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Abstract: In the context of the energy transition, sound decision making regarding the development
of renewable energy systems faces various technical and societal challenges. In addition to climate-
related uncertainties affecting technical issues of reliable grid planning, there are also subtle aspects
and uncertainties related to the integration of energy technologies into built environments. Citizens’
opinions on grid development may be ambiguous or divergent in terms of broad acceptance of the
energy transition in general, and they may have negative attitudes towards concrete planning in
their local environment. First, this article identifies the issue of discrepancies between preferences
of a fixed stakeholder group with respect to the question of the integration of renewable energy
technology, posed from different perspectives and at different points in time, and considers it as a
fundamental problem in the context of robust decision making in sustainable energy system planning.
Second, for dealing with that issue, a novel dynamic decision support methodology is presented that
includes multiple surveys, statistical analysis of the discrepancies that may arise, and multicriteria
decision analysis that specifically incorporates the opinions of citizens. Citizens are considered as
stakeholders and participants in smart decision-making processes. A case study applying agent-based
simulations underlines the relevance of the methodology proposed for decision making in the context
of renewable energies.

Keywords: energy transition; renewable energy integration; NIMBY; decision making; smart city;
citizen participation; ambiguity; multicriteria decision analysis

1. Introduction

In recent decades, a steady increase in CO2 emissions by the global population has
significantly contributed to manmade climate change, the consequences of which are
already being felt [1–4]. For some time now, discussions have been taking place at various
levels—both nationally and internationally—on the awareness of the problem and the need
for global or international efforts [5,6] to sustainably reduce greenhouse gases—first and
foremost CO2—in order to limit the increase in the Earth’s average temperature to such an
extent that tipping points are avoided. Such efforts to drastically reduce CO2 emissions are
defined by national agendas and politically set milestones, which mainly foresee a stepwise
reduction in greenhouse gas emissions towards climate neutrality in all sectors [7,8] by
approximately the middle of the 21st century.

In the context of the so-called energy transition with reference to the energy sector,
depending on the political framework, geographical and economic boundary conditions,
differences in climate targets, variable technology mixes, and different time schedules can
be envisaged with regard to the phasing out of fossil-based forms of energy generation and
the integration of climate-neutral energy technologies in national transformation paths [9].
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Germany is in a special situation here, as not only has an ambitious roadmap—65%
reduction by 2030, 100% reduction by 2045 [10]—been postulated, but nuclear energy
no longer plays a role in the future mix of sustainable power generation technologies
with the politically enacted nuclear phase-out. Even if Germany, as part of the European
interconnected grid, can compensate for fluctuations by means of electricity imports, there
must of course be a massive expansion of renewable energies and storage in order to achieve
the climate targets that it has set itself. The decarbonization of industry—e.g., adding
more hydrogen-based power and heat generation [7,8,11]—indicates quite clearly that it
is not just a matter of replacing existing fossil-based power generation plants, but also of
meeting an ever-increasing demand for electricity and the necessary supply infrastructure
(i.e., conversion, storage, transport, and distribution).

In addition to purely political and administrative hurdles, as well as economic uncer-
tainties regarding suitable long-term locations of sustainable energy supply technologies,
decision-making processes regarding grid planning should be relatively fast in order to
achieve the ambitious climate targets in the energy sector. However, questions regard-
ing regional energy system planning and decentralized integration of sustainable energy
technology (SET)—which mainly take place at the distribution grid level [12], and entail
environmental impacts—should be answered in cooperation with the population via appro-
priate participation and engagement formats. Though there is a widespread awareness of
the problem among the population, and the energy transition as well as the achievement
of corresponding climate targets via climate actions generally enjoy great acceptance in
society in many countries, this is rather restrained when it comes to concrete regional SET
integration and on-site grid expansion, and deviates from the approval or acceptance of
measures to achieve abstractly formulated sustainability targets [13]. This discrepancy
or ambiguity, which often has to do with a phenomenon labeled “not in my back yard”
(NIMBY) [14,15], can complicate and delay SET deployment.

