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Abstract: Inconsistencies in the comparison matrix is a common problem in many studies using
the analytic hierarchy process (AHP). While these may be identified and corrected through asking
respondents to reconsider their choices, this is not always possible. This is particularly the case
for online surveys, where the number of respondents may be large and often anonymous, such
that interacting with individual respondents is neither feasible nor possible. Several approaches
have previously been developed for autonomously adjusting the comparison matrix to deal with
inconsistencies. In this paper, we build on these previous approaches, and present an algorithm
that is conceptually and analytically simple and readily implementable in R. The algorithm is
applied to several example cases to illustrate its performance, including an example case study
involving data collected through a large online survey. The results suggest that the modified survey-
derived comparison matrix derived using the algorithm produces consistent responses that do not
substantially alter the individual preferences in most cases.

Keywords: analytic hierarchy process; inconsistencies; automated adjustment; online surveys;
geometric mean method

1. Introduction

The estimation of objective or criteria importance weights is an integral component of
most multi-criteria decision analysis studies [1]. The analytic hierarchy process (AHP) [2,3]
is a commonly applied approach for deriving such weights, e.g., [4–7]. The method esti-
mates the relative importance of each criterion being assessed to different stakeholders or
decision makers. The derived weights subsequently help determine which set of outcomes
given a range of different management options may be overall most preferable to the
different groups based on their preference sets.

AHP is based upon the construction of a series of comparison matrices, with each
element of the matrix representing the relative importance of each criterion relative to
another. From these comparison matrices, the set of criteria importance weights can
be determined using a number of different approaches [8], as detailed in the following
sections. The elements themselves are derived through stakeholders being required to
compare and prioritize only two criteria at any one time. The pair-wise comparison used in
the AHP method makes the process of assigning importance weights relatively easy for
stakeholder respondents as only two sub-components are being compared at a time [1].
However, preference or importance weightings are highly subjective, and inconsistency is a
common problem facing AHP, particularly when decision makers are confronted with many
sets of comparisons [9]. For example, asked to consider three criteria through pairwise
comparison, a stakeholder may rate A > B, B > C but C > A. This is an extreme outcome,
known as a circular triad, but can and does occur in some cases. More often, we might
find that the “implicit” relationship between, say C and A, in terms of the preference
strength given the other prioritizations (i.e., A and B, B and C) differs from the stated
relationship. The propensity for these inconsistencies to emerge increases with the number
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of criteria to be compared. The presence of inconsistency in the comparison matrix may
result in issues such as the incorrect priority weighting associated with each of the attributes
being considered [10]. When applied in a multi-criteria decision-making framework, these
issues may result in incorrect ordering of management options, and the selection of a
less-than-optimal option.

Inconsistency may arise for several reasons. Respondents do not necessarily cross
check their responses, and even if they do, ensuring a perfectly consistent set of responses
when many attributes are compared is difficult. The process of choosing a particular
trade-off value can also depend on respondent’s attention, mood, feelings and mental
efficiency [11], and inconsistencies may arise through essentially random errors created
by variations in these respondent’s state of mind. The discrete nature of the 1-9 scale
applied in AHP can also contribute to inconsistency, as a perfectly consistent response may
require a fractional preference score [12]. Danner, et al. [13] found that excessive use of
extreme values by respondents trying to highlight their strong preferences was a main factor
contributing to inconsistency in their study. Baby [4] suggested that inconsistency can also
arise through respondents entering their judgments incorrectly, lack of concentration, as
well as inappropriate use of extremes. Lipovetsky and Conklin [10] termed these “Unusual
and False Observations” (UFO) that appear because of inaccurate data entry and other
lapses of judgement.

