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Abstract: Motivated by the transportation needs of modern-day retailers, we consider a variant of the
vehicle routing problem with time windows in which each truck has a variable capacity. In our model,
each vehicle can bring one or more wagons. The clients are visited within specified time windows,
and the vehicles can also make multiple trips. We give a mathematical programming formulation for
the problem, and a branch and price algorithm is developed to solve the model. In each iteration
of branch and price, column generation is used. Different subproblems are created based on the
different capacities to find the best column. We use CPLEX to solve the problem computationally and
extend Solomon’s instances to evaluate our approach. To our knowledge, ours is the first such study
in this field.

Keywords: vehicle routing problem; multi-trip; time windows; column generation; branchand price

1. Introduction

The Vehicle Routing Problem (VRP) initially emerged when Dantzig and Ramser
formulated and resolved the problem of supplying fuel to service stations around the end
of the fifties of the last century [1].

The VRP definition states that n customers with discrete quantities of goods must
be served by m vehicles initially located at a depot. A VRP is to determine the optimal
routes taken by a group of vehicles while serving a group of users. The objective is to
minimize the overall transportation cost. The solution to the classical VRP problem is a set
of routes visiting all the customers exactly once that all begin and end in the depot. The
transportation cost is improved by reducing the total traveled distance [2].

The Multi-Trip Vehicle Routing Problem with Time Windows (MTVRPTW) is a type
of the classical Vehicle Routing Problem with Time Windows (VRPTW) with more than
one trip for a vehicle during a workday. A trip is a timed route when more than one route
can be allocated to a vehicle. The multi-trip feature is needed when the vehicle fleet size
is limited. In this case, a benefit is a reduced number of drivers and vehicles. Besides, in
practice, industries cannot provide an unlimited number of vehicles to serve all customers,
and they tend to prefer a limited number of vehicles to do more than one trip. Despite its
apparent practical relevance, this variant of the classical VRP has not been the subject of a
large number of studies. Refs. [3–5] are a few papers worked on Multi trip vehicle routing
problem (MTVRP).

Multi-trip vehicle routing problem with a variable number of wagons and time win-
dows defines a variant of the classical vehicle problem in which the capacity of vehicles
can be determined given the total demand of the route when a vehicle is prepared to leave
the depot. In this situation, one, two, or three wagons can be attached to make a vehicle
ready to service the customers. The number of wagons and vehicles is limited, and the
vehicle configuration will stay the same during all vehicle trips. This new methodology is
suitable to decrease time and cost by reducing the number of vehicles, drivers, and fuel
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consumption, which is specifically more critical in distributing goods over large distances
like two different cities or from large cities to rural areas.

The main contribution of this work is to introduce a mathematical model for Multi-trip
Vehicle Routing Problem with a Variable number of Wagons and Time Windows (MTVRP-
VW-TW). We develop a Branch and Price method to find an optimal solution. Column
generation is used for each iteration of the branch and pricing. Various subproblems
are formed to choose the appropriate column based on the various capacities. We used
modified Solomon’s instances [6] to test the algorithm. It is the first time the model has
been presented and solved with exact methods.

The rest of the paper is organized as follows. We review the relevant research in
Section 2. We give the definition and mathematical model for MTVRP-VW-TW in Section 3.
Column generation for MTVRP-VW-TW is presented in Section 4. MTVRP-VW-TW is
solved using the branch and price algorithm in Section 5. The detailed experimental study
is discussed in Section 6. Section 7 concludes this paper with a discussion of the limitations
of this work and possible future extensions.

2. Literature Review

Multi-trip vehicle routing problem (MTVRP) is an essential type of vehicle routing
problem in the real world that is studied less than other versions of vehicle routing problem,
specifically, for exact methods. Ref. [7] is a survey that categorizes and examines urban
logistic flows. As a result, it outlines the three main scientific issues that must be resolved:
time dependency, the arrangement of the distribution on multiple levels and trips, and
dynamic information. Fleischmann [8] proposed a modification of the savings heuristic
and used a Bin Packing Problem heuristic to assign the routes to vehicles with multiple uses.
Taillard, Laporte, and Gendreau [9] presented a tabu search algorithm with three phases to
solve the problem. Brando and Mercer [10] proposed another tabu search algorithm with
a variable neighborhood to find a solution with the least cost. The algorithm is a three-phase
algorithm that creates an initial solution by a heuristic and then uses tabu search (reinsertion
and exchange of customers) to improve the solution and restore feasibility. Brandão and
Mercer [11] also presented a more complex problem when mixed fleets and maximum
overtime constraints are allowed. Salhi [12] proposed the many-to-many location-routing
problem. Campbell and Savelsbergh [13] described insertion heuristics that can be used
effectively when time windows constraints are added to the problem.

Petch and Salhi [5] developed a multi-phase constructive heuristic for the MTVRP,
which in phase one generates a VRP solution using a savings approach, and phase 3 gener-
ates a VRP solution by route population approach. Phase 2 is a VRPM construction and
improvement stage in which an MTVRP solution is constructed using bin-packing with
the minimization of overtime as the objective. Salhi and Petch [14] improved their previous
method to a hybrid Genetic Algorithm with the same objective. Olivera and Viera [15] pre-
sented an adaptive memory approach to minimize total routing cost. Cattaruzza et al. [16]
used a hybrid genetic algorithm with a new local search operator that is a combination of
standard VRP moves and swaps between trips to minimize total traveling time. Wassan
et al. [17] proposed a two-level variable Neighborhood Search to generate an MT-VRPB
initial solution to minimize the total cost. Tirkolaee et al. [18] formulated a new model for
a robust multi-trip vehicle routing problem with intermediate depots and time windows
to address the uncertain nature of the demand. Anggodo et al. [19] presented a genetic
algorithm for multi-trip vehicle routing problems with time windows. More heuristic
approaches are in [20–23], in which a hybrid genetic algorithm, a simulated annealing, a
hybrid particle swarm optimization algorithm, and a hybrid genetic algorithm are used
respectively. A new impact integer programming formulation for the multi-trip vehicle
routing problem with time windows is developed in [24].