In conclusion, acceptance problems related to specific regional integration plans con-
trast with the generally rather positive attitude towards the energy transition. Thus, the
following question is of utmost relevance: How should decision makers—e.g., grid planners
or politicians—sustainably deal with these ambiguities or discrepancies? Nevertheless, grid
expansion plans need to be developed and implemented as rapidly as possible according to
the set milestones, considering the population, and especially the ambiguity or discrepancy
regarding SET integration in decision-making processes.

This paper addresses the question of how decision makers can be supported in re-
gional grid expansion and SET integration issues, while taking into account the opinions
and aforementioned possible ambiguities of the population directly affected by concrete
planning and implementation, and proposes a novel methodology that includes structured
double surveys, statistical evaluations regarding socioeconomic factors as drivers for the
mentioned discrepancies, and multicriteria decision analysis to consider various criteria in
final decisions in addition to citizen acceptance. The proposed methodology is transferable
to other contexts, where the surveys used differ ‘only’ in the choice of perspective: a global
or abstract perspective that allows for inferences to be made about general attitudes, or a
local or concretizing perspective that reveals expected deviations from the global survey.
In particular, the added value lies in the generic approach that combines dynamic MCDA
(DMCDA) and statistical analysis to deal with these ambiguities.

The structure of this paper is as follows: Section 2 briefly highlights acceptance issues
in the context of sustainable energy technologies, smart participation/engagement formats,
and dynamic MCDA, and how to deal with ambiguities. Section 3 presents a novel generic
methodology for dealing with discrepancies in decision making, using SET integration as
an example. An agent-based simulation is used to demonstrate the added value of the
methodology in Section 4, considering the integration of photovoltaic and wind power
plants in the German city of Karlsruhe by means of simplified, synthetic double surveys and
considering only residential locations. The paper concludes with a discussion and an outlook
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in Section 5, where next steps and some scientific challenges towards operationalization of
the proposed methodology are sketched and highlighted, respectively.

2. State of the Art

This section underlines the relevance of the aforementioned ambiguity issues in
decision making and the originality of the proposed methodology in terms of a brief
state-of-the-art overview of the following related topics: SETs and issues related to their ac-
ceptability for integration into the built environment, highlighting the need for research on
community involvement in grid planning decisions; different types of citizen participation
and engagement formats that demonstrate the possibilities and opportunities for public
participation in decision making in smart cities; and MCDA in the context of renewable
energy systems, emphasizing the added value of multicriteria evaluations of different
decision alternatives, especially taking into account public opinion.

Sustainable energy technologies are diverse, and differ fundamentally in their basic
functionality, which can be conversion, storage, or transport (e.g., [16]). Potential SET for
electricity generation and storage, which can be implemented in a decentralized manner
and will potentially play a role in urban environments, includes photovoltaic and wind
power plants, renewable gas power plants, but also chemical, electrical, thermal, rotational
kinetic, or potential energy storage.

In many countries, hydrogen is seen as a key enabler of the energy transition [11,17],
as electrolyzers, for example, can be used to produce hydrogen from excess electricity,
which can be converted back into electricity or used for heat generation, e.g., by means of
fuel cells or combustion. Application scenarios are envisaged in the energy, industrial, and
transport sectors; thus, in addition to the implementation of generation plants and storage
facilities, one must also assume a massive expansion of the transport and distribution
network infrastructure [18,19].

In addition to essential basic functional properties, SETs differ at the visual–haptic
level, since these technologies have a spatial extent, a characteristic appearance, and also
differ in terms of special requirements for their location, as well as implying expenses with
regard to grid connection. The environmental impact of SET integration is often viewed
with suspicion by local residents, who often expect a lasting deterioration in their quality
of life. Aesthetic aspects or negative economic effects in the form of a decrease in tourism
or a decline in the value of real estate and land usually play a special role here [14,15,19,20],
also leading to the introduction of new terms such as “scenic beauty value” and methods
for their assessment [21]. However, SETs can also differ in terms of fundamental issues
of sustainability—especially when it comes to life-cycle assessment—and can give rise to
corresponding reservations [22].