Ideally, UFOs would be identified and respondents would be requested to reconsider
their choices in the light of these identified inconsistencies. However, this is not always
practical. The ease of implementing online surveys, the larger number of potential respon-
dents these can reach and the relatively low cost per response has made online surveys
widely attractive for gaining preference information from the general community as well
as special interest groups. In natural resource management in particular, management
agencies are turning to online surveys to understand the priorities of a wide range of
stakeholders to better support policy development and management decision making, with
many of these surveys using AHP approaches, e.g., [14–18]. The use of online surveys to
elicit preferences is not unique to natural resource management, with a range of other AHP
studies implemented through online surveys, e.g., [19,20]. A key advantage of the use of
online surveys is that allows access to relevant stakeholders who may be geographically
dispersed, even if not large in absolute numbers. For example, Thadsin et al. [21] employed
an online AHP survey to assess satisfaction with the working environment within a large
real estate firm with offices spread across the UK, while Marre et al. [18] used an online
AHP survey to elicit the relative importance of different information types to decision
making by fisheries managers across Australia.

This lack of direct interaction with the respondents creates additional challenges for
deriving priorities through approaches such as AHP. Direct interactions with the individual
respondents are not generally feasible, and in many cases responses are anonymous. At
the same time, high levels of inconsistency are relatively common in online surveys. For
example, Hummel, et al. [22] found only 26% of respondents satisfied a relaxed threshold
consistency ratio of 0.3 (compared to the standard threshold of 0.1) in their online survey;
Sara, et al. [23] found 67% of respondents satisfied a relaxed threshold consistency ratio
of 0.2; Marre, et al. [18] found 64% of the general public and 72% of resource managers
provided consistent responses, while Tozer and Stokes [24] found only 25% or respondents
satisfied the standard threshold consistency ratio of 0.1. Most previous online-based AHP
studies have tended to exclude responses that have a high level of inconsistency, resulting
in a substantially reduced, and potentially unrepresentative, sample e.g., [18,22–24].

Given this, there is a growing need to develop methods for adjusting inconsistencies
in AHP studies where direct interactions are not possible. Finan and Hurley [25] found
(through stochastic simulation) that ex post adjustment of pairwise comparison matrix
to improve consistency also improved the reliability of the preferences scores. Several
algorithms have since been developed to adjust the preference matrix in order to reduce
inconsistency, although these are not widely applied. Some involve iterative approaches
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that aim to reduce inconsistencies while maintaining the relative relationship between the
weights as much as possible, utilizing the principal eigenvector [26–28]. Li and Ma [29]
combined iterative approaches with optimization models to identify and adjust scores,
while Pereira and Costa [30] used a non-linear programming approach to find a consistent
set of scores that minimized the changes in the derived weights. Other approaches involve
the use of evolutionary optimization procedures to adjust the values of the comparison
matrices to minimize changes while improving consistency [31–33]. These implicitly
assume that the relative weights derived from the inconsistent matrix are still largely
representative of the relative preferences of the respondent.

Most of these above methods aim to minimize the change in the derived set of weights.
However, given that these weights are potentially distorted by the inconsistencies, aiming
to minimize divergence from these may be misleading. In contrast, Benítez et al. [34]
and Benítez et al. [35] used orthogonal projection to modify the entire comparison matrix,
deriving a completely new matrix that was close to the original but consistent. Kou et al. [36]
used deviations from an expected score value (based on other scores) to identify problematic
elements within the matrix, which are subsequently replaced with a modified estimate.
These approaches assume that the inconsistencies arise due to incorrect preference choice.
That is, the decisions maker is aiming to be consistent, but chooses the wrong value when
making the comparisons.

The use of the geometric mean method (GMM) [37] for deriving attribute weights is
often applied instead of the eigenvalue method, and hence an eigenvector is not derived
making some of these approaches impractical. Further, for large sets of comparisons
and potentially many respondents, such as might be realized through an online survey,
complicated approaches or computationally intensive methods (e.g., evolutionary methods)
may be impractical due to the large number of adjustments that may be necessary. Hence,
an alternative simple algorithm is required to adjust the pairwise comparison matrix.

In this study, a simplified iterative approach is developed for correcting for inconsis-
tencies that is applicable when using the GMM to derive weights and applicable for large
data sets, such as those derived from an online survey. What separates this approach from
the previous approaches is that it is readily implementable in freely available software (in
this case, R [38]), and can be integrated into the general analysis and derivation of weights.
The approach is applied to several example cases, as well as to a large set of bivariate
comparisons derived from an online survey to elicit preferences for protection of different
types of coastal habitats. The focus of this paper is to describe the simplified adjustment
process and its impact on preferences rather than focus on the results of the AHP analysis
of preferences for coastal assets per se.