A limited number of papers on the exact methods for MTVRP exist. Desrosiers and
Solomon [25] were the first to use column generation in a Dantzig-Wolfe decomposition
framework. Halse [26] implemented Lagrangean decomposition. After that, Kohl and
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Madsen [27] extended Lagrangean relaxation. These approaches were further developed
using Dantzig-Wolfe decomposition, including cutting planes or parallel platforms in Kohl,
Desrosiers, Madsen, Solomon, and Soumis [28]; Larsen [29]; Cook and Rich [30]. A hybrid
algorithm, a combination of Lagrangean relaxation and Dantzig-Wolfe decomposition, was
presented by Kallehauge [31]. Chabrier, Danna and Le Pape [32]; Feillet, Dejax, Gendreau
and Gueguen [33]; Rousseau, Gendreau and Pesant [34]; Larsen [29]; Chabrier [35]; Irnich
and Villeneuve [36]; Danna and Le Pape (2005) [37] presented algorithms based on the
subproblem methods. Hernandez et al. [3], and Nabila Azi et al. [38] suggested the branch
and price algorithm with two phases. In the first phase, all paths are generated. In the
second phase, the problem is solved by column generation. Macedo et al. [39] proposed
an approach using a pseudo-polynomial model. Munari and Morabito [40] presented
a branch-price-cut for a multi-trip vehicle routing problem; Faiz et al. [41] has two inte-
ger programs for the open vehicle routing problem and uses column generation to solve
them; Azi et al. [4] gave column generation embedded in branch and price algorithm to
solve multi-trip vehicle routing problem with time windows using dynamic program-
ming to generate all non-dominated paths by label correcting algorithm which are used
in the subproblem; Seixas and Mendes [42] presented a branch and price algorithm to
solve the multi-trip vehicle routing problem with time windows and driver work hours.
Bettinelli et al. [43] used a branch-and-cut-and-price algorithm to solve the multi-trip sepa-
rate pickup and delivery problem with time windows. A branch-cut-and-price algorithm is
developed in [44] for the single and multi-trip two-echelon vehicle routing problem with
time windows. A new variant of the multi-trip vehicle routing problem for the case of
being in a queue while the unloading capacity is full is presented in [45] which is solved
using a branch-and-price-and-cut algorithm.

We are unaware of any work on exact methods for the multi-trip vehicle routing
problem with time windows and the flexibility of having different wagons attached to
service customers, as in this paper. In contrast to the previous works like [3,4,38] which
give branch and price algorithms for MTVRP, we formulate a new variant of MTVRP in
which the capacity can be different. This requires a modification of the branch and price
algorithms. We have a different master problem compared to the previous work. There are
three sub-problems with three different objective functions, and each subproblem is solved
by constructing a new route graph based on the capacity of the vehicle in which we look
for all the non-dominated tours.

3. Mathematical Model for Multi-Trip Vehicle Routing Problem with a Variable
Number of Wagons and Time Windows

An instance of this problem is defined by a set of customers C = {1, 2, · · · , n}, and the
depot is represented by the vertices 0 and n + 1. Depot 0 is the start depot, and n + 1 is the
return depot.

The set {0, 1, . . . , n + 1} is denoted N in a complete directed graph G = (N, A), where
A is a set of arcs {(i, j) : i 6= j, i, j ∈ N}. A traveling time of tij is associated with each
arc (i, j) ∈ A, which we consider as the distance of two vertices i and j, where i, j ∈ N.
A fleet of wagons W, with identical capacities q which can be connected as one wagon, two
wagons or three wagons to organize a set of vehicles V. Vehicles in V are used to serve the
customers. |V| and |W| are the number of vehicles and wagons, respectively. The set
of arcs A represents all the connections between customers and the depot. There are no
arcs ending at vertex 0 or originating from vertex n + 1. A traveling time of tij is associated
with arc (i, j) , where i 6= j. Any customer i ∈ C has a demand di, a service time si, and
a time window [ai, bi], which means that a vehicle must arrive at the customer before bi.
If it arrives before the time window opens, it has to wait until ai to service the customer.
The time windows for both depots are assumed to be [a0, b0], representing the scheduling
horizon. The vehicles may not leave the depot before a0 and must return at the latest time
b0. A route of a vehicle is a closed path that starts and ends at the depot. The vehicle starts
at the depot, visits several customers in a specific order, and returns to the depot again.
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At every point on the route, the time windows and capacity constraints are satisfied. The
workday of each vehicle is a sequence of routes where each route starts and ends at the
depot and we call it a tour. Multiple routes can be performed by a vehicle during one day,
and these routes are collectively called a tour. These routes are denoted by the set R and
the maximum number of routes in any tour (for any vehicle) is fixed in our model.