In general, hesitant or dismissive attitudes in this context can be attributed to the “not
in my back yard” (NIMBY) phenomenon [14,15,19]. This phenomenon can be observed for
different regional implementation plans, whatever type of technology and infrastructure
measure is at stake—from the integration of wind turbines to the development of hydrogen
generation, distribution, and transport infrastructures [19]. In general, it can be observed
in many countries—including Germany—that although there is a strong awareness of
the problem of manmade climate change and a positive attitude towards the need to
take measures, and the energy transition is welcomed in principle, the implementation of
measures is rather slow [13]. Different studies on decision making have shown that people
tend to prioritize short-term risks, such as an economic slowdown, over long-term risks,
such as climate change [13].

In the context of regional expansion plans, communication, awareness raising, atti-
tudes regarding renewable energy, and engagement and participation, in conjunction with
social factors, play an essential role in accelerating SET integration [13]. New processes
and methodologies are needed in order to enable SET integration decisions to be made
effectively and sustainably in the face of the aforementioned ambiguity and an acute urge
to act [23–26]. This paper presents a novel methodology that supports decision makers in
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the context of grid expansion to systematically incorporate citizens’ opinions as well as
discrepancies in their opinions into their decisions.

Participation deals with the process of involving the public and stakeholders in mak-
ing decisions that affect themselves, whether passively via consultation, or actively via
two-way engagement [23]. There are different types of engagement, such as (1) top-down
one-way communication and/or consultation, where engagement is initiated by an agency
with decision-making power for communicating decisions, or for consulting with stake-
holders/the public while retaining decision-making power; (2) top-down deliberation
and/or coproduction, where stakeholders/the public are engaged in two-way discussions
prior to making a decision—coproductive approaches would involve jointly developing a
decision and ways to implement it, where the organization with decision-making power
would be responsible for the implementation; (3) bottom-up one-way communication
and/or consultation, where engagement is initiated and led by stakeholders/the public
to persuade decision-making bodies to allow engagement/consultation, and to influence
decision makers or overturn decisions; and (4) bottom-up deliberation and/or coproduc-
tion, where engagement is initiated and led by stakeholders/the public, who engage in
two-way discussions on the decision; decisions are made and implemented by a group of
stakeholders/the public—possibly in a coproductive manner [27]. Appropriate methods of
engagement depend on the purpose and context in which engagement is needed, where
success can be seen as achieving beneficial outcomes or building trust in decision-making
processes. In our context, engagement means actively consulting with the public on various
SET implementations to achieve beneficial and widely accepted solutions.

With regard to concrete means of participation, citizen e-participation is a form of co-
production with the potential to—for example—enhance government service quality [28]. In
general, digital citizen participation is of great importance for the development of smart sus-
tainable cities [29], where citizens and communities need to be proactively engaged—e.g., us-
ing digital tools and smart technologies—and diverse audiences should be considered to
ensure equity and social justice [25]. Citizen participation particularly plays a key role in
the energy transition and in successful energy project planning and implementation [24,30],
and must be further considered in strategic planning and, at the regional/community level,
participation should be supported and considered in the early phases [31]. Furthermore,
the governance framework enabling communities to participate needs to be enhanced [26].
Our research promotes public participation in the energy transition, and proposes several
structured double surveys with a fixed stakeholder group that enable a structured unveiling
and handling of discrepancies in the context of sustainable decision making.

The evident conflict between economic and environmental goals was the main driver
that led energy planners to use MCDA methods in the early 1980s [32]. Beginning with
questions about grid design with respect to a single energy carrier, the importance of using
MCDA methods for planning issues has increased with the growth in the complexity of
energy systems. This is due in part to the use of multiple energy sources and the prolif-
eration of distributed generation and conversion thereof [33,34]. Especially in the context
of decision-making processes with respect to planning renewable energy systems, MCDA
methods [35] are especially beneficial—for example, as qualitative data and knowledge from
local stakeholders can be integrated [36] and can, for instance, be applied in the context of ro-
bustly selecting appropriate locations for solar plant sites [37], or for the general assessment
of a country’s ability to generate renewable energy [38]. Furthermore, the assessment of
societal acceptance with regard to SET implementation [39] and its integration into MCDA
approaches [40] is essential for sustainable energy system transformation. In this context,
social indicators—manifested for example in the impact on the personal environment, the
sociocultural sensitivity, the attitude towards a particular technology, or the general accep-
tance by the public—are of great importance for the evaluation process. Ambiguities in
the assessment of acceptance or acceptability that is associated with uncertainties referring
to equivocal human opinions may be handled, for example, with the help of fuzzy set
theory [41,42]. However, to the best of the authors’ knowledge, the ambiguities that arise in
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the context of evaluating different decision alternatives—which result from changing per-
spectives on the decision subject, as well as the temporal influences that arise from possibly
changing framework conditions and assumptions under which decisions are made—are not
sufficiently taken into account in the literature.