2. Materials and Methods
2.1. Method Overview

We start with the assumption that inconsistency arises due to incorrect choice of the
preference score. As noted in the introduction, several factors may result in such incorrect
choice, such as lack of concentration and inappropriate use of extremes to reflect strong
preferences. The approach compares the actual and expected preference score for each of
the bivariate sets for each individual. Expected value scores have been proposed as a means
of simplifying the analysis when there are a large number of alternatives. In such cases, not
all comparisons are undertaken and the omitted values are estimated [39,40]. In this case,
the expected value score is compared with the “actual” score derived from the information
provided by the respondent. The greatest deviation between the actual and expected score
is assumed to represent the incorrect response. In this regard, the approach is similar to
that proposed by Cao et al. [26], who modified the pairwise comparison matrix using the
eigenvector to produce an acceptable consistency level while retaining most of the original
comparison information, and similar also to the approach proposed by Kou et al. [36],
who replaced the “most” inconsistent elements within a comparison matrix with estimates
based on other scores. The approach, however, is computationally simpler than both these
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previous approaches, and can be readily incorporated into code to estimate the weights
(see the Supplementary Material for examples of the code).

The iterative heuristic approach can be summarized as a series of four simple steps:

1. For each of the comparisons within a set where the consistency ratio (CR) is above
the threshold value, estimate the expected value based on the observed values
in the other comparisons. For example, for a 3 × 3 preference matrix given by 1 a1,2 a1,3

a2,1 1 a2,3
a3,1 a3,2 1

, where aj,i = 1/ai,j, then if preferences were completely consistent,

and assuming transitivity holds, we would expect â1,3 = a1,2 · a2,3, â2,3 = a2,1 · a1,3
and â1,2 = a1,3 · a3,2 [39] where âi,j is the estimated value of ai,j. For consistency
with the 9-point scale, the estimated values are restricted to the range [−1/9, 9] such
that âi,j = max

[
min

[
ai,k · ak,j, 9

]
, 1/9

]
;

2. Derive the squared deviation of the expected to actual value, normalized by the actual

value e.g.,
(
âi,j − ai,j

)2/ai,j;
3. Identify the comparison score with the largest normalized squared deviation and

replace the actual value with the estimated value in the comparison matrix. In the
case where two (or more) estimates have the same (maximum) deviation, both would
be replaced with their estimated value;

4. Re-estimate the consistency ratio. If it is still above the threshold value, repeat the
process (keeping the expected value from the first round); if it is less than the threshold
value, then exit the process and finalize the relative weights.

The algorithm can be readily implemented in R, with examples of R code provided in
the Supplementary Material. A limit on the number of iterations over which the analysis
can be run can also be imposed to allow for the case where convergence to a consistent set
of comparison scores cannot be achieved in a reasonable number of iterations.

2.2. Dealing with Four or More Attributes

For the three-comparison matrix described in Section 2.1, the different values can only
be combined in one way, i.e., âi,k = ai,j · aj,k, where i, j, k are the three alternatives being
compared. With four (or more) comparisons, there are more potential pathways by which
the values can be combined. For example, in the case of four and five comparisons:

α̂1,4 =


α1,2 · α2,4
α1,3 · α3,4
α1,2 · α2,3 · α3,4

,α̂1,5 =



α1,2 · α2,5
α1,3 · α3,5
α1,4 · α4,5
α1,2 · α2,3 · α3,5
α1,2 · α2,4 · α4,5
α1,3 · α3,4 · α4,5
α1,2 · α2,3 · α3,4 · α4,5

(1)

As there are potentially multiple estimates, we estimate the geometric mean of the
set of different possible estimates, following Scholz, et al. [41]. Again, for consistency
with the 9-point scale, the estimated values are restricted to the range [1/9, 9] such that
âi,j = max

[
min

[
âi,j, 9

]
, 1/9

]
The process continues as above until a consistent set of results

is obtained.

