m + 1)/2 = 15
steps and the optimal result (726) by the multi-DPT-ListTSR + robust unbiased filtering.

Algorithm 11: Multi-DPT-ListTSR + robust unbiased filtering.

1. n* = n;
2. for (i = 1 to m) do
3. do object classification and unbiased filtering (for Filter-tp) on n*;
4. apply DPT-ListTSR (n′ < 300) on knapsack i (Ci’);
5. call Algorithm 7 (preprocessing on remaining n′, Ci’);
6. if (i < m) start = (max tp,max tw) else start = (max tp,min tw);
7. call Algorithm 8 (X-tracking on n′ for solx from max tp);
8. Total profit = Total profit + Filter-tp + max tp;
9. update n* (exclude ki selected objects of knapsack i);
10. end for i;
11. return Total profit.
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5. Analysis of Proposed Algorithms

The correctness of the DPT-ListTSR algorithm for solving the 0/1-KP was proven in
Section 5.1 and its complexity was analyzed in Section 5.2. For solving the 0/1-mKP, the
high (optimal) precision (as m! orders) of the exact-fit (best) knapsack order was presented
in Section 5.3. Finally, the 99% optimal precision of the robust unbiased filtering for solving
the 0/1-KP and the 0/1-mKP were analyzed in Section 5.4.

5.1. Correctness of the DPT-ListTSR Algorithm

The DPT-ListTSR algorithm (in Section 3) was designed to solve the 0/1-KP in O([n2,
nC]) on the efficient lists, which can find the optimal solutions as the best DP (Algorithm 1:
O(nC) on a 2D-array (n × C)) before being applied in each of m knapsacks.

Our DPT-ListTSR algorithm can reduce not only the redundant computing time but
also the space consumption (of the basic DP: Algorithm 1) while retaining the correctness.
Our focus is the DP transformation of the 2D array (nxC) to the efficient lists of e-nodes.
Our preprocessing (Algorithm 7) employs two (temporary) F-lists (of objects j − 1 and j)
to inherit all worth e-nodes (of objects 0 to j − 1) and compute new e-nodes (improved tp
values by the current object j) before saving only the original e-nodes in B-list j.

To clarify our correct transformation, Figure 16 shows the construction of e-nodes (of
F-lists j) in Figure 5 (n = 5). For object j = 1 (p1 = 10, w1 = 15), Figure 16a displays the F-list j
construction. After the initial copy of two e-nodes (cn = (tp, d) = (0, 0) and (4, 8)) from F-list
j − 1 (while cn.tp < p1 and cn.d < w1) to F-list j, the rest of F-list j is fulfilled. For the first
e-node en = (0, 0) of F-list j − 1, a new e-node (10, 15) with d = 15 < C and tp = 10 > TP = 4 is
added to the end of F-list j. For the next en = (4, 8), compute d = 8 + 15 = 23 > C (no new
e-node is added). For object j = 3 (p3 = 9, w3 = 5), Figure 16b shows the F-list j construction
in three steps. After the initial copy of two e-nodes (cn = (0, 0) and (6, 4)) from F-list j − 1
(while cn.tp < p3 and cn.d < w3) to F-list j, the rest of F-list j is fulfilled. For en = (0, 0), a new
e-node (9, 5) is added to F-list j. Second, for en = (6, 4), a new e-node (6 + 9, 4 + 5) = (15, 9) is
added to F-list j. Third, for en = (10, 12), this remaining e-node is not inherited, whereas a
new e-node (10 + 9, 12 + 5) = (19, 17) is added to F-list j. Note: Function “inherit remaining
e-node” (in Algorithm 7: Line 6) is presented in Figure 16b; see the complex inherited results
in Figure 6 (n = 15). Finally, our X-tracking (Algorithm 8) can find solx[n] from the original
e-nodes (on the B-lists in Figure 7), similar to the basic DP (on the 2D-array).
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Figure 16. An example of the correct F-list j construction (n = 5 in Figure 5): (a) F-list j = 1 (add a new
e-node to tail of F-list j) and (b) F-list j = 3 (add each of three new e-nodes to tail of F-list j).
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5.2. Complexity Analysis of the DPT-ListTSR Algorithm

The time complexity of our DPT-ListTSR algorithm for solving the 0/1-KP is O([n2, nC]),
according to the efficient reduction of computing time and using space; see Figure 17 (our
efficient time-space reduction). Our time complexity depends on the number of e-nodes of
the (temporary) F-list j for all j = 0, 1, 2, 3, . . . , n − 1, where |F-list j| ≤ 2|F-list j − 1|; see
a simple example (n = 5) in Figure 5. The (initial) F-list j contains one e-node (tp, d) = (0, 0).
For object j = 0, there are at most two e-nodes (≤2 nodes). For object j = 1 (≤ 4 nodes) and
for any j (≤ 2 × 2j−1 nodes), the time complexity of our DPT-ListTSR algorithm can be the
best, average, or worst cases, depending on the datasets. Figure 5 displays one of the best
cases (n = 5, C = 18, e-nodes = 19, and original e-nodes = 7, reduced from nC = 90 elements).
Thus, in this analysis, the best and worst cases can be derived as follows:

- Best case: Total steps (n objects (j = 0 to n − 1)) are approximately 1 + 2 + 4 + . . . + 2(j
+ 1) + . . . + 2n ≈ n(n + 1) = O(n2).

- Worst case (rarely occurs): Total steps are approximately 1 + 2 + (≤4) + (≤8) + . . . +
(≤2 × 2j) + . . . + (≈n × C/2) = O(nC).
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Figure 17. Time and space reduction of DPT-ListTSR for the 0/1-KP.

The worst case (the e-nodes of F-listn−1 = |F-listn−1| ≈ C) hardly occurs due to some
remaining e-nodes of F-list j − 1 are not inherited to F-list j (see a clarified example in
Figure 16b) and no additional new e-nodes in F-list j when considering some (worst) objects
j (such as large wj or tiny profit pj) by two conditions: 1. node.tp + pj < tp[d] (no improved
tp) and 2. node.d + wj > C (at d + wj, object j cannot be packed in the knapsack), such as
no additional new e-node for object j = 4 (in Figure 5). Figure 6 shows an example of a
regular/average case (n = 15, C = 40, nC = 600, e-nodes = 223, and original e-nodes = 103).
The time complexity of the average case arises in most datasets (≈(best + worst)/2 < nC/2).
Since a weight wj of object j can be 1 ≤ wj < C, the average wj is approximately C/n. For
wj ≥ C/n, usually no e-node is added (because of the condition node.d + wj > C).

For m knapsacks, the time complexity of our multi-DPT-listTSR algorithm for solving
the 0/1-mKP is O(m[n2, nC]) with any effective knapsack order (including top nine orders)
and O(m2[n2, nC]) for the exact-fit (best) order in m(m + 1)/2 steps; see Section 5.3.

For space complexity, Figure 17 illustrates our three steps of space reduction: 1. e-
nodes (<nC), 2. original e-nodes, and 3. tight bound of e-nodes; see Figure 5 (n = 5, C = 18)
and Figure 7b (n = 15, C = 40). In our experiment, Section 6.1, displays the observed results
(n ≤ 3000), where after F-reduction the original e-nodes are a function of cn2 (<n3, c = a
constant) and hence after B-reduction the original e-nodes are less than n2.