To integrate temporal aspects into MCDA, different approaches exist that combine
MCDA methods with scenario planning, life-cycle analysis, or via stand-alone MCDA
models that—for example—consider past and future data with the help of several decision
matrices [43].

In conclusion, handling ambiguities resulting from taking a global and local view on
the decision problem represents a fundamental issue in decision making, and constitutes a
research gap that this work begins to fill.

3. Methodology

The intent of this paper is to propose a generic procedural flow of decision making that
systematically accounts for ambiguities regarding assessments within a fixed stakeholder
group. Essentially, we mean ambiguities in a given context, which arise due to different
perspectives within a context, such as those presented in the field of energy transition and
SET integration issues, where stakeholders can also be citizens.

The methodology described in this section refers to a workflow that starts with two
surveys, separated in time, in which a fixed stakeholder group participates. This ‘double
survey’, or ‘global-local survey’, contains identical assessment categories in both cases, but
differs in perspective.

The first global survey addresses a basic attitude regarding abstractly defined goals,
whereas the second local survey aims at an assessment of the stakeholders regarding
concrete, locally defined measures. Crucial here is the use of identical rating categories and
scales for a numerical assessment of discrepancies or ambiguities. For statistical analyses,
the first survey additionally collects socioeconomic data as well as information on place
of residence.

It is decisive to establish a representative stakeholder group depending on the question.
However, in this paper, we will not elaborate on this point, but would like to emphasize
that the participation of all relevant groups is of great importance, but the selection must
be made in relation to the context of the problem. Otherwise, negative results are possible,
as shown for example in [44,45]. Once the relevant groups are defined, the sample size
matters. There are scientific approaches (e.g., [46]) to determine the appropriate number of
participants given constraints such as confidence level and margin of error.

In the approach presented here, statistical analyses of discrepancy enable decision
makers to select and calibrate weights in an MCDA approach that incorporates citizen
assessment, including discrepancies, as well as other criteria, such as cost. We illustrate
this approach in the context of SET integration.

General assumptions and simplifications made can be summarized as follows:

• Fixed group: Carefully selected participants representing socioeconomic facets and
urban habitats in a given city. Furthermore, the survey is based on a stated commitment
by the participants—no random participation, so as to avoid bias and disproportionate
representations of socioeconomic attitudes and allocations to urban habitats;

• Global–local survey with this fixed group addressing a global view on energy transi-
tion and assessment of concrete SET integration plans in the local context, related to
different energy technologies.

This approach can be repeated, and the dynamic nature of the problem manifests itself
in the ambiguity of a single double survey and the iterative use of this global–local survey.

3.1. Decision Criteria for SET Integration

For determining decision criteria for SET integration, future safety and resilience
requirements on the power grid need to be considered; for example:
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(i) The possibility of autarky at the city level: In the case of a long-lasting outage of
the supraregional power grid, the operation of downstream critical infrastructure in
particular needs to be ensured by a city’s own supply via its local grid. The distance
between energy sources and storage facilities and critical infrastructure should be
kept as short as possible in order to minimize transmission losses and reduce the
probability of failure due to external influences, such as extreme weather conditions;

(ii) The capability to manage unpredictable impacts of climate change: Global warming
increases the number of people around the world who are affected by extreme weather
events [3], and has increased the probability of unprecedented extreme hot and wet
events [4]. Strong winds, hailstorms, heavy rainfall, and subsequent flooding, for
example, endangering overhead power lines, pylons, substations, and transformer
stations, may lead to potential damages and, consequently, have impacts on the
power supply;

(iii) The need to meet unforeseeable future demands for electricity: Changing climate
conditions and, for example, a general increase in warm temperature extremes in
the future [47], may increase the demand for air conditioning in public and private
buildings. Furthermore, despite the use of renewable heat sources as an alternative,
an increase in electricity consumption for heating can be expected [48]. The growing
importance of electromobility will also increase the load on the power grid, as well as
the further decentralization of power generation from individual large power plants
to many small-scale generators based on renewable energies.