2.3. Example Applications

The approach is applied first to two simplified examples to illustrate how it works, and
then applied to a data set collected through an online survey to assess relative preferences
for coastal environmental assets.
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We use the Geometric Mean Method (GMM) [42] to derive the weights for each
attribute (ωi), given by:

ωi =

(
n
∏

k=1
ai,k

)1/n

∑
k

(
n
∏

k=1
ai,k

)1/n (2)

where n is the number of comparisons, and estimate the associated geometric consistency
index (GCI):

GCI =
2

(n− 1)(n− 2)∑i<j
log2(ai,jwj/wi

)
(3)

where n is the number of attributes being compared within a level of the hierarchy [43].
This is compared to a randomly generated value for an n x n matrix (Random Indicator or
RI) to derive a consistency ratio, CR, where CR = GCI/RI. Values of CR ≤ 0.1 are generally
considered acceptable [43].

3. Results
3.1. A Simplified Three Attribute Example

Consider an initial preference matrix for a hypothetical example with three attributes,

given by A =

 1 4 6
1/4 1 5
1/6 1/5 1

. From this, we can estimate the attribute weights.

In this example, we find the value of the GCI is 0.483, greater than the critical value
(given three attributes) of 0.315 [43]. From step 1, we can derive the expected value of
each bivariate comparison given the values for the other bivariate comparisons, assuming

transitivity and reciprocity hold: Â =

 1 1.2 9
1/1.2 1 1.5
1/9 1/1.5 1

. From this, we can estimate

the deviations from the original scores. Taking the values for the upper diagonal only, we
find that the normalized deviations of

(
âi,j − ai,j

)2/ai,j are 1.96, 1.5 and 2.45 for a1,2, a1,3
and a2,3 respectively. Given this, the value of a2,3 is replaced with â2,3 and the weights and
GCI re-estimated.

In this example, the revised GCI now falls to zero, so no further iterations are required.
The impact of the approach on the initial and modified relative weights is given in Table 1.
In some case, however, the estimated value may be constrained by an upper limit of 9 (e.g.,
â1,3 in the above example), or lower limit of 1/9. Thus, perfect consistency is not assured.

Table 1. Initial and revised relative weights from the example matrix.

Attribute Initial Revised

1 0.673 0.706
2 0.251 0.176
3 0.075 0.117

GCI 0.483 0.0

3.2. Circular Triads

Circular triads, or three-way cycles, are extreme cases of inconsistency where judge-
ments are intransitive, such that i > j > k > i. In cases where circular triads exist, the
approach can still provide an indication of how preferences may be determined. If we

consider a variant of the matrix presented in Section 3.1, such that A =

 1 4 1/5
1/4 1 5

5 1/5 1

,

where i > j, j > k but k > i. The scores are subsequently highly inconsistent (GCI = 7.06).
The derived weights from the matrix are fairly equal, i.e., 0.31, 0.36 and 0.33 for i, j, and
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k respectively. In this case, the estimated expected values are â1,3 = a1,2 · a2,3 = 4 · 5⇒ 9 ,
â2,3 = a2,1 · a1,3 = (1/4) · (1/5)⇒ 1/9 and â1,2 = a1,3 · a3,2 = (1/5) · (1/5)⇒ 1/9 . The
normalized deviations in this case suggest that â1,3 is the furthest from what may be ex-
pected. Replacing the value in the matrix with the expected value gives the new matrix

Â =

 1 4 9
1/4 1 5
1/9 1/5 1

. This matrix has an acceptable level of consistency (GCI = 0.213),

however the derived weights from the matrix have changed considerably, i.e., 0.71, 0.23,
and 0.06 for i, j, and k respectively. Correcting the inconsistency has changed the ranking
from j > k > i to i > j > k (i.e., a variant on the rank reversal phenomenon but not related to
addition or removal of an attribute).