5.3. High (Optimal) Precision (as m! Orders) of the Exact-Fit (Best) Knapsack Order

In our novel research track (Figure 8), we study by starting with the exact DP for the
optimal solution in one knapsack to m knapsacks. In Section 3, we propose the DPT-ListTSR
algorithm to find the optimal solution in O([n2, nC]) for each knapsack. In Section 4, we
propose the efficient order reduction for m knapsacks (over m! orders), which are 1. the
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top nine effective orders in our multi-DPT-ListTSR algorithm in O(m[n2, nC]) for the regular
datasets, and 2. the exact-fit (best) order in our multi-DPT-ListTSR algorithm in O(m2[n2,
nC]) for the irregular datasets, where the DPT-ListTSR algorithm is applied in the internal
and external effects (in each knapsack and among m knapsacks).

For the regular datasets, an effective order is increasing Ci; see Figure 18 (selecting k
candidates (objects), 0 ≤ j ≤ n − 1, for m positions (knapsacks with capacity Ci, i = 1, 2,
. . . , m) in a company/organization, the profit pj (knowledge), and the weight wj (negative
attitude/greedy weight)). For large m, the (fast) top nine effective orders (in Section 4.1.1)
are presented and later improved by the LS of m permutations, where the partial LS (first
nine permutations of each order) is concerned in O(m[n2, nC]), see Table 1 (the proposed
reduction orders and all possible m! orders (for 5 ≤ m ≤ 100)).

Algorithms 2022, 15, x FOR PEER REVIEW 21 of 35 
 

The worst case (the e-nodes of F-listn−1 = |F-listn−1| ≈ C) hardly occurs due to some 
remaining e-nodes of F-list j − 1 are not inherited to F-list j (see a clarified example in 
Figure 16b) and no additional new e-nodes in F-list j when considering some (worst) ob-
jects j (such as large wj or tiny profit pj) by two conditions: 1. node.tp + pj < tp[d] (no im-
proved tp) and 2. node.d + wj > C (at d + wj, object j cannot be packed in the knapsack), such 
as no additional new e-node for object j = 4 (in Figure 5). Figure 6 shows an example of a 
regular/average case (n = 15, C = 40, nC = 600, e-nodes = 223, and original e-nodes = 103). 
The time complexity of the average case arises in most datasets (≈(best + worst)/2 < nC/2). 
Since a weight wj of object j can be 1 ≤ wj < C, the average wj is approximately C/n. For wj ≥ 
C/n, usually no e-node is added (because of the condition node.d + wj > C). 

For m knapsacks, the time complexity of our multi-DPT-listTSR algorithm for solving 
the 0/1-mKP is O(m[n2, nC]) with any effective knapsack order (including top nine orders) 
and O(m2[n2, nC]) for the exact-fit (best) order in m(m + 1)/2 steps; see Section 5.3. 

For space complexity, Figure 17 illustrates our three steps of space reduction: 1. 
e-nodes (<nC), 2. original e-nodes, and 3. tight bound of e-nodes; see Figure 5 (n = 5, C = 
18) and Figure 7b (n = 15, C = 40). In our experiment, Section 6.1, displays the observed 
results (n ≤ 3000), where after F-reduction the original e-nodes are a function of cn2 (<n3, c 
= a constant) and hence after B-reduction the original e-nodes are less than n2. 

5.3. High (Optimal) Precision (as m! Orders) of the Exact-Fit (Best) Knapsack Order 
In our novel research track (Figure 8), we study by starting with the exact DP for the 

optimal solution in one knapsack to m knapsacks. In Section 3, we propose the 
DPT-ListTSR algorithm to find the optimal solution in O([n2, nC]) for each knapsack. In 
Section 4, we propose the efficient order reduction for m knapsacks (over m! orders), 
which are 1. the top nine effective orders in our multi-DPT-ListTSR algorithm in O(m[n2, 
nC]) for the regular datasets, and 2. the exact-fit (best) order in our multi-DPT-ListTSR al-
gorithm in O(m2[n2, nC]) for the irregular datasets, where the DPT-ListTSR algorithm is 
applied in the internal and external effects (in each knapsack and among m knapsacks). 

For the regular datasets, an effective order is increasing Ci; see Figure 18 (selecting k 
candidates (objects), 0 ≤ j ≤ n − 1, for m positions (knapsacks with capacity Ci, i = 1, 2, …, 
m) in a company/organization, the profit pj (knowledge), and the weight wj (negative at-
titude/greedy weight)). For large m, the (fast) top nine effective orders (in Section 4.1.1) 
are presented and later improved by the LS of m permutations, where the partial LS (first 
nine permutations of each order) is concerned in O(m[n2, nC]), see Table 1 (the proposed 
reduction orders and all possible m! orders (for 5 ≤ m ≤ 100)). 

 
Figure 18. An example of increasing Ci (an effective knapsack order) for the 0/1-mKP. 

  

The top (best) position (first)C1

The 2nd best  position
The 3rd best position

The fundamental 
position (last)

. . .

. . .

C2

C3

Ci

Cm

Cm-1

xj=1 and zj=i ∈{1,2,…,m}

xj = 0 (unselected objects)

...

...

Increasing Capacity Ci

. . .

(an effective order)

available capacity Ci
(for each position in a 
company/organization)

. . .

Figure 18. An example of increasing Ci (an effective knapsack order) for the 0/1-mKP.

Table 1. All possible (m!) knapsack orders and the proposed effective orders for the 0/1-mKP.

m
Knapsacks

All Orders
(m!)

Exact-Fit/Best
(m(m + 1)/2)

Top (9)
Orders

Partial LS
Min (9 m, 9 × 9)

Full LS
(9 m)

5 120 15 9 45 45
6 720 21 9 54 54
7 5040 28 9 63 63
8 40,320 36 9 72 72
9 326,880 45 9 81 81
10 3,268,800 55 9 81 90
20 20! 210 9 81 180
50 50! 1275 9 81 450

100 100! 5050 9 81 900

For the irregular datasets, we can use m! orders to achieve at least 99% optimal
solutions but in exponential time O(m! [n2, nC]). To reduce the time complexity and retain
99% optimal precision, the exact DPT-ListTSR algorithm is applied for not only the internal
effect (for the optimal solution in each knapsack) but also the external effect (for the best
order among m knapsacks). For the external effect, the DPT-ListTSR algorithm is used
to find all exact-fit knapsacks before selecting the best knapsack and repeating the same
process for the remaining objects and knapsacks. The exact-fit (best) order (Algorithm 10)
is determined in m(m + 1)/2 steps in O(m2[n2, nC]). In particular, the best knapsack Ki is
selected by the best exact-fiti = min(dFiti); dFiti = Ci − TWi, where the exact TPi and TWi are
computed by the DPT-ListTSR algorithm in each of the available knapsacks; see Figure 11
(n = 33, m = 5). Moreover, if there are equal min(dFiti)s in more than one Ki (in the critical
decision) in step 2 of Algorithm 10, then three proper policies are used to find the best of
three best solutions. See the confirmed results (99% optimal solutions) in Section 6.3.