Each vehicle can be configured to use one, two, or three wagons giving it different
capacities. The configuration of each vehicle must stay the same on all trips. Next, we define
some of the mathematical model’s decision variables. The decision variable sk

ir denotes
the time that the vehicle k starts to service customer i in route r. If the vehicle k does not
service customer i in route r, sk

ir has no meaning; consequently, its value is considered
irrelevant. Variable xk

ijr is one if vehicle k drives directly from customer i to customer j and

zero otherwise in route r. Variable zk
n is used to determine how many wagons vehicle k

needs, where n is in {1, 2, 3}. If z3
2 = 1, vehicle 3 has 2 wagons. Therefore, z3

1 and z3
3 must

be 0, which means vehicle 3 does not have 1 or 3 wagons. Moreover, finally, qk is the kth

vehicle’s capacity, depending on the number of wagons attached.

xk
ijr =

{
1 if vehicle k drives directly from vertex i to vertex j on route r
0 otherwise

zk
m =

{
1 if the m wagons are attached for vehicle k
0 otherwise

We assume a0 = 0 and therefore sk
0r = 0, for all k and r. The goal is to design a set of

routes that minimizes the total distances of all routes and

• Each customer is serviced exactly once;
• Every route starts at vertex 0 and ends at vertex n + 1;
• The time windows of the customers are satisfied;
• The total demand on a route can not exceed the capacity of the vehicle, which depends

on the number of wagons attached to it (1, 2, or 3);
• Total number of the wagons used should be less than |W|;
• A vehicle is assigned only one configuration;
• Each vehicle must leave the depot 0 ;
• All vehicles must return to the depot n + 1;
• The start time of the next route by the same vehicle should be after the finishing time

of its previous route;

An unused vehicle is modeled by driving the empty route (0, n + 1).
The mathematical model is described next.

min ∑
k∈V

∑
r∈R

∑
i∈N

∑
j∈N

dk
ijrxk

ijr (1)

s.t.

∑
k∈V

∑
r∈R

∑
j∈N

xk
ijr = 1 ∀i ∈ C (2)

∑
i∈C

di(∑
j∈N

xk
ijr) ≤ qk ∀k ∈ V, ∀r ∈ R (3)

qk =
3

∑
m=1

mqzk
m ∀k ∈ V (4)

3

∑
m=1

∑
k∈V

mzk
m ≤ |W| (5)
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3

∑
m=1

zk
m = 1 ∀k ∈ V (6)

∑
j∈N\{0}

xk
0jr = 1 ∀k ∈ V, ∀r ∈ R (7)

∑
i∈N

xk
ihr − ∑

j∈N
xk

hjr = 0 ∀h ∈ C, ∀k ∈ V, ∀r ∈ R (8)

∑
i∈N\{n+1}

xk
i,n+1,r = 1 ∀k ∈ V, ∀r ∈ R (9)

sk
ir + si + tij −M(1− xk

ijr) ≤ sk
jr ∀i ∈ N \ {n + 1}, ∀j ∈ N \ {0}, ∀k ∈ V, ∀r ∈ R (10)

ai ∑
j∈N−{0}

xk
ijr ≤ sk

ir ≤ bi ∑
j∈N−{0}

xk
ijr ∀i ∈ C, ∀k ∈ V, ∀r ∈ R (11)

sk
0r ≥ sk

n+1,r−1 ∀r ∈ R, ∀k ∈ V (12)

xk
ijr ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ V, ∀r ∈ R (13)

zk
m ∈ {0, 1} ∀k ∈ V, m ∈ {1, 2, 3} (14)

sk
ir ≥ 0 ∀i ∈ C, ∀k ∈ V, ∀r ∈ R (15)

qk ≥ 0 ∀k ∈ V (16)

The objective function (1) minimizes the total distances of tours. The constraints (2)
ensure that each customer is visited exactly once. Equations (3) and (4) state that the total
demand on a route can not exceed the capacity of each vehicle depending on the number of
wagons attached. The constraint in (5) shows the number of wagons in total. Constraints (6)
ensure that a vehicle is assigned only one configuration. Equations (7)–(9) indicate that
each vehicle must leave the depot 0; flow conservation constraints; finally, all vehicles
must return to the depot n + 1. The inequalities (10) establish the relationship between the
vehicle departure time from a customer and its immediate successor. Constraints (11) assert
that the time windows are observed. Constraints (12) ensure a proper trip sequencing for
the workday of a vehicle that the starting time of the next trip of the vehicle must be after
the finishing time of its previous trip. Equations (13) and (14) are integer variables.

4. Column Generation for MTV RP-VW-TW

Multi-trip vehicle routing problem with a variable number of wagons and time win-
dows and the mathematical model was described in Section 3. In this section, we solve
the problem using column generation. The master problem, pricing subproblem, and the
techniques for solving the pricing subproblem will be explained.

4.1. Master Problem for MTVRP-VW-TW

A tour is the set of all the routes a vehicle performs during a day. So, the decision
variable yw, which refers to a column corresponding to a tour. Ω is the set of all feasible
tours, dw is the total distance of tour w ∈ Ω, |W| is the total number of wagons, |V| is the
number of the vehicles and nw is the number of wagons used for a vehicle that is used
in tour w and nw ∈ {1, 2, 3}. aiw is one if customer i is in tour w, 0 otherwise. We use the
following decision variable:

yw =

{
1, if tour w is chosen
0, otherwise

(17)
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The master problem is:

min ∑
w∈Ω

dwyw (18)

s.t.

∑
w∈Ω

aiwyw ≥ 1 ∀i ∈ C (19)

∑
w∈Ω

yw ≤ |V| (20)

∑
w∈Ω

nwyw ≤ |W| (21)

yw ∈ {0, 1} ∀w ∈ Ω (22)

The objective function (18) is to minimize the total distances of all tours. Con-
straints (19) ensure that each customer is visited at least once. The constraint (20) states
that the number of all tours must be less than the number of vehicles. Constraint (21) states
that the number of wagons used in all the vehicles must be less than the total number
of wagons.