The approach is less successful dealing with extreme circular triads. Consider the case
of an extreme circular triad in the initial preference matrix with three attributes, given by

A =

 1 9 9
1/9 1 9
1/9 1/9 1

. In this case, it might be interpreted that the respondent feels both

the first attributes is very much more important than the other two (but the strength of
this is limited to a score of 9), and the second is also substantially more important than the
third (again with the scores being limited to 9). The weights derived from this combination
are 0.78, 0.18, and 0.04, reflecting the substantial importance of the first alternative and the
minor importance of the latter. However, the matrix is inconsistent (GCI = 1.609).

From step 1, the expected value in each case is â1,3 = a1,2 · a2,3 = 9 · 9 � 9,
â2,3 = a2,1 · a1,3 = 9 · 1/9 = 1 and â1,2 = a1,3 · a3,2 = 9 · 1/9 = 1. As the normalized
deviation is the same for both â1,2 and â2,3, each case, i.e.,

(
âi,j − ai,j

)2/ai,j = (1− 9)2/9,
both values (and their inverse relationships) are replaced by their estimate. The revised
matrix results in weights of 0.58, 0.28 and 0.14, maintaining the rank order of the three
alternatives but reducing the importance of the first alternative. However, the consistency
score with the revised matrix is unchanged (GCI = 1.609). Repeating the process in this case
reverts back to the original matrix, and the process cycles without resolution.

3.3. Application to a Coastal Preference Study

The approach was applied to a large study on preferences for different coastal features.
Data for the study were derived from an online survey of 1414 coastal residents in NSW,
Australia [16]. The full hierarchy involved a comparison of 12 different coastal features,
broken into four main categories, i.e., shoreline (sandy beach, headlands, rocky shoreline);
backshore (sand dunes, adjacent scrubland, coastal freshwater lakes and rivers); intertidal
(estuaries, mangroves, saltmarshes), and marine (seagrass, rocky reef, sandy seabed). For
the purposes of illustrating the approach to correct for inconsistencies, only the top level of
the hierarchy is considered here (i.e., the four main categories). The data and R code used
in the analysis are provided in the Supplementary Materials.

With only three comparisons, as in the previous example, convergence to an acceptably
consistent matrix occurs in a single iteration. However, as the number of comparisons
increases, the number of iterations required to achieve an acceptable consistency index also
increases. In this example, we specified 20 iterations as a maximum number of iterations to
prevent potential indefinite cycling (as in the case of the extreme cyclic triad above).

The effect of the iterative approach on the level of inconsistency for the four broad
coastal attribute groups can be seen in Figure 1. The critical value in this case (i.e., n = 4) is
0.353 [43]. From the initial comparisons, only around 45% of the observations fell below
the critical value. After the adjustments, all observations were below the critical value.
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Figure 1. Initial and final distribution of inconsistency scores.

The effect of the adjustment on the distribution of the attribute weights can be seen
in Figure 2 and Table 2, which summarizes the weights derived from all observations,
including those with a GCI value above the critical value. The overall distributions varied
as a result of the adjustment, but median scores were relatively constant, and the correlation
between the scores before and after adjustment were high (Table 2).
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Table 2. Initial and revised relative weights from the example coastal case study.

Shoreline Backshore Intertidal Aquatic

Initial Adjusted Initial Adjusted Initial Adjusted Initial Adjusted

Min. 0.025 0.035 0.025 0.034 0.025 0.037 0.025 0.027
1st Quartile 0.194 0.203 0.144 0.142 0.092 0.106 0.138 0.099

Median 0.250 0.250 0.241 0.234 0.186 0.193 0.250 0.250
Mean 0.317 0.330 0.232 0.230 0.186 0.201 0.266 0.239

3rd Quartile 0.470 0.472 0.256 0.250 0.250 0.250 0.341 0.316
Max. 0.750 0.750 0.700 0.709 0.679 0.664 0.700 0.745

Correlation 0.861 0.814 0.656 0.895
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The less-than-perfect correlations indicate that some scores were substantially affected.
This was particularly the case for the weights associated with the intertidal coastal assets
(i.e., estuaries, mangroves, saltmarshes). Respondents may have been less familiar with the
ecosystem services produced by these assets compared with more familiar assets, such as
beaches (shoreline) and sand dunes (backshore), and hence there may have been greater
“error” in scoring these assets against others.