5.4. High (Optimal) Precision of the Robust Unbiased Filtering

The exact DP + unbiased filtering [1] can solve the 0/1-KP in O(n + C′), C′ << C with
at least 95% optimal precision. Thus, we can adopt the process of unbiased filtering for the
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0/1-mKP. Initially, all objects are classified (into four groups) by dynamic weighting (dw),
integrated from three effective ranks (P/W, P, W); see Figure 19a, where two parameters
(α, β)) were defined to handle special objects (called outliers) in unbiased filtering [1] for
the 0/1-KP with 95% optimal solutions. In this study, to achieve 99% optimal solutions for
the 0/1-mKP, the (γ, α, β) parameters are introduced by studying all datasets (i.e., most
datasets are regular (≈90%) and irregular datasets are ≈10%). In our robust unbiased
filtering, the (γ, α, β, U) parameters are determined in Equations (10)–(14), where the
critical objects are in low rank in Group 1 (γ) and Group 2 (α) and in top rank in Group
4 (β), and most uncertain objects (U) are in Group 3. Figure 19a shows that some objects
(around the critical points in the three ranks (P/W, P, or W)) are the critical objects (γ, α,
β). All uncertain/critical objects (n′< 300) can be solved by the DPT-ListTSR algorithm in
O(n + C′). Figure 19b shows the idea of 99% optimal precision (due to our robust unbiased
filtering) in each knapsack of the 0/1-mKP; see in the observed results (in Section 6).
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classification and (b) robust unbiased filtering and DPT-ListTSR for remaining n′ < 300.

6. Experimental Results

Experiments were conducted to evaluate the DPT-ListTSR algorithm and robust unbi-
ased filtering for the 0/1-KP (Section 6.1) to ensure at least 99% optimal precision (in each
knapsack) before applying to the 0/1-mKP (Sections 6.2 and 6.3) by the multi-DPT-ListTSR
algorithm (the best knapsack-order for m knapsacks) and robust unbiased filtering.

6.1. Results of the DPT-ListTSR (One Knapsack) and Robust Unbiased Filtering

For solving the 0/1-KP, we generated a variety of random datasets (dynamic seeds)
with a number of uniform distributions to obtain the profits and weights of n objects
(n ≤ 10,000). The experiment was conducted to evaluate the performance of robust un-
biased filtering. In the experimental results, our DPT-ListTSR + robust unbiased filtering
could find the exact solutions in each of the datasets (n ≤ 10,000), while there were 223 (of
10,000) datasets for which the recent TSReduction + unbiased filtering [1] could not find the
optimal solutions. Table 2 shows the empirical results of the first 23 of 223 special datasets
(or irregular datasets), n = 12, 14, 21, 26, 39, . . . , 385 (observed on n = 5, 6, 7, . . . , 9999,
10,000).
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Table 2. Experimental results of irregular datasets (23 of 223), observed from n = 5, 6, 7, . . . , 10,000.

Total Weight (soltw) Total Profit (soltp)

n C DPT-List
(Opt.) DPT + rFilter TSR + uFilter

[1]
DPT-List

(Opt.)
DPT +
rFilter

TSR + uFilter
[1]

12 96 96 96 92 282 282 280
14 112 111 111 109 365 365 362
21 168 168 168 167 500 500 498
26 208 208 208 203 637 637 636
39 312 312 312 312 868 868 866
45 360 360 360 360 1177 1177 1172
73 510 510 510 509 1640 1640 1639
80 559 559 559 558 1712 1712 1711
81 566 566 566 566 1888 1888 1886
143 1000 1000 1000 1000 3084 3084 3082
147 1028 1028 1028 1028 3250 3250 3239
155 1084 1084 1084 1083 3440 3440 3437
166 1161 1161 1161 1161 3617 3617 3616
182 1273 1273 1273 1273 3967 3967 3966
197 1378 1378 1378 1378 4534 4534 4533
199 1392 1392 1392 1391 4561 4561 4560
247 1481 1481 1481 1480 4822 4822 4821
276 1655 1655 1655 1655 5446 5446 5445
286 1715 1715 1715 1715 5889 5889 5888
316 1895 1895 1895 1895 6266 6266 6257
329 1973 1973 1973 1973 6484 6484 6469
360 2159 2159 2159 2159 6985 6985 6984
385 2309 2309 2309 2309 7710 7710 7709

Table 3 presents the optimal performance of our DPT-ListTSR + robust unbiased filter-
ing for at least 99% optimal solutions (on n ≤ 10,000) compared to our previous work [1].
In this experiment, there exist irregular datasets ≈10% (from all 10,000 random datasets),
where unbiased filtering (in TSReduction) [1] could handle ≈5% and our robust unbiased
filtering (in DPT-ListTSR) could handle ≈9.9%. Table 4 displays our space reduction, ob-
served on n ≤ 3000 (with runtime < 1 min per n). Our F-reduction can save space 69–92%,
and our B-reduction can save space 84–93%.

Table 3. Optimal precision of the DPT-ListTSR + robust filtering (n ≤ 10,000).

DPT-List + Robust Filtering TSR + Unbiased Filtering [1]

n: Datasets not Opt. Optimal Precision not Opt. Optimal Precision

5 ≤ n ≤ 100 0 95 99.9% 9 86 90.0%
5 ≤ n ≤ 200 0 195 99.9% 16 179 92.0%
5 ≤ n ≤ 500 0 495 99.9% 23 472 95.4%
5 ≤ n ≤ 2000 0 1995 99.9% 28 1967 98.6%
5 ≤ n ≤ 5000 0 4995 99.9% 109 4886 97.8%

5 ≤ n ≤ 10,000 0 9995 99.9% 223 9772 97.8%
Note: 99% optimal solutions refer to “For 100 observed datasets, we could find 99 optimal solutions”.

Table 4. Performance (percentage) of space reduction by the DPT-ListTSR (n ≤ 3000).

n n × C
(Full Space)

e-Nodes
(1. Initial Reduction)

Original e-Nodes
(2. F-reduction)

Tight-Bound e-Nodes
(3. B-Reduction)

5 90 13 86% 7 92% 6 93%
15 600 223 63% 103 83% 50 92%
50 17,450 6559 62% 2465 86% 1917 89%
100 69,900 35,852 49% 15,263 78% 10,849 84%
200 239,800 150,518 37% 66,883 72% 35,932 85%
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Table 4. Cont.

n n × C
(Full Space)

e-Nodes
(1. Initial Reduction)

Original e-Nodes
(2. F-reduction)

Tight-Bound e-Nodes
(3. B-Reduction)

500 1,250,000 915,303 27% 374,729 70% 173,786 86%
1000 5,000,000 3,832,827 23% 1,566,414 69% 692,691 86%
1500 11,250,000 8,669,932 23% 3,364,525 70% 1,581,133 86%
2000 11,998,000 10,322,643 14% 3,293,641 73% 1,115,040 91%
2500 18,747,500 16,071,768 14% 5,338,435 72% 1,752,052 91%
3000 26,997,000 23,225,460 14% 7,497,627 72% 2,620,552 90%

6.2. Results of the Multi-DPT-ListTSR (m Knapsacks) and Robust Unbiased Filtering

For solving the 0/1-mKP, the optimal performance of our multi-DPT-ListTSR algorithm
with the proper (knapsack) orders (i.e., top nine orders, Latin squares, the exact-fit (best)
order) was evaluated by comparison to the optimal solutions. In practice, the fast response
time of our multi-DPT-ListTSR with robust unbiased filtering was observed, while retaining
the high performance. In this experiment, a number of random datasets were generated
for n (≤10,000) objects and m (≤100) knapsacks with a variation of capacities (i.e., Ci ± 10,
Ci ± 15, Ci ± 20, etc.). In addition, the benchmark datasets [34] were observed and the
empirical results were compared to the optimal solutions.