The solution is a subset of Ω. As the number of columns is exponential in the number
of customers, we solve the restricted master problem (RMP) with a limited number of
columns for the initial solution. The columns are progressively added into RMP. The
LP-relaxation of RMP (RLMP) is solved with an LP solver to obtain the dual variables
associated with the optimal solution of the RLMP. These dual values are sent to the
subproblem to determine new tours with a negatively reduced cost, and these new tours
are added to the master problem. The process will continue until there are no more tours
with a negatively reduced cost. This guarantees an optimal solution to the RLMP.

4.2. Method for Constructing Tours/Columns

Once the LP relaxation of the restricted master problem is solved, Three sub-problems
are defined below based on the definition of the MTVRP-VW-TW. The first sub-problem is
to find tours of vehicles with one wagon attached; the second and third sub-problems are to
find tours of vehicles with two and three wagons attached, respectively. Each sub-problem
is an elementary shortest-path problem with resource constraints. The path starts at the
artificial start node (depot) and to the artificial end node (depot) in the route graph. The
route graph and its construction are explained in the following sections. Solving each
sub-problem gives a new tour with the most negatively reduced cost. Following are the
steps to solve the sub-problems.

4.3. Generating All Non-Dominated Paths

All non-dominated routes must first be generated to solve the sub-problems. The
label correcting algorithm [33] is used to create all these routes. To keep track of previously
visited nodes, elementary paths must be generated. A path p from an origin node o ∈ N
to a node j ∈ N is labelled with Rp = (Cp, t1

p, t2
p, spv, V1

p , . . . , Vn
p ). Time consumption, t1

p is
the time used in the path till customer vj which sets to 0 at the depot, and after extending
a path by visiting a new customer, it is updated as t1

p = t1
p + tij + sj, where vi and vj are

two adjacent customers on the route and sj represents the service time for the customer
vj. Load consumption, t2

p is the capacity used for the path and sets to 0 at the beginning
when the vehicle is at the depot, then when a customer is added to the path, it is updated
by t2

p = t2
p + dj where dj is the quantity that must be delivered to the customer vj. A time

interval [ai, bi] representing the time window is associated with each customer vi and a load
interval [0, Q], where Q is the vehicle’s capacity. Cp is the length of the path and is made
negative by replacing the distance tij of each arc with tij − a, such that a > max(i,j)∈Atij.
We make the distances negative so that vehicles leave the depot. Otherwise, it would
be optimal to stay at the depot; spv is the number of unreachable nodes and Vi

p = 1 if
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node i is unreachable, 0 otherwise. The following dominance relation is used to determine
non-dominated routes:

Dominance Relation: If two paths, p, and p′, extend from origin o to node j with
labels Rp and Rp′ , respectively, then path p dominates p′ if and only if Cp ≤ Cp′ , spv ≤ sp′v,
tk

p ≤ tk
p′ , ∀k = 1, . . . , l, Vi

p ≤ Vi
p′ , ∀i = 1, . . . , n [38].

In other words, a path p dominates a path p′ if (a) it is no longer, (b) it does not use
more resources for each resource taken into account, and (c) every node that is unreachable
for path p is also unreachable for path p′ [38].

Using this relation will keep only the labels for non-dominated elementary paths.
To implement the label correcting algorithm for our problem, we need to create a label

(Cp, t1
p, t2

p, spv, V1
p , . . . , Vn

p ) which represents a path p from the depot to the customer j. All
feasible non-dominated routes are generated using these labels.

During the path extension, we need to see if the current time consumption (t1
p) plus

the distance dij is less than ai, then t1
p is replaced by ai, and the extension of the path

continues. Each time we extend one node or the node is unreachable, spv increases by one.
We also eliminate the partial routes when we are extending the paths. So, at the end of the
algorithm, we will have all non-dominated routes.

4.4. Creation of the Route Graph

After creating all non-dominated routes, each can be looked at as a node in a new
graph called the route graph. The route graph includes these routes as nodes and two
artificial nodes for the start and end of the vehicle workday. To create the route graph, if
there is an edge between nodes r and r′, route r and r′ must not visit the same customer,
and the feasibility of servicing route r′ after route r is determined through departure time
windows as explained below.

The latest departure and arrival times and the earliest departure and arrival times need
to be calculated to satisfy the second condition. To have an edge (r, r′), the latest departure
of route r′ must be larger than the latest arrival of route r. There are edges between the
artificial start node and all routes and from all routes to the artificial end node.

There are two time windows for each route node r which are earliest and latest
departure times [tr

0, t̄r
0] and earliest and latest arrival times [tr

n+1, t̄r
n+1]. Routes must be

started and completed in these intervals. These time windows are determined as shown
below [38].