In terms of the ordinal ranking of the attribute weights, around 58% of the observa-
tions were unchanged, with around % changing one position (i.e., requiring two adjacent
attributes to change position), and a further 14% changing two positions. The incidence of
total rank reversal (i.e., changing from top to bottom and vice versa) was small, less than
0.5% (i.e., around seven of the 1414 observations). These rank changes were most likely a
consequence of (non-extreme) circular triads in the data.

Approximately 25% of the respondents provided the same score for all comparisons,
with 20% always choosing an equal score. Only a small proportion (0.5%) always chose
an extreme score (i.e., 9 or 1/9). While the extreme cases were small, around 13% always
provided a score greater than 1 for all comparisons, and 7% always provided a score less
than 1. Comparing the actual score with the expected score based on the other scores, the
expected direction of preference was reversed 47% of the cases for Shoreline-Backshore; 43%
for cases for Shoreline-Intertidal, and 30% for Shoreline-Aquatic. Not all of these changes
were necessarily implemented, but the magnitude of the potential changes demonstrates
the prevalence of circular triads in the data.

A limit on the number of iterations that could be undertaken was imposed for practical
reasons, as the analysis could potentially cycle without achieving an acceptable level
of consistency. While a limit of 20 iterations was (arbitrarily) imposed, the proportion
of inconsistent observations decreased rapidly, with only one inconsistent observation
remaining after seven iterations and none after eight (Figure 3).
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4. Discussion

The automatic adjustment of inconsistent AHP matrixes is contentious, with some
authors suggesting that, at best, the approaches should only be used to provide additional
information to the original respondents, who should have the final say in how the matrix is
to be adjusted [28,29]. While this has advantages when dealing with small groups that will
be directly affected by the outcomes of the management decision making, the shift to large
online surveys of a broader stakeholder group makes such individual interactions difficult,
particularly if data are collected anonymously.

Several different approaches have been tried to avoid the problem of inconsistencies in
online surveys. Meißner, et al. [44] suggested an adaptive algorithm to reduce the number of
pairwise comparisons a respondent is faced with given their initial consistency of response,
with some combinations excluded from the survey and their values subsequently estimated
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based on the provided responses. While this approach has attractive features, programming
of such an algorithm into an online survey would be complex.

The problem of inconsistencies can also be minimized through appropriate hierarchy
design. The number of comparisons required to be made by respondents increases sub-
stantially with the number of criteria to be compared: a survey with n criteria will require
n(n − 1)/2 comparisons. Saaty and Ozdemir [45] suggest that the ability of respondents
to be able to correct their own inconsistencies diminishes asymptotically to zero with an
increasing number of criteria, with seven being an upper limit beyond which “recovery”
is unlikely. With online surveys, the ability to return to respondents is limited (if not
infeasible), so fewer comparisons are required to ensure inconsistencies are minimized in
the first instance. The algorithm in this study is more readily applied in cases with four or
less criteria being compared (after which some of the alternative approaches discussed in
the earlier sections of the paper may be more suitable). Developing a hierarchy with four
or less criteria in each level results in a manageable set of comparisons (i.e., 4(4 − 1)/2 = 6)
and a relatively straightforward process to adjust for any inconsistencies that emerge.

Although this approach was motivated by a need to adjust inconsistencies observed
in a large online survey, there are advantages also in considering the approach for smaller
groups. Providing suggested modifications to the initial matrix to aid the respondents in re-
assessing stated preferences to improve their consistency is often undertaken, e.g., [28,46].
However, in some cases, this can result in undesirable behavior. Recent experiences with
deriving objective preference weightings in the marine and coastal environment from
stakeholder groups, e.g., [14,18], have found that some stakeholders felt that, by asking
them to reconsider their preferences based on their level of inconsistency, the analyst was
attempting to “push” their responses to a more desired (predefined) outcome and resisted
changing their answers. Some also were offended by the idea that they were considered
“inconsistent” in their views and insisted on maintaining their initial stated preferences.