In performance (total profit) evaluation, we focus on the investigation of 1. the exact-fit
best (knapsack) order in our multi-DPT-List algorithm (for 99% optimal solutions in theory)
and 2. the robust unbiased filtering (in polynomial time) to confirm 99% optimal solutions.
We implemented our multi-DPT-List (the exact-fit best order) and the fast multi-DPT-List
+ robust filtering compared to the optimal solutions. For the practical polynomial-time
evaluation, the fast response time of our multi-DPT-List + robust filtering was compared to
the quick multi-GH+ (a well-known heuristic algorithm).

For the performance comparison, the (known) optimal solutions of the 0/1-mKP (in
Column 2 of Tables 5–10) can be computed by using a large knapsack (Cs = ∑m

i=1 Ci) by the
exact DP or our DPT-List in the (regular and irregular) datasets.

The implemented programs of three main approaches (in this experiment) are

Exact 1.1 Multi-DPT-List (exact-fit best order) O(m2[n2,nC])

Exact + Filtering
2.1 Fast multi-DPT-List + filtering (exact-fit best order)
2.2 Fast multi-DPT-List + filtering (top 9 orders + partial LSs)
2.3 Fast multi-DPT-List + filtering (top 9 orders)

O(m2n)
O(mn)
O(mn)

Heuristic
3.1 Quick multi-GH (P/W rank) (top 9 orders)
3.2 Improved multi-GH+ (P/W rank) (top 9 orders)
3.3 Improved multi-GH+ (P/W rank) (top 9 + full LS orders)

O(mn)
O(mn)

O(m2n)

Table 5. Results (total profits) of datasets with capacities C ± 10 (m = 2).

m = 2 Optimal mDPT-L
m! O(m[n2, nC])

mDPT-L +
Filter

m! O(mn)
mGH

m! O(mn)
mGH+

m! O(mn)

n m! = 2 m! = 2 m! = 2 m! = 2
15 315 315 315 308 310
20 420 420 420 393 420
30 800 800 800 790 796
40 1050 1050 1050 1022 1047
50 1019 1019 1019 1006 1013

100 2359 2359 2359 2313 2357
200 3878 3878 3878 3860 3870
300 6202 6202 6202 6171 6196
400 7686 7686 7686 7654 7683
500 9074 9074 9074 9045 9072
1000 18,038 18,038 18,038 18,002 18,031
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Table 6. Results (total profits) of datasets with capacities C ± 15 (m = 3).

m = 3 Optimal mDPT-L
m! O(m[n2, nC])

mDPT-L + Filter
m! O(mn)

mGH
m! O(mn)

mGH+

m! O(mn)

n m! = 6 m! = 6 m! = 6 m! = 6

15 327 327 327 320 322
20 466 466 466 454 466
30 840 840 840 829 839
40 1103 1103 1103 1090 1099
50 1067 1067 1067 1031 1062

100 2427 2427 2427 2390 2426
200 3949 3949 3949 3908 3943
500 9150 9150 9150 9133 9148

1000 18,112 18,112 18,112 18,088 18,110
2000 25,547 25,547 25,547 25,524 25,544

Table 7. Results (total profits) of datasets with capacities C ± 20 (m = 4).

m = 4 Optimal mDPT-L
m! O(m[n2, nC])

mDPT-L + Filter
m! O(mn)

mGH
m! O(mn)

mGH+

m! O(mn)

n m! = 24 m! = 24 m! = 24 m! = 24

20 495 495 495 490 490
30 884 884 884 884 884
40 1200 1200 1200 1187 1192
50 1137 1137 1136 1121 1136
60 1504 1504 1504 1472 1499

100 2548 2548 2548 2534 2546
200 4098 4098 4098 4071 4088
500 9318 9318 9318 9297 9314

1000 18,284 18,284 18,284 18,249 18,280
2000 25,760 25,760 25,760 25,735 25,752
3000 38,941 38,941 38,941 38,899 38,930

Table 8. Results (total profits) of datasets (C ± 20), n = 1000–5000 (m = 6–50).

m Optimal mDPT-L
O(m2[n2, nC])

mDPT-L + LS
Filter O(m2n)

mDPT-L +
Filter O(mn)

mGH+

O(mn)
mGH+ + LS

O(m2n)

n = 1000 Best 9 m 9 9 9 m

6 18,541 18,541 18,541 18,541 18,535 18,535
7 18,703 18,703 18,703 18,703 18,684 18,693
8 18,889 18,889 18,889 18,889 18,879 18,884
9 19,079 19,079 19,079 19,079 19,068 19,071

n = 2000 Best 9 × 9 9 9 9 m

12 27,769 27,769 27,769 27,769 27,742 27,753
13 28,154 28,154 28,154 28,154 28,127 28,127
14 28,547 28,547 28,547 28,547 28,498 28,517
15 28,948 28,948 28,948 28,948 28,900 28,935

n = 5000 Best 9 × 9 9 9 9 m

20 54,736 54,736 54,736 54,736 54,680 54,695
30 62,496 62,496 62,496 62,496 62,410 62,450
40 72,417 72,417 72,417 72,417 72,323 72,331
50 84,051 84,051 84,051 84,051 83,943 83,963
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Table 9. Results (total profits) of datasets (C ± 10, 20), n = 9000 (m = 40–90).

m Optimal mDPT-L
O(m2[n2, nC])

mDPT-L + LS
Filter O(m2n)

mDPT-L +
Filter O(mn)

mGH+

O(mn)
mGH+ + LS

O(m2n)

Ci ± 10 Best 9 × 9 9 9 9 m

40 53,669 53,669 53,669 53,669 53,494 53,520
50 54,803 54,803 54,803 54,803 54,538 54,655
60 58,614 58,614 58,614 58,614 58,425 58,450
70 64,018 64,018 64,018 64,018 63,689 63,784

Ci ± 20 Best 9 × 9 9 9 9 m

40 85,380 85,380 85,380 85,380 85,203 85,286
50 100,859 100,859 100,859 100,859 100,683 100,724
60 118,729 118,729 118,729 118,729 118,525 118,616
70 138,195 138,195 138,195 138,195 137,963 138,038
80 158,983 158,983 158,983 158,983 158,722 158,857
90 180,054 180,054 180,054 180,054 179,873 179,981

Table 10. Results (total profits) of irregular datasets (m = 3–7, n ≤ 10,000).

n≤ 10,000 Optimal mDPT-L
O(m2[n2, nC])

mDPT-L + LS
Filter O(m2n)

mDPT-L +
Filter O(mn)

mGH+

O(mn)
mGH+ + LS

O(m2n)

m:n m! m! m! m! m!