Latest departure and arrival times:
If the route r is shown as a sequence (0 = i0, i1, i2, . . . , inr , inr+1 = n + 1) where the

first and last points are the depot as well as other customers (nr ones) in the middle, first
the latest feasible time t̄r

ij
of each customer must be calculated using a back-ward sweep of

route r starting from inr+1 to i0. Therefore:

t̄inr+1 ← binr+1

t̄r
ij
← min{t̄r

ij+1
− tijij+1 − sij , bij}, ∀j = inr , . . . , i0

Finally, we will have t̄r
i0

which is the latest departure of the route r and again in
a similar way we obtain the latest arrival time of the route as well as the latest feasible
schedules (t̄r

ij
) at each customer using a forward sweep, so each t̄r

ij
can be calculated as:

t̄r
ij
← max{t̄r

ij−1
+ tij−1ij + sij , aij}, ∀j = i1, . . . , inr+1

Earliest departure and arrival times:
Suppose we calculated the latest departure time (t̄r

0), the earliest departure time(t̄r
n+1)

and the latest feasible schedules to begin service at each customer(t̄r
ij

) in the route r, two
cases can happen:
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Case 1: there is no waiting time (vehicle doesn’t arrive before time windows) in the
latest feasible time of customers, then we can shift the latest times by the minimum of (t̄r

ij
)

and aij , so we can calculate it for each route as:

δr = minj=0,...,nr+1(t̄r
ij
− aij)

By deducting these units from the latest departure and arrival times, the earliest
departure and arrival can be obtained. So, we have:

tr
0 = t̄r

0 − δr

and,
tr
n+1 = t̄r

n+1 − δr

Having all the latest departure and arrival times as well as the earliest departure
and arrival times, it is possible to write the time windows for all routes as: [tr

0, t̄r
0] and

[tr
n+1, t̄r

n+1].
Case 2: If there are some waiting times in the latest feasible time for customers. Then,

we can not leave the depot earlier, when the latest arrival times are before the time windows.
So, the earliest departure and arrival times will be the same as the latest departure and

arrival times respectively.
tr
0 = t̄r

0

and,
tr
n+1 = t̄r

n+1

In case 2, the time windows for departure and arrival will be a single point. So, the
route r′ can be served after route r if tr

n+1 + δr′ ≤ t̄r′
0 .

Given all this information, now to create the route graph, we must note that there
must not be any common customer between routes r and r′ and the latest arrival time of
the route r must be less than the latest departure time of the next route r′. If both conditions
are met, then there is an edge from r to r′.

4.5. Sub-Problem for MTVRP-VW-TW

The subproblem is defined on the route graph GT = (VT , AT) where VT is the set of
all non-dominated routes generated by the label correcting algorithm [33] plus two artificial
nodes for the start and end of the tour. AT is the set of edges in the route graph with the
time windows on each route, [tr

0, t̄r
0] and [tr

n+1, t̄r
n+1].

Dual variables associated with the master problem constraints are needed to formulate
the subproblem on the route graph. Let πi be dual the variables associated with con-
straints (19) in the master problem and µ0 and µ1 are the dual variables associated with
(20) and (21) constraints respectively.

Let crs = ds, where ds is the total distance of route s, and the reduced cost of arc (r, s)
is: c̄rs = crs −∑i∈Vs πi.

Using the binary variable Xrs which is one if the route (r, s) is used and zero otherwise,
and the continuous variable Tr which is the departure time of the route r, we formulate the
subproblem as follows:



Algorithms 2022, 15, 412 9 of 19

min ∑
(r,s)∈AT

c̄rsXrs − µ0 − µ1 (23)

s.t.

∑
(r,h)∈AT

Xrh − ∑
(h,s)∈AT

Xhs = 0 ∀h ∈ VT (24)

∑
r∈AT

X0r = 1 (25)

∑
r∈AT

Xr,n+1 = 1 (26)

Tr + (t̄r
n+1 − t̄r

0)−M(1− Xrs) ≤ Ts ∀(r, s) ∈ AT (27)

tr
0 ≤ Tr ≤ t̄r

0 ∀r ∈ VT (28)

Xrs ∈ {0, 1} ∀(r, s) ∈ AT (29)

Tr ≥ 0 ∀(r, s) ∈ AT (30)

The objective function (23) is to reduce the cost of the tour. Constraint (24) indicates
that the vehicle must leave a route and go to the next one. Constraints (25) and (26) ensure
that the tour starts and ends at the depot. The inequalities (27) establish the relationship
between the vehicle departure time from a route and its immediate successor. Constraints
(28) assert that the time windows of routes are observed.

The following flowchart shows the process of generating all non-dominated tours for
the sub-problem with one wagon in Figure 1. The same procedure is used for two other
sub-problems.

Input Graph

Apply Label Correcting
Algorithm (Section 4.3)

Generate All
Non-dominated

paths (Section 4.3)

Calculate the Depar-
ture and Arrival

Times (Section 4.4)

Generate Route
Graph (Section 4.4)

Apply Label Correcting
Algorithm on the Route

Graph (Section 4.6)

Figure 1. Process of generating all non-dominated tours.
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4.6. Solving the Pricing Subproblems

For three different capacities of the vehicles, we have three route graphs. Consequently,
three subproblems will be solved. The label correcting algorithm can be applied to each of
them again to find the new tour with the negative reduced cost to be added to the master
problem.

Now, the label correcting algorithm can be implemented to determine all non-dominated
tours of the route graph. The method described in [4] is used to implement the label-
correcting algorithm on the route graph.

Using the extend and dominate function in the label correcting algorithm, all non-
dominated tours will be generated. The algorithm first generates all non-dominated routes
and then generate the route graph, and finally creates all non-dominated tours. The
algorithm is described next.