Based on these requirements, the following criteria, among others, may be considered
in the framework of integrating SETs:

• Profitability: Reasonable price/performance ratio (including research costs);
• Reaction time: Coupling fast-responding storage types with slow ones to fill all power

gaps in the power supply and, thus, increasing the overall absorptive capacity of the
distribution network;

• Safety of the urban area: Considering the potential harm of the various technologies
for people and the environment in the event of an accident;

• Location dependency: Suitability for the built environment according to size, distance
to critical infrastructures, and dependency on geological conditions, for example;

• Scalability: Ability of a technology to be deployed at different scales due to various
requirements for the power supply of critical infrastructure, for example;

• Volatility: Ensuring that the emergency solution supplies power with the same stability
as the distribution grid;

• Relative land use: Reasonable ratio of output and available land due to limited space
in the urban environment; one may consider combinations with other uses;

• Citizen acceptance: The public’s attitude towards local SET implementation.

This list is of course not final, and may be adapted by new insights in the future and
according to the changing outlines of the task at hand. Some of the criteria mentioned are
techno-economic in nature or relate to safety and security of supply and, thus, can only
be evaluated by corresponding experts and stakeholders, e.g., electric utilities, urban and
regional planners, or operators of other critical infrastructure.

3.2. Global–Local Survey

Citizens’ opinions towards a specific technology are elicited with the help of surveys
at different points in time. Consequently, surveys have different boundary conditions
shaped by the political or economic environment, for example. Opinions are expressed
on a qualitative scale. Surveys are twofold, reflecting global and local perspectives on
implementing different technologies. Let

T =
{
T 1, . . . , T l

}
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be the set of SETs under investigation and

T =
{

t1, . . . , tp
}

be the set of different time points that mark the end of a specific survey round. A survey
round consists of two surveys that elicit citizens’ opinions on different levels. The first
survey SG

t asks for opinions towards a technology on a global scale and, hence, general
sentiments towards different technologies; this survey is denoted as “global survey” in the
following text. The second survey SL

t asks specifically for implementations in one’s own
city and, thus, in the immediate vicinity; this survey is denoted as “local survey” in the
following. Some time elapses between the global and local surveys. Let

c = {c1, . . . , cK}

be the set of citizens participating in the series of surveys. In addition to sentiments towards
different SETs, certain socioeconomic factors F = {F1, . . . . FE} are elicited as well. The
outcomes of a global survey of citizen ci at time point t are summarized as follows:

yi,G
t =

(
yi,G

t,1 , . . . , yi,G
t,l

)
with yi,G

t,j ∈ {1, . . . , P} values from a qualitative scale. The same holds for a local survey

yi,L
t . Furthermore, for each citizen ci,

Fci =
{

Fci
1 , . . . Fci

E
}

captures information on socioeconomic variables. After each survey round, the global and
local surveys are aggregated by some aggregation functions αG : {1, . . . , P}K·l → {1, . . . , P}l

and αL : {1, . . . , P}K·l → {1, . . . , P}l . These may depend, for example, on the composition
of participants, promoting equity, and giving more weight to the opinions of underrepre-
sented groups. In addition, these functions can be helpful when the group composition
changes in a survey round, or even between survey rounds. For the purposes of this paper,
we assume a fixed group of survey participants. How to deal with this condition not being
met will be the subject of further research, and is beyond the scope of this paper. The
aggregated opinions on the global implementation of the SETs studied are then denoted by

SG
t = αG

(
y1,G

t , . . . , yK,G
t

)
and SL

t = αL
(

y1,L
t , . . . , yK,L

t

)
.