3:51 1318 1318 1317 1317 1315 1315
3:73 1727 1727 1725 1725 1725 1725
4:33 752 752 747 747 747 747
4:49 1264 1264 1263 1263 1254 1254
4:50 1137 1137 1136 1136 1136 1136
4:65 1565 1565 1563 1563 1563 1563

m:n Best 9 m 9 9 9 m

5:89 2366 2366 2365 2365 2359 2359
7:77 1834 1834 1833 1833 1829 1830

7:138 3263 3263 3262 3262 3256 3256
7:148 3780 3780 3799 3799 3773 3777

First, we evaluated the performance of our mDPT-List and fast mDPT-List + filtering
with m! orders (for small m = 2, 3, 4), compared to the optimal solutions. For m ≤ 4, our
approach can find the optimal solutions in most datasets; see Columns 3 and 4 in Tables 5–7.
For m > 4, we investigated the effect of robust filtering plus the top nine effective orders
and partial Latin squares (Columns 4 and 5 in Tables 8 and 9). For the regular datasets
(n ≤ 10,000, m ≤ 100), our mDPT-List + filtering (top nine orders) yielded 99% optimal
solutions.

Second, we aimed to compare among the fast polynomial-time algorithms (O(mn) −
O(m2n)) by observing the effect of the top nine effective orders; see Columns 4–7 in Tables 8
and 9. For m ≤ 100 and n ≤ 10,000, the results (total profits) of our mDPT-List + filtering
(in Column 5) were compared to those of the quick mGH+ (P/W rank) in Columns 6–7
(response time < 1 s). For the regular datasets, our fast mDPT-List + filtering (in Column 5)
yielded most optimal solutions, while the results of the quick mGH+ (in Column 6) and
its improvement with LS of 9 m orders (in Column 7) were far from the optimal solutions,
especially when using many knapsacks (m > 10). Note: GH (P/W rank) is frequently used
in many meta-heuristic algorithms (i.e., GA, swarm, etc.) for the good initial solutions to
solve the 0/1-KP and GH+ is used in unbiased filtering [1] (p. 199) and in robust unbiased
filtering (in this study). In the comparison, we use the improved mGH+ with the Latin
squares of top nine orders (for 9 m orders/iterations to emulate the evolution process of
GA/swarm optimization). For most datasets, the mGH+ (9m orders) could not find the
optimal solutions in each knapsack since it included uncertain object(s) in the solution.
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However, it is not the problem in our robust unbiased filtering since all uncertain objects
(n′ < 300) were considered by the exact DPT-List with 99% optimal precision.

In our initial observation and analysis, for m = 2 (n≤ 10,000), the mDPT-List + filtering
(m! orders) in Table 5 yielded 100% optimal solutions. For m = 3, 4 (n ≤ 10,000), our
approach (m! orders) in Tables 6 and 7 yielded 99.9% optimal solutions. Next, we found
that (for the irregular datasets) the top nine orders were not sufficient to find the optimal
solutions ≥99%, especially m ≥ 5. Then, we investigated the effect of the LS of the top
nine orders (see Column 4 in Tables 8–10). Moreover, Tables 10 and 11 report the irregular
datasets found during the execution of each dataset (n ≤ 10,000), where any dataset is
called “irregular” when the top nine orders could not find the optimal solution. For m ≥ 5,
we performed an intensive study and experiment to observe each of n ≤ 10,000 (m ≤ 100)
and found that a number of irregular datasets increased when m increased (see Column 6
in Table 11). Hence, the exact-fit (best) knapsack order is applied to solve this problem.

Table 11. Observed frequency of nonoptimal solutions (in n ≤ 10,000 per m), m = 5, 6, 7, . . . , 53, 54.

n ≤ 10,000 mDPT-L: O(m2[n2, nC]) mDPT-L + Filtering: O(m2n)

m Best 9 m (LS) Best 9 m (LS) Top 9

5 0 0 0 1 2
6 0 0 0 1 3
7 0 1 0 3 6

8–14 0 0 0 2 1.6 (ave. per m)
15–19 0 0 0 0 1.6 (ave. per m)
20–24 0 0 0 0 2.6 (ave. per m)
25–29 0 0 0 0 4.8 (ave. per m)
30–34 0 0 0 0 5.4 (ave. per m)
35–39 0 0 0 0 13.8 (ave. per m)
40–44 0 0 0 0 31.4 (ave. per m)
45–49 0 0 0 0 34.8 (ave. per m)
50–54 0 0 0 0 69.2 (ave. per m)

Note: When observing the irregular datasets, using top 9 orders (Column 6) in our mDPT-List + filtering could not
find the optimal solutions in approximate 69 datasets (in average) of n ≤ 10,000, m = 54 in the (random) regular
and irregular datasets, while using the best order (Column 4) could find all optimal solutions.

After performing the intensive study and comparison (on large n ≤ 10,000), we found
that for the irregular datasets, our mDPT-List + robust unbiased filtering (the exact-fit
(best) order in O(m2n)) could find at least 99% optimal solutions as those of the original
mDPT-List (O(m2[n2,nC])); see a report of observed frequency of nonoptimal solutions (0%)
of our approach in Table 11 (Column 4).

Finally, we performed an extra experiment to evaluate the performance of our mDPT-
List on the benchmark datasets [34] available at http://or.dei.unibo.it/library (accessed
on 13 June 2020). Tables 12 and 13 show the empirical results of our mDPT-List (the
best knapsack order in O(m2[n2, nC])) and our fast mDPT-List + robust filtering (the best
knapsack order in O(m2n)), compared to the regular mDP (O(m2nC)) and the optimal
solutions.

For (n:m = 100:10) 10 datasets [34], the results (in Table 12) showed that our mDPT-List
(without/with filtering (the best order, LS orders, top nine orders)) could find the optimal
solutions (Columns 4–7), while the results (Column 8) of the quick mGH+ (9 m orders in
9 m iterations) were not optimal.

http://or.dei.unibo.it/library
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Table 12. Results (total profits) of 10 benchmark datasets (n = 100, m = 10).

Research Approach Exact Exact + Filtering Heuristic

mDP mDPT-L mDPT-L + Filter: O(m2n) mGH+

n:m Optimal Best Best Best 9 m 9 9 m

100:10-1 26,797 26,797 26,797 26,797 26,797 26,797 26,763
100:10-2 24,116 24,116 24,116 24,116 24,116 24,116 24,093
100:10-3 25,828 25,828 25,828 25,828 25,828 25,828 25,812
100:10-4 24,004 24,004 24,004 24,004 24,004 24,004 23,977
100:10-5 23,958 23,958 23,958 23,958 23,958 23,958 23,933
100:10-6 24,650 24,650 24,650 24,650 24,650 24,650 24,614
100:10-7 23,911 23,911 23,911 23,911 23,911 23,911 23,886
100:10-8 26,612 26,612 26,612 26,612 26,612 26,612 26,579
100:10-9 24,588 24,588 24,588 24,588 24,588 24,588 24,565
100:10-10 24,617 24,617 24,617 24,617 24,617 24,617 24,591

Table 13. Results (total profits) of 20 benchmark datasets (200 ≤ n ≤ 500, 20 ≤ m ≤ 50).