Description of the Algorithm:
The Algorithm 1 finds all non-dominated tours on the route graph from the origin

node p (depot).
We need the following notation to describe the algorithm:

• G = (N, A): The input graph.
• N: Set of customers and vertices 0 and n + 1 as the depot.
• A: Set of all edges between vertices in N
• Hi: List of labels on node vi
• Succ(vi): Set of successors of node vi.
• E: List of nodes waiting to be processed.
• Extend(Li, vj): Function that returns the label resulting from the extension of label Li

∈ Hi towards node vj when the extension is possible, nothing otherwise.
• Dominated(Aj): Procedure that removes dominated labels in the list of labels Hj.
• Fij: List of labels extended from vi to vj

• Routes: To save all non-dominated routes.
• (Ld− time)k: latest departure time of Rk ∈ Routes.
• (La− time)k: latest arrival time of Rk ∈ Routes.
• (Ed− time)k: earliest departure time of Rk ∈ Routes.
• (Ea− time)k: earliest arrival time of Rk ∈ Routes.
• GT = (VT , AT): Route graph
• VT : Set of all non-dominated routes which are vertices in the route graph.
• AT : Set of edges in the route graph
• HT

k : List of labels on node Rk
• SuccT(Rk): Set of successors of route Rk.
• ET : List of routes waiting to be processed.
• ExtendT(LT

k , Rk): Function that returns the label resulting from the extension of label
LT

k ∈ HT
i towards node Rh when the extension is possible, nothing otherwise.

• DominatedT(HT
h ): Procedure that removes dominated labels in the list of labels HT

h .
• FTkh: List of labels extended from Rk to Rh
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Algorithm 1 Generating all non-dominated tours

Input: G(N, A) {All notation used are written above}
output: all non-dominated tours
Initialization {Generate all non-dominated routes}
Hp ← {(0, ..., 0)}
for all vi ∈ V − {p} do

Fij ← ∅
end for
E = {p}
while E! = ∅ do

Choose vi ∈ E
for all vj ∈ Succ(vi) do

Fij ← ∅
for all Li ∈ Hi do

if V j
i = 0 then

Fij ← Fij ∪ Extend(Li, Vj)
end if

end for
Hj ← Dominated(Fij ∪ Hj)
if Hj has changed then

E← E ∪ {vj}
end if

end for
for all Li ∈ Hi do

if Li is not extended to any vj ∈ Succ(vi) then
Routes← Extend(Li, n + 1)

end if
end for
E← E− {vi}

end while
for all Rk ∈ Routes do {Generate the route graph}

Add Rk to VT

Calculate (Ld− time)k , (La− time)k ,(Ed− time)k, and(Ea− time)k.
end for
for all Rk, Rh ∈ Routes do

if Rk and Rh don’t have common customer and (La− time)k ≤ (Ld− time)h then
Add an edge from vertex Rk to vertex Rh in AT

end if
end for
for all Rk ∈ Routes do

Add an edge from vertex Rk to p and from p to Rk
end for
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Algorithm 1 Cont.

Initialization {Generate all non-dominated tours}
HT

k ← {(0, ..., 0)}
for all Rk ∈ VT − {p} do

FTkh ← ∅
end for
ET = {p}
while ET ! = ∅ do

Choose Rk ∈ ET

for all Rh ∈ SuccT(Rk) do
FTkh ← ∅
for all LT

k ∈ HT
k do

if Rh
k = 0 then

FTkh ← FTkh ∪ ExtendT(LT
k , Rh)

end if
end for
HT

h ← DominatedT(FTkh ∪ HT
h )

if HT
h has changed then

ET ← ET ∪ {Rh}
end if

end for
ET ← ET − {Rk}

end while

All non-dominated tours will be generated using the extend and dominate function in
the label-correcting algorithm. There are three subproblems based on the various capacity.
All tours will be generated for these three subproblems. First, we will see if there is a new
tour with a negative reduced cost in the subproblem with one wagon. If so, the column will
be added to the master problem. If not, the second subproblem will be checked. Suppose a
new tour with a negative reduced cost is added to the master problem. If not, we will check
the third subproblem, which uses three wagons. We solve the subproblems until all tours
with the negative reduced cost are found and added to the master problem. The following
flowchart shows the procedure of the algorithm in Figure 2.
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Original problem formulation

Master Problem
(Section 4.1)

Restricted master problem (RMP)

Solve relaxation of RMP

Solve subproblem 1 to find a column with nega-
tive reduced cost (Sections 4.2–4.6), column found

Add such
column to RMP

Solve subproblem 2 to find column with negative
reduced cost, (Sections 4.2–4.6), column found

Solve subproblem 3 to find column with negative
reduced cost, (Sections 4.2–4.6), column found

Solution Integral Done

Branch and
price (Section 5)

Yes

Yes

Yes

No

No

No

Yes

No

Figure 2. Column generation procedure for various capacities.

5. Branch and Price Algorithm for MTV RP-VW-TW

In this section, we describe initialization, the search strategy, the branching strategy,
and the upper bound that we use in our implementation of branch and price for the
multi-trip VRP with variable wagons and time windows.

Initialization: At the root of the search tree, the RLMP is initialized with tours made
of a single customer visit. The number of columns thus corresponds to the number of
customers. For internal nodes in the search tree, the algorithm initializes the RLMP with
the set of columns in the parent node considered after removing infeasible columns due
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to branching [4]. The minimum capacity for all vehicles that service a single customer is
one wagon.

Search Strategy: The branch and price tree is explored using a depth-first search.
Lower and Upper Bound: The solution to RLMP at the root node gives a lower bound

for the problem. We solve the master problem using CPLEX. The integer solution of the
master problem given by the CPLEX 12.8 is used as the upper bound.

Branching Strategy: Two branching strategies are used. We branch on the number of
vehicles and the arcs.