3.3. Statistical Analysis of Ambiguities and MCDA

If discrepancies between SG
t and SL

t towards specific technologies appear in a survey
round, further analyses can be carried out to determine the corresponding drivers D ⊆ F.
The decision makers may consider these drivers when consolidating SG

t and SL
t according to

St = h
(

SG
t , SL

t , D
)

with a function h : {1, . . . , P}2l × F → {1, . . . , P}l . Exemplarily, the global and local sur-
veys can be consolidated by means of the weighted sum

St = wG
D · SG

t + wL
D · SL

t

where the weights wG
D and wL

D are possibly influenced by the identified drivers D. The
consolidated surveys are aggregated over time according to the function
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γ : {1, . . . , P}|T|·l → {1, . . . , P}l

The final outcome of the surveys is summarized as follows:

S = γ
(

S1, . . . , Stp

)
= (s1, . . . , sl)

with sj ∈ {1, . . . , P}.
To identify a suitable SET mix, MCDA is carried out after the surveys are completed. Let

A =
{
A1, . . . ,Am

}
be the set of decision alternatives with

Ai =
l

∑
k=1

wi
kT

k

and wi
k ∈ [0, 1], ∑l

k=1 wi
k = 1. Hence, each alternative represents a specific technological

mix. Let
C = {C1, . . . Cn}

be the set of criteria that decision makers wish to consider in deciding on an appropri-
ate technological mix. Let CC ∈ C reflect the respective citizens’ opinions on a specific
technological mix, which is elaborated on the basis of several survey rounds.

The score of a decision alternativeAi, 1 ≤ i ≤ m, with respect to a criterion Cj, 1 ≤ j ≤ n,
is defined as follows

x
(
Ai, Cj

)
:= xij

The values can be summarized in a decision table, as depicted in Table 1.

Table 1. Decision table of MCDA.

Criteria (Units)/Alternatives C1 (Unit 1) C2 (Unit 2) . . . Cn (Unit m)

A1 x11 x12 . . . x1n
A2 x21 x22 . . . x2n
. . .
Am xm1 xm2 . . . xmn

The results of the particular surveys can be mapped as follows:

x
(
Ai, CC

)
=

l

∑
k=1

wi
ksk

In order to compare different alternatives with respect to several criteria underlying
different units, a value function for the criterion Cj maps scores to a common scale,
as follows:

vj =

{
R→ [0, 1]

xij 7→ vj
(
xij
) , j = 1, . . . , n

Hence, the scores of all criteria for an alternative Ai can be summarized in the vector

vi = (v1(xi1), . . . , vn(xin))

The overall score for the alternative Ai is calculated according to

v
(
Ai
)
= σ

(
vi, w

)
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with w = (w1, . . . , wn),
n
∑

j=1
wj = 1, and σ : [0, 1]2n → [0, 1] , where wj is the preference

with respect to the criterion Cj.
The methodology is illustrated in the flowchart in Figure 1.

Algorithms 2022, 15, 47 9 of 21 
 

The overall score for the alternative 𝒜 is calculated according to 𝑣(𝒜) = 𝜎(𝑣, 𝑤)  

with 𝑤 = (𝑤ଵ, … , 𝑤) , ∑ 𝑤ୀଵ = 1, and 𝜎: [0, 1]ଶ → [0, 1], where 𝑤  is the preference 
with respect to the criterion 𝒞. 

The methodology is illustrated in the flowchart in Figure 1. 

 
Figure 1. Flowchart illustrating the steps of the decision support methodology. 

3.4. Integrating Survey Results 
The procedure described previously leads to ranking values for the different alterna-

tives—individual compositions of SETs—suggesting to decision makers which composi-
tion is preferable. While technically straightforward, the determination of the prefer-
ences—especially for the citizens’ opinions—is delicate. On the other hand, the sensible 

Figure 1. Flowchart illustrating the steps of the decision support methodology.