Research Approach Exact Exact + Filtering Heuristic

Over
Packing *

mDPT-L
O(m2[n2, nC])

mDPT-L + Filter
O(m2n)

mGH+

O(m2n)

n:m Optimal Best of
this study

Best
+extra Best Best 9 m 9 m

200:20-1 80,260 * 80,205 80,205 80,163 80,196 80,121 79,606
200:20-2 80,171 * 80,122 80,122 80,122 80,121 80,069 79,488
200:20-3 79,101 * 79,083 79,083 79,061 79,083 79,041 78,561
200:20-4 76,264 * 76,208 76,208 76,174 76,174 76,149 75,823
200:20-5 79,619 79,619 79,619 79,581 79,581 79,515 78,886
200:20-6 76,749 * 76,711 76,711 76,711 76,711 76,612 76,203
200:20-7 76,543 * 76,474 76,474 76,429 76,474 76,402 75,959

300:30-1 121,806 * 121,756 121,742 121,742 121,756 121,654 120,842
300:30-2 119,877 * 119,828 119,828 119,795 119,828 119,743 118,938
300:30-3 119,806 * 119,762 119,762 119,756 119,749 119,684 118,937
300:30-4 115,567 * 115,556 115,529 115,516 115,556 115,434 114,767
300:30-5 117,204 * 117,175 117,175 117,160 117,168 117,065 116,350
300:30-6 118,516 * 118,493 118,493 118,493 118,450 118,386 117,737
300:30-7 115,793 * 115,752 115,752 115,706 115,693 115,641 115,093

300:30-8 123,664 * 123,624 123,624 123,620 123,620 123,552 122,570
500:50-1 205,672 * 205,645 205,645 205,645 205,645 205,488 204,132
500:50-2 199,868 * 199,781 199,775 199,775 199,781 199,681 198,462
500:50-3 202,321 * 202,286 202,286 202,277 202,277 202,164 201,102
500:50-4 136,669 * 136,657 136,657 136,653 136,652 136,595 135,409
500:50-5 135,806 * 135,796 135,795 135,795 135,796 135,736 134,793

Note: The symbol * (in Column 2) means that the (extra) solution may be overpacking.

For (n:m = 200:20, 300:30, 500:50) 20 datasets [34], most optimal solutions of these
critical datasets were unknown (see Table 13) since the DP-packing in one large knapsack
(Cs = ∑m

i=1 Ci) may be overpacking. Figure 20a shows an example of overpacking, when
some objects in the critical datasets (such as some valuable objects j (high pj/wj) but large
wj) cannot be packed in any knapsack i with capacity Ci, except in the extra space of one
knapsack of large capacity Cs. In these critical datasets, our mDPT-List with the best order
(in Columns 5 and 6) yielded good results, which were close to or equal to the optimal
solutions and outperformed those of LSs (9m) of top nine orders (in Columns 7–8).



Algorithms 2022, 15, 366 29 of 34

Algorithms 2022, 15, x FOR PEER REVIEW 29 of 35 
 

Table 13. Results (total profits) of 20 benchmark datasets (200 ≤ n ≤ 500, 20 ≤ m ≤ 50). 

Research Approach Exact Exact + Filtering Heuristic 

 
Over  

Packing *  
mDPT-L 

O(m2[n2, nC]) 
mDPT-L + Filter 

O(m2n) 
mGH+ 
O(m2n) 

n:m Optimal Best of this 
study 

Best 
+extra 

Best Best 9 m 9 m 

200:20-1 80,260 * 80,205 80,205 80,163 80,196 80,121 79,606 
200:20-2 80,171 * 80,122 80,122 80,122 80,121 80,069 79,488 
200:20-3 79,101 * 79,083 79,083 79,061 79,083 79,041 78,561 
200:20-4 76,264 * 76,208 76,208 76,174 76,174 76,149 75,823 
200:20-5 79,619 79,619 79,619 79,581 79,581 79,515 78,886 
200:20-6 76,749 * 76,711 76,711 76,711 76,711 76,612 76,203 
200:20-7 76,543 * 76,474 76,474 76,429 76,474 76,402 75,959 
300:30-1 121,806 * 121,756 121,742 121,742 121,756 121,654 120,842 
300:30-2 119,877 * 119,828 119,828 119,795 119,828 119,743 118,938 
300:30-3 119,806 * 119,762 119,762 119,756 119,749 119,684 118,937 
300:30-4 115,567 * 115,556 115,529 115,516 115,556 115,434 114,767 
300:30-5 117,204 * 117,175 117,175 117,160 117,168 117,065 116,350 
300:30-6 118,516 * 118,493 118,493 118,493 118,450 118,386 117,737 
300:30-7 115,793 * 115,752 115,752 115,706 115,693 115,641 115,093 
300:30-8 123,664 * 123,624 123,624 123,620 123,620 123,552 122,570 
500:50-1 205,672 * 205,645 205,645 205,645 205,645 205,488 204,132 
500:50-2 199,868 * 199,781 199,775 199,775 199,781 199,681 198,462 
500:50-3 202,321 * 202,286 202,286 202,277 202,277 202,164 201,102 
500:50-4 136,669 * 136,657 136,657 136,653 136,652 136,595 135,409 
500:50-5 135,806 * 135,796 135,795 135,795 135,796 135,736 134,793 

Note: The symbol * (in Column 2) means that the (extra) solution may be overpacking.  

For (n:m = 200:20, 300:30, 500:50) 20 datasets [34], most optimal solutions of these 
critical datasets were unknown (see Table 13) since the DP-packing in one large knapsack 
(Cs = ∑ 𝐶ୀଵ ) may be overpacking. Figure 20a shows an example of overpacking, when 
some objects in the critical datasets (such as some valuable objects j (high pj/wj) but large 
wj) cannot be packed in any knapsack i with capacity Ci, except in the extra space of one 
knapsack of large capacity Cs. In these critical datasets, our mDPT-List with the best order 
(in Columns 5 and 6) yielded good results, which were close to or equal to the optimal 
solutions and outperformed those of LSs (9m) of top nine orders (in Columns 7–8). 

 
(a) 

1 (C1) 2 (C2) m (Cm) 
. . .xj=1 xj=1 xj=1

Ci

one large Knapsack
(Cs=C1+..+Cm)

xj=1 overpacking*

special object(s) 
in extra space of 
one large Cs

m KnapsacksAlgorithms 2022, 15, x FOR PEER REVIEW 30 of 35 
 

 
(b) 

Figure 20. (a) Overpacking (in the extra space of one knapsack with large total-capacity Cs) in crit-
ical datasets and (b) an example of eight effective policies (to handle the critical decisions). 

In our contribution, we focus on large n. The fast mDPT-List + filtering (top nine or-
ders) in O(mn) is good for the regular datasets with 99% optimal solutions (Tables 5–9 
and Table 12). For the irregular datasets (Table 11), our fast mDPT-List (the best order) + 
filtering in O(m2n) can find 99% optimal solutions similar to our original mDPT-List (the 
best order). Thus, for the regular and irregular datasets, our fast mDPT-List + filtering 
(the best order) is sufficient to achieve 99% optimal solutions in polynomial time O(m2n). 
Moreover, for the critical/special benchmark datasets, we have intensively studied by the 
experiment (in Section 6.3) to improve the solutions (Column 4 in Table 13). 