Branching on the Number of Vehicles: We sum the value of variables of the optimal
solution of RLMP, so k = ∑w∈Ω′ yw, where Ω

′ ⊆ Ω. If k is fractional, two branches are
created. For each branch, one additional constraint is added to the master problem. These
two constraints are:

∑
w∈Ω′

yw ≤ bkc

and
∑

w∈Ω′
yw ≥ bk + 1c.

The dual variable value corresponding to the new constraint is added to the subprob-
lem, and the column generation is done again for this new child node.

Branching on Arcs: The branch on an arc happens when the flow on an arc (i, j) is
fractional. We calculate the flow on any arc that is in some column. The sum of the yw,
w ∈ Ω

′
on the columns that include an arc (i, j), will give the flow on the arc. The arc with

fractional value is taken. So, these branches will be:

• Left branch: xij = 1, which means the customer j must be visited right after customer
i in all tours of RLMP and the route graph. To enforce it, all columns in the RLMP
and the route graph that contains arc (i, k) with k 6= j and (k, j) with k 6= i must be
deleted. Also, if xi = ∑w∈Ω′ aiwyw, then the decision variables for vertices i and j are
set to one in RLMP, xi = 1 and xj = 1.

• Right branch: xij = 0, which means the customer j must not follow the customer i
immediately. So all tours must be removed, including the arc (i, j) in RLMP and the
route graph.

Branch and Price Process

We start at the root, and if RLMP is feasible, all possible columns from three subprob-
lems will be added to the RLMP. The LP solution of the root is set as the lower bound, and
also integer solution given by the CPLEX is used as the upper bound. Two branches on
the number of vehicles are created, and we use a stack in implementation DFS, so nodes
are added to the front of the stack. For each node, column generation is used again to find
the LP- solution of RLMP. We check if the node must be pruned or kept. If the node is
not pruned, we update the upper bound and create two new branches. After processing
all nodes, we see if the sum of the value of variables of the best bound is an integer, but
variable values are not, then the branching on nodes is used to generate nodes. Then,
we calculate the flows on all the arcs. In the same way, we continue with the last node
added to the head of the list to see if the node must be pruned or kept after using column
generation. If we keep the node, two branches are created, and the upper bound is updated.
The process continues until the stack is empty.

6. Experimental Evaluation for MTV RP-VW-TW
6.1. Mathematical Model Test

The mathematical model of MTVRP-VW-TW with the objective function of the du-
ration of the longest route is solved with CPLEX and C++, using modified Solomon in-
stances [46]. The algorithm is implemented in C++. The instances are a subset of Solomon’s
set of CVRPTW test problems. They are type of C1, C2, R1, R2 with 25 customers. We
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modified the number of vehicles and capacity in type C1, R1 to 25 vehicles, and the capacity
of 200 changed to 15 vehicles, 30 wagons, 3 routes and a capacity of 150 for each wagon.
For type C2, 25 vehicles and a capacity of 700 are changed to 15 vehicles, 30 wagons, 3
routes, and a capacity of 500 for each wagon. For type R2 with a capacity of 1000 changed
to 15 vehicles, 30 wagons, 3 routes, and a capacity of 700 for each wagon. Tables 1–3 show
the results.

Table 1. 25 Customers.

Instance Gap (in %) CPU Time (s) Objective Best Bound

C1 66.4 14,403 890 450
R1 67.2 14,402 665 292
R2 72.5 14,382 1033 308

Table 2. 50 Customers.

Instance Gap (in %) CPU Time (s) Objective Best Bound

C1 89 14,339 569 408
R1 76 14,420 680 408
R2 68 14,059 1065 414

Table 3. 10 Customers.

Instance Gap (in %) CPU Time (s) Objective Best Bound

C1 66 14,402 1137 630
R1 81 14,404 3340 630
R2 68 14,402 1562 630

All the instances have a large integrality gap and it takes a lot of time to solve the
mathematical model.

6.2. Branch and Price Test

Solomon’s (100 customers) instances [46] for Euclidean VRPTW are modified to
evaluate the model. We use the first ten customers of Solomon’s instances to test the
algorithm. The Euclidean distance between two customer locations determines the travel
time for these instances.

The instances of Solomon [46] that we consider of six different types C1, C2, R1, R2,
RC1, RC2. Each data set has eight to twelve 100-node problems. Sets C1 and C2 have
clustered customers whose time windows were generated based on a known solution.
Problem sets R1 and R2 randomly generate the customer’s location over a square. Sets RC1
and RC2 combine randomly placed and clustered customers. Sets of type 1 have narrow
time windows and small vehicle capacity. Sets of type 2 have large time windows and large
vehicle capacity. Therefore, the optimal solutions for type 2 problems have very few routes
and significantly more customers per route. It must be noted that the branch and price
algorithm is an exact algorithm that could not solve more than 40–50 customers so far.

To use Solomon’s instances, we modify them. So, the solution to VRPTW instances are
routes with one trip. We need to adjust them for the multi-trip and different capacity use.
We use 10 of 25 customers for the instance. Instances of type 1 that have a capacity of 200
for each vehicle now have a capacity of 50 per wagon. Instances of type 2 with a capacity
of 1000 per vehicle have been modified with a capacity of 100 per wagon. The number of
vehicles is limited to 10. The number of wagons is 45. A tour’s maximum number of routes
is limited to three for these instances.

Experimental Results

The results of the branch and price algorithm are presented next. The program
was implemented in the optimization programming language OPL, using ILOG CPLEX.
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CEDAR, the Compute Canada cluster, was used for experimentation, with a limit of 4 h on
each solve and a maximum memory requirement of 40GB. Our algorithm was able to find
optimal solutions for R1, R2, RC1, and RC2.