3.4. Integrating Survey Results

The procedure described previously leads to ranking values for the different alterna-
tives—individual compositions of SETs—suggesting to decision makers which composition is
preferable. While technically straightforward, the determination of the preferences—especially
for the citizens’ opinions—is delicate. On the other hand, the sensible determination of
the CC values is also key, as these are dependent on personal preferences and on several
local and global surveys at different points in time. The subjectivity of this composition
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poses a challenge. Presenting additional facts and information based on the contextual data
of the opinion-poll-like incisive events between the surveys, as well as the socioeconomic
factors of the participants, may help decision makers in choosing their preferences in a less
subjective way, essentially providing understanding as to why specific participants have
certain attitudes. For one, direct correlation between events and socioeconomic factors and
attitudes can be determined and communicated in comprehensible ways, as illustrated in
the study in the following section, which shows a typical case of NIMBY. Furthermore, deep
datamining for statistical analysis can provide even more insights and help decision makers
to better identify hidden patterns in survey participants’ discrepancies, and determine
the weighting of global and local surveys for their aggregation which, in turn, feeds into
MCDA’s CC values. In addition, the results of the statistical analyses may also influence the
weighting of the CC criterion itself in the final MCDA, as discrepancies that emerge across
multiple survey rounds further sensitize decision makers to the importance of this criterion.
However, this is generally very complex and time-consuming, and obviously requires
the necessary data to be available, which is frequently simply not the case. Nevertheless,
ultimately, it is always up to the decision makers as to the way in which to consider such
additional information when making their decision(s). In particular, this work provides
decision makers with a methodology to systematically incorporate citizens’ opinions, as
well as discrepancies in their opinions, into their decisions—a process of multiple global
and local surveys and statistical analyses of the discrepancies that arise, the results of which
are incorporated into the aggregation of these global and local surveys and, finally, into the
criterion of citizen acceptance in the MCDA.

We would like to emphasize that the focus of this paper is on how to deal with
the discrepancies mentioned, and not on a detailed description of the procedural flow
including the specification of the parties involved. Experts are needed in order to define
and evaluate all other criteria for SET integration, in addition to the “citizen acceptance”
criterion. Experts, e.g., social scientists, are also needed to identify representative survey
groups and relevant socioeconomic factors associated with urban living environments.
In addition, the determination of appropriate weights in the MCDA should be done by
a group of stakeholders or decision makers, e.g., consisting of representatives of local
governments, urban and regional planners, and utility companies. All of these processual
aspects are the subject of current and future work.

4. Results

To study our approach, we set up an exemplary framework for iteratively conducting
global–local surveys. For proposing a methodology as a first step, did not conduct real
surveys, but rather generated synthetic data via an agent-based simulation. We consider
the city of Karlsruhe and its residential buildings as survey participants, of which we have
11,664. For the sake of simplicity, we regard two renewable energy sources—namely, wind
power and solar energy—and hence, technologies—wind turbines

(
T 1) and photovoltaic

plants (T 2), respectively—that are subject to opinion surveys. The surveys ask for personal
attitudes towards their implementation that are subsumed under the criterion CC “citizen
acceptance”. We assume four survey rounds with one global and one local survey. The
survey participants express their attitudes towards a specific technology according to a
scale from “one” to “five”, where “one” reflects disagreement, “three” reflects indifference,
and “five” reflects agreement, with intermediate scores of “two” and “four”. The decision
alternatives that represent different technological mixes and criteria used in the study
can be found in Table 2. The scores of the decision alternatives with respect to criteria
C1, C2, C3, C4, C5, C6, and C7 reflect a qualitative assessment of the technologies regard-
ing profitability, reaction time, safety of the urban area, location dependency, scalability,
volatility, and relative land use, respectively. The scores of the decision alternatives for the
criterion CC are gained from the simulations further explained in Section 4.2; they, among
others, depend on the distance to the next photovoltaic plant and wind turbine, whose
potential locations are further discussed in Section 4.1.
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Table 2. Decision alternatives and criteria.