6.3. Extra Experiment and Additional Improvement on Critical Datasets 
To improve the results of the critical datasets (benchmark datasets [34]), we have to 

find all possible critical decisions, such as 1. nonunique Xs (in X-tracking (see an example 
in Figure 10) in Section 4.1.1) and 2. equal min(dFits) in more than one knapsacks (in the 
exact-fit (best) order (see an example in Figure 11) in Section 4.1.2) and provide the right 
policies to handle them. Clearly, if there is only one min(dFiti), dFiti = Ci–TWi, we can select 
the best knapsack Ki directly for the best order. By the DP-packing, there may be many 
equal min(dFiti)s in Ki’–Ki” but only one Ki is selected (at a time), and this decision may 
cause the local optimal problem. To handle this problem, the top three effective policies 
are introduced in Algorithm 10, and the best of three best results is our final solution. 
However, to achieve the better results of these critical/special datasets, we add the other 
effective policies 4–8 in Algorithm 10 (step 2) to cover the other critical decisions; see an 
example in Figure 20b, i.e., select Ki with min(dFiti) at the first, last, second, before last, 
and mid policies (in policies 4–8). Figure 20b shows the detail of selecting the best Ki (m = 
10 knapsacks, Ci = (10, 20, 15, 18, 12, 25, 5, 19, 9, 24)) with eight critical decisions (i.e., as-
sume there are six min(dFiti)s = 0 in Ki, i = 1, 3, 6, 7, 9, 10) for selecting the best Ki (in the 
best order) with one policy for one result (solTP). In this experiment, the improved results 
(max (solTPi=1–8)) in Column 4 (Table 13) were stable under these eight policies. In each 
critical dataset, the results (Column 4) were improved due to the exact DPT-List packing 
plus the proper critical handling (by our eight policies for the best knapsack order). 

In the regular comparison of our mDPT-List + robust unbiased filtering (the best 
knapsack order) on 20 critical datasets (in Table 13), our robust unbiased filtering (using 
top three policies) yielded (9 of 20) best results (Column 6), which outperformed the re-
sults (Column 7) of using LSs of top nine orders (9 m). In the superior improvement of 
our eight effective policies (in the extra experiment), the extra mDPT-List yielded (16 of 
20) best results (Column 4), while the other 4 of 20 best results (Column 3) were fulfilled 
by robust filtering due to the (unbiased) preselecting and the less problem of nonunique 

K1: C1= 10 xj=1
dFiti=Ci-TWi

K2: C2= 20 xj=1

K3: C3= 15 xj=1

K4: C4= 18 xj=1

K5: C5= 12 xj=1

K6: C6= 25 xj=1

K7: C7= 5 xj=1

K8: C8= 19 xj=1

K9: C9= 9 xj=1

K10:C10= 24 xj=1

TPi TWi Select Ki

0

1

0

1

2

0

0

1

0

0

10

19

15

17

10

25

5

18

9

24

20

20

15

18

10

30

9

20

9

24

Policy 4

Policy 5

Policy 2

Policy 6

Policy 7

Policy 1

Policy 3
Policy 8

first 
min(dFit)

last 
min(dFit)

second 
min(dFit)

before last 
min(dFit)

mid 
min(dFit)

select K1

select K3

select K6

select K7

select K9

select K10

Figure 20. (a) Overpacking (in the extra space of one knapsack with large total-capacity Cs) in critical
datasets and (b) an example of eight effective policies (to handle the critical decisions).

In our contribution, we focus on large n. The fast mDPT-List + filtering (top nine orders)
in O(mn) is good for the regular datasets with 99% optimal solutions (Tables 5–9 and 12).
For the irregular datasets (Table 11), our fast mDPT-List (the best order) + filtering in O(m2n)
can find 99% optimal solutions similar to our original mDPT-List (the best order). Thus,
for the regular and irregular datasets, our fast mDPT-List + filtering (the best order) is
sufficient to achieve 99% optimal solutions in polynomial time O(m2n). Moreover, for the
critical/special benchmark datasets, we have intensively studied by the experiment (in
Section 6.3) to improve the solutions (Column 4 in Table 13).

6.3. Extra Experiment and Additional Improvement on Critical Datasets

To improve the results of the critical datasets (benchmark datasets [34]), we have to
find all possible critical decisions, such as 1. nonunique Xs (in X-tracking (see an example
in Figure 10) in Section 4.1.1) and 2. equal min(dFits) in more than one knapsacks (in the
exact-fit (best) order (see an example in Figure 11) in Section 4.1.2) and provide the right
policies to handle them. Clearly, if there is only one min(dFiti), dFiti = Ci–TWi, we can select
the best knapsack Ki directly for the best order. By the DP-packing, there may be many
equal min(dFiti)s in Ki′–Ki′′ but only one Ki is selected (at a time), and this decision may
cause the local optimal problem. To handle this problem, the top three effective policies
are introduced in Algorithm 10, and the best of three best results is our final solution.
However, to achieve the better results of these critical/special datasets, we add the other
effective policies 4–8 in Algorithm 10 (step 2) to cover the other critical decisions; see an
example in Figure 20b, i.e., select Ki with min(dFiti) at the first, last, second, before last, and
mid policies (in policies 4–8). Figure 20b shows the detail of selecting the best Ki (m = 10
knapsacks, Ci = (10, 20, 15, 18, 12, 25, 5, 19, 9, 24)) with eight critical decisions (i.e., assume
there are six min(dFiti)s = 0 in Ki, i = 1, 3, 6, 7, 9, 10) for selecting the best Ki (in the best
order) with one policy for one result (solTP). In this experiment, the improved results (max
(solTPi=1–8)) in Column 4 (Table 13) were stable under these eight policies. In each critical
dataset, the results (Column 4) were improved due to the exact DPT-List packing plus the
proper critical handling (by our eight policies for the best knapsack order).

In the regular comparison of our mDPT-List + robust unbiased filtering (the best
knapsack order) on 20 critical datasets (in Table 13), our robust unbiased filtering (using
top three policies) yielded (9 of 20) best results (Column 6), which outperformed the results
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(Column 7) of using LSs of top nine orders (9 m). In the superior improvement of our eight
effective policies (in the extra experiment), the extra mDPT-List yielded (16 of 20) best
results (Column 4), while the other 4 of 20 best results (Column 3) were fulfilled by robust
filtering due to the (unbiased) preselecting and the less problem of nonunique Xs in the
X-tracking by DPT-List (on small n′ < 300) in each knapsack. Obviously, for the unique X,
our mDPT-List (with/without filtering) yields the same result.

In addition, the response times of three mDP algorithms (basic mDP, mDPT-List, and
mDPT-List + filtering) were compared in this experiment (under the same 99% optimal
precision). In theory, three different time complexities of these mDP algorithms are 1.
O(m!nC) in the basic mDP (m! orders), 2. O(m2[n2, nC]) in the mDPT-List (the best order),
and 3. O(m2n) in the fast mDPT-List + filtering (the best order). Due to our efficient
unbiased filtering, the response time of our fast mDPT-List + filtering for n = 20,000 and
m = 20 was less than one second, that of the best mDPT-List for n = 20,000 was 10 min, that
of the basic mDP for n = 20,000 was more than one hour and so on for other large n.