Even those who were prepared to change their responses exhibited undesirable be-
havior in some case, focusing more on trying to ensure consistency than on their actual
preferences, effectively game playing to get the “best” score they could. This often re-
sulted in these individuals moving their preferences closer to the center position in the
bivariate comparisons (i.e., equal preference) to ensure a high consistency score. This satis-
ficing response has been observed elsewhere and is a long-standing issue with attitudinal
surveys [47]. Satisficing behavior particularly increases when the difficulty of the task
increases (i.e., producing consistent preferences) and the respondent’s motivation decreases.
Motivation in turn is affected by respondents’ belief that their responses are considered
important and will contribute to a desirable social outcome [47]. In large scale surveys,
individuals’ perceptions of their own impact on the outcome are likely to be low, and as a
consequence care taken when completing the survey may be less than for smaller groups
with a direct link to the outcome [22]. In addition, the added complexity of revising their
answer to achieving a target (or maximum) level of inconsistency increases the likelihood
of satisficing behavior [48]. While several online studies have included a feature which
reported on the consistency of the response and provided an opportunity for a revision,
e.g., [18,20], asking for revisions may not provide any more useful information than can be
derived using more automated methods based on their initial preferences.

In our coastal case study, we placed a limit on the number of iterations in the algorithm.
In contrast, the algorithm proposed by Cao et al. [26] repeated until acceptable levels of
consistency were obtained. Similarly, the similar approach proposed by Kou et al. [36]
assumed only one iteration would be sufficient, and the examples provided (including
one with a circular triad) achieved consistency with one iteration. However, in the case of
extreme circular triads, we found the potential for the algorithm to cycle between different
potential solutions without achieving the desired consistency level. The limit chosen in
the example was arbitrary. In this case, acceptable levels of consistency were obtained
after one iteration for most comparisons. All values were found to be consistent within
eight iterations. Alternatively, a loop function can be included that continues until all
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observations achieved acceptable levels of consistency, as in the work of Cao et al. [26],
although for large samples, such as that used in this example, this may potentially result
in a large number of iterations (and potentially an infinite loop). Given this, there are
likely to be benefits still in imposing a finite number of potential iterations. There is
potentially a trade-off, then, between an acceptable number of modifications/iterations
and consistency levels.

Circular triads in the data were also responsible for changes in preference ranking for
some respondents. Given the existence of circular triads, the original rankings were most
likely spurious. A one- (or even two-) position change may be reasonable in such a case.
However, without actual verification with the respondent, there is no absolute guarantee
that the revised ranking is more appropriate than the initial ranking. Nevertheless, the
revised ranking is based on scores that, themselves, have been based on the full set of
information available, and are hence likely to be more reliable than the known unreliable
scores. This is an area for further consideration and investigation.

5. Conclusions

The aim of this paper was to present a simplified approach to adjusting AHP stated
preferences ex post to reduce the level of inconsistency in the results. Unlike many previous
proposed approaches to adjust the comparison matrix, we ignore the initial relative weights
and the eigenvector (which is not calculated when using GMM to derive weights). Instead,
we examine the initial stated preferences in the original pairwise comparison matrix and
identify which of these is most inconsistent given the other stated preferences. This
approach is largely consistent with the original analysis of Finan and Hurley [25]. who
found that improving the consistency of the final pairwise comparison matrix is likely
to enhance the reliability of the AHP analysis. The approach is well suited for analyses
of online survey responses, when interacting with the respondent is impractical, or may
introduce other biases into the analysis.

The approach developed in this study was developed primarily for analyses of large
sample online survey responses, when the potential for many inconsistencies is high (i.e.,
due to the large number of respondents) and interacting with the respondent is impractical
or may introduce other biases into the analysis. In contrast, most other previous approaches
to correct for inconsistencies were largely applied to relatively small groups of respondents.
Appling these other approaches at a larger scale, while possible, is likely to be impractical.

While we have demonstrated that correcting inconsistences in such surveys is possible,
this does not mean that survey design is not important. The potential for inconsistencies in
online AHP surveys can be minimized through appropriate hierarchy design (i.e., avoiding
large comparison sets), and this should be undertaken as a first step, with ex-post correction
seen as a fallback activity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/a15120442/s1, Example R code and data.
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