The results are in Table 4 where the column named Instances is the type of the instance.
The gap is between the LP-relaxation value at the root and the optimal integer value in %.
CPU time is calculated as differences between the time recorded at the root and the end of
the algorithm in seconds. Obj is the total distance. Iter is the number of iterations used to
solve RLMP by CPLEX. Cols is the number of columns generated during the branch and
price algorithm. Node is the number of nodes explored in the search tree. The route is the
max number of routes used in all tours. Tour is the number of tours used to visit customers.

Table 4. Branch and Price for 10 Customers.

Instance Gap CPU Time
(s) Obj Iter Cols Node Route Tour

RC102 994.364 869.56 563.562 20 17 3 2 2
RC103 994.364 899.163 563.562 20 17 3 2 2
RC105 994.548 398.842 545.237 18 17 1 2 2
RC106 993.178 111.626 682.168 13 12 1 2 3
RC107 994.189 202.428 581.069 11 10 1 2 2
RC108 994.121 670.193 587.86 17 14 3 2 2
RC202 992.434 470.885 756.612 5 4 1 1 2
RC203 992.434 470.885 756.612 5 4 1 1 2
RC204 993.722 872.675 627.785 3 2 1 1 2
RC206 794.258 139.613 724.979 8 7 1 2 1
RC207 991.067 446.75 893.255 15 14 1 2 1
RC208 797.627 800.939 388.128 3 2 1 1 1
R102 993.936 102.048 606.438 7 6 1 2 2
R103 993.936 106 606.438 7 6 1 2 2
R108 993.326 1287.93 667.381 16 13 3 2 2
R110 994.023 171.832 597.728 10 9 1 2 2
R111 993.629 2010.17 637.106 14 12 3 2 2
R202 991.33 455.858 867.046 5 4 1 2 1
R203 991.33 458.102 867.046 5 4 1 2 1
R204 993.722 881.522 627.785 3 2 1 1 2
R205 992.355 102.946 764.518 3 2 1 2 1
R206 993.992 581.478 600.814 3 2 1 1 2
R207 993.992 593.218 600.814 3 2 1 1 2
R208 993.993 612.737 600.683 3 2 1 1 2
R209 992.61 345.444 739.023 8 7 1 1 2
R210 993.672 1068.08 632.814 3 2 1 1 2
R211 996.263 443.173 373.736 2 1 1 1 1

6.3. Analysis

The mathematical model was tested, and it can take hours, or days to give solutions
with gaps of around 60%, this is why we need to use a method like a branch and a price,
which is an exact method to have the optimal solution of the problem.

The mathematical model is a new one in that the mathematical test confirms the
validation of the model and the branch and price test shows solving the model optimally.
The branch and price algorithm solves the model for the small instances, but it gives the
optimal solution for these instances that the model can not provide.

During experimentation, we notice that the algorithm explores more nodes if a similar
capacity (one wagon) is used for all tours. Giving the algorithm the option to check more
tours with two wagons and three before starting a new branch makes it faster and explores
a smaller number of nodes. The number of added columns before starting a new branch
increases when different capacities are used. Varying capacity can significantly affect the
number of explored nodes. The upper bound that the CPLEX provides us is a good upper



Algorithms 2022, 15, 412 17 of 19

bound close to the optimal solution and it helps to explore fewer nodes and have a solution
faster.

The algorithm solves type 2 instances where the time windows are more expansive on
the horizon. It is faster and uses fewer iterations. For type C instances, branch and price
could not find a solution to the time cut-off limit. All the instances listed in Table 4 were
solved optimally within four hours.

We need to solve two resource constraints, the shortest path problem to determine
a column with a negative reduced cost, and we need also to construct a route graph. The
shortest path problem is solved using dynamic programming whose run time depends on
the number of non-dominated paths which can be exponential. For large instances, this
type of program run out of memory to store all the non-dominated paths. That is why we
cannot solve large instances using column generation, as a part of future work we will look
at other methods for solving the resource constraint shortest path problem.

7. Conclusions and Future Work

This work defines a new type of VRP, multi-trip vehicle routing problem with a vari-
able number of wagons and time windows. The problem is serving clients’ demands in
a specific interval of time (time windows). At the same time, vehicles can make multiple
daily trips, and the vehicle’s capacity can be set at the beginning of the day by adding up
to three wagons for each vehicle. First, a mathematical model of the problem is developed,
and then we develop a branch and price algorithm to solve the problem. The approach to
solving the problem is column generation embedded in a branch and bound algorithm. We
implemented the branch and price algorithm for MTVRP-VW-TW on several Solomon’s
instances to show the algorithm’s effectiveness. It can compute the optimal integer solution
for limited customers.

We are interested in combining the column generation approach with metaheuristics to
develop a faster solution for MTVRP-VW-TW. We will extend the model for split delivery
with time windows, multiple wagons, and multiple trips per vehicle. The model can be
extended to a multi-objective problem as well. In addition to these two types of the VRPs,
the model can be extended to other variants of the VRPs. We can develop heuristic, exact
and approximate approaches to solve the model.
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Abbreviations
The following abbreviations are used in this manuscript:

VRP Vehicle Routing Problem
VRPTW Vehicle Routing Problem with Time Windows
MTVRP Multi-trip vehicle routing problem
MTVRPTW Multi-Trip Vehicle Routing Problem with Time Windows
MTVRP-VW-TW Multi-trip VRP with a Variable number of Wagons and Time Windows
RMP Restricted Master Problem
RLMP LP-relaxation of RMP
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