Next to simplify the comparison and discussion (for the 0/1-mKP solving with the
critical datasets), we employ the triple-right rule (right man, right place, and right time).
Figure 21 displays the improvement of our multi-DPT-ListTSR algorithm (our novel research
track in Figure 8) to reach 99% optimal solutions in efficient time.
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In theory, the exact BnB algorithm can find the exact solution of the 0/1-mKP but
in O((m + 1)n) with the right man and right place but not the right time. In practice, the
multi-GH+ (with 9 m LS-orders) can find the good solutions in polynomial time but those
solutions may not be optimal because it only confirms the right time rule. In this study
(Figure 21), we study and apply the exact DPT (in theory) and the efficient unbiased filtering
(in practice) to achieve triple-right packing (right man (object), right place (knapsack), and
right time (O(m2n))). Our contribution is the m!-to-m2 reduction; see the highlight space of
our improvement in Figure 21. This tight-bound reduction starts with the exact DPT for
one knapsack (selecting the right object), uses the exact-fit (best) order for m knapsacks
(putting the right object in the right knapsack), and ends with robust unbiased filtering
(putting the right object in the right knapsack at the right time).

The comparison of our multi-DPT-List + robust filtering and the recent HyMKP [34] is
demonstrated in Table 14. In practice (with large n (≤10,000 in this experiment)), our multi-
DPT-List + robust filtering yielded 99% optimal results in O(m2n); see results in Tables 5–12,
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while the results of quick multi-GH+ in O(m2n) were not optimal. For the HyMKP study [34],
there is no available result for n > 500 since for large n the partial BnB (MULKNAP program)
in the HyMKP (Algorithm 5) may not find the optimal solution in τ secs. Then, the reflect
multi-graph MKP (with increasing n-weights (wj) in Algorithm 6 (O(mnC)) can provide
the comparable results to our multi-DPT-List (with top nine orders) in the regular datasets,
according to the looping on weights and C, similar to the DP (Algorithm 1) for each of m
knapsacks. For the irregular datasets, v-rounds of decompositions of HyMKP are used to
improve the initial solution. However, (for large n) the process of Algorithm 6 may take
a long time to reach the 99% optimal solutions due to its complexity O(mnC), while our
exact-fit best (knapsack) order of multi-DPT-List + efficient filtering in O(m2n) can find 99%
optimal solutions as m! orders.

Table 14. Comparison of our multi-DPT-List + robust filtering and the mathematical HyMKP.

For Regular and Irregular Datasets (n ≤ 10,000, m ≤ 100)

Exact +
Filtering

Our multi-DPT-List + robust filtering (the exact-fit best order)
could find most optimal solutions (≥99%) in efficient response time
(<1 s per n); see confirmed results in Tables 5–12.

O(m2n)

Exact

Mathematical HyMKP [34] can execute in τ secs. with Algorithm 6
(reflect multi-graph MKP with decreasing n weights (wj)) like the
basic DP for each of m knapsacks. That initial solution can be
improved by the knapsack decomposition in v iterations to find the
optimal solution (n ≤ 500) in τ secs. However, no available results for
n > 500 in that study.

O(mnC)

Heuristic

Multi-GH+ (Latin squares of top nine orders) could find good
solutions in efficient time (< 1 s) but they are not optimal (see the last
column results in Tables 5–10 and Table 12). Note: LSs of top 9 orders
could emulate 9 m iterations/evolutions in the GA/swarm
optimization with good results (near optimal in each knapsack for
small m).

O(m2n)

For critical and special benchmark datasets (n ≤ 500) [34]

Exact
Partial BnB (in HyMKP) [34]: The existing BnB (MULKNAP
program) could find most optimal solutions (≥99.9%) in τ secs for
n ≤ 500.

O((m + 1)n)

Exact +
Filtering

Our multi-DPT-List + robust filtering (the best order): For critical
datasets in 0/1-mKP applications, we can adopt the MULKNAP
program [34] for n ≤ 500 in our approach to achieve 99.9% optimal
solutions. For n > 500 we can apply our efficient multi-DPT-List +
filtering in efficient time.

O(m2n)

For n ≤ 500 (in the critical datasets), the HyMKP model yielded 99.9% optimal solu-
tions by the partial BnB (MULKNAP) program in τ secs. Thus, for n ≤ 500 we can adopt
that MULKNAP program in our approach for achieving 99.9% optimal solutions.

Finally, after achieving the good performance (99% optimal solutions) of our multi-
DPT-ListTSR + robust filtering in the efficient time O(m2n), we can improve the time com-
plexity to O(mn) in parallel (by using p = m processors).

Moreover, to handle the critical datasets in parallel, we can achieve the global best
result in parallel (by p = m processors), such as Column 3 (in Table 13), by combining the
local best result of the parallel multi-DPT-ListTSR in O(m[n2, nC])) in Column 4 and the
local best result of the parallel multi-DPT-ListTSR + robust filtering in O(mn) in Column 6
for the best of the best results (in Column 3) in O(m[n2, nC])), which is efficient, especially
in average ≈ O(mn3) if C = max(Ci) ≤ n2.

In practical 0/1-mKP applications (for large n), if the fast computing time is the most
important factor (in the regular and irregular datasets), our multi-DPT-List + robust filtering
in O(m2n) or O(mn) in parallel (p = m) with 99% optimal solutions is good enough. However,
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if the high optimal performance is the most important factor (in the critical datasets and in
the critical 0/1-mKP applications), the integration (of the original multi-DPT-ListTSR and
the fast multi-DPT-ListTSR + robust filtering) provides higher precision (i.e., 99.9% optimal
solutions) in efficient O(m[n2, nC]) in parallel (p = m) or O(mn2) in the best case and O(mn3)
in average if C ≤ n2.

7. Conclusions

In this study, to solve the complex 0/1-mKP (m knapsacks) in polynomial time we
introduced a novel research track with hybrid integration of DP transformation (for the
optimal solution in each knapsack) and robust unbiased filtering (for polynomial time).
First, the efficient DPT-ListTSR algorithm was proposed to find the optimal solutions of
the 0/1-KP in O([n2, nC]) over O(nC) before being applied in the 0/1-mKP. Second, for
solving the 0/1-mKP we proposed the multi-DPT-ListTSR with the exact-fit (best) knapsack
order (m!-to-m2 reduction) with 99% optimal solutions in O(m2[n2, nC]) over O(m![n2, nC]).
Third (for large n, massive C), robust unbiased filtering was incorporated into our multi-
DPT-ListTSR to solve the 0/1-mKP in efficient O(m2n) over O(mnC) of the recent HyMKP,
while retaining 99% optimal solutions. The experiment was conducted to evaluate the
performance of our multi-DPT-List + robust unbiased filtering (with 99% optimal solutions)
on random and benchmark datasets (n ≤ 10,000, m ≤ 100). Practically (for large m, n, and
C), our multi-DPT-ListTSR + robust unbiased filtering (O(m2n)) could find 99% optimal
solutions (as the original multi-DPT-ListTSR (O(m2[n2, nC])) in polynomial time.

In our current research, we apply our multi-DPT-ListTSR + robust unbiased filtering
to solve the multi-container packing. In the future study, we will modify our unbiased
filtering idea to solve another popular NP-hard problem (i.e., traveling salesman and
logistic transportation, etc.) in efficient time with expected high optimal performance.
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