Decision Alternative Technological Mix

A1 0.3 · T 1 + 0.7 · T 2

A2 0.5 · T 1 + 0.5 · T 2

A3 0.1 · T 1 + 0.9 · T 2

A4 0.7 · T 1 + 0.3 · T 2

Criterion Explanation
C1 Profitability
C2 Reaction time
C3 Safety of the urban area
C4 Location dependency
C5 Scalability
C6 Volatility
C7 Relative land use
CC Citizen acceptance

4.1. Photovoltaic Plants and Wind Turbines

To enable consideration of local preferences in the agent-based simulation, we had to
provide the evaluation framework with the geographic context of potential wind turbine
and photovoltaic plant locations. As no official data for such locations were available,
we applied potential wind turbine locations according to the German regulations in the
vicinity of Karlsruhe. As for the photovoltaic plants, potential locations were identified
in every suitable area within the city—mainly in meadows and green places. Naturally,
the wind turbines are located in the outer regions of the city, while the photovoltaic plants
are located further within. Figure 2 shows the locations used in the simulation in different
colors (blue, cyan) in combination with the citizens’ residences (yellow).
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4.2. Agent-Based Simulations of Global–Local Surveys

The survey participants are modeled as agents that vote in each survey round, globally
and locally. The global voting values are generated according to a normal distribution,
where the mean and standard deviation change with each survey round. In general, a rather
positive global attitude towards renewable energy technologies with changing variance
is assumed, interpreted as changing boundary conditions over time that influence the
opinions of the participants. For this study, the mean values of the distribution functions
for the global voting value for photovoltaic power were equal to or higher than the mean
values in the context of voting on wind turbines. In most survey rounds, the standard
deviations in the context of wind power are equal to or higher than those of photovoltaic
power. This can be interpreted as a more positive attitude towards photovoltaic power,
with fewer uncertainties.

In our setting, the local voting value of a participant depends on the current global
voting value and the distance to the next wind turbine or photovoltaic plant. The basic idea
of setting the local voting value is as follows: the closer the participant lives to the specific
implemented technology, the greater the deviation from the global voting value; the higher
the global voting value, the more this deviation may vary. Here, the local voting value
is always equal to or smaller than the global voting value. We assume a rather negative
attitude towards implementations in the immediate environment, although this attitude is
less rigid if a participant is already positive in the global survey.

4.2.1. Global Survey

At each survey round, the general opinions of citizens are elicited in a global survey,
providing an overview of these opinions with respect to both wind turbines and photo-
voltaic plants. In general, the attitudes are positive towards SETs but even more so towards
photovoltaic plants (Figure 3).
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Figure 3. Citizens’ attitudes regarding wind power (left) and photovoltaic plants (right) in the
first global survey. The values range from 1 (dark red; negative attitude) to 5 (green; positive
attitude). We assume that citizens have a more positive attitude towards photovoltaic plants than
towards wind turbines, as reflected by more red and dark red dots in the left-hand image than in the
right-hand image.
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4.2.2. Local Survey

The local survey is carried out some time after the global survey, and illustrates the
discrepancies that emerge when comparing global and local voting values, as modeled
citizens tend to change their opinion if the respective technology is to be implemented in
their immediate vicinity (Figure 4).
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Figure 4. Deviations and discrepancies in citizens’ attitudes towards wind turbines (left) and pho-
tovoltaic plants (right) between the first local and global surveys. Values range from 1 (green; no
discrepancy) to 5 (dark red; strongest discrepancy). The blue dots in the left-hand image are wind
turbine locations, and the cyan dots in the right-hand image are photovoltaic plant locations. In
both images, the tendency of citizens to change their opinion if they are personally affected becomes
visible, caused by the proximity of entities.

4.2.3. Statistical Analysis and MCDA

After each round of the survey, emerging discrepancies can be statistically analyzed
and presented to the decision makers in various ways—e.g., as images, as illustrated
above—to help them to identify the relevant factors and to better understand why citizens’
opinions differ from their general attitudes toward SETs. As we do not have access to the
socioeconomic data of the different households, we solely focused on citizens’ locations
to illustrate our methodology. As we have already seen, the distance to the next potential
wind turbine or photovoltaic plant influences opinions on local implementation of SETs.
Decision makers can now consider these insights when consolidating aggregated global
and local surveys in each survey round. They could acknowledge these discrepancies and,
for example, weight local surveys higher than global surveys, or rate global opinions—in
this example, more positive opinions—higher, and take the discrepancies into account when
weighting criterion CC. Technological mixes are also implicitly associated with a particular
implementation, and a high weighting of CC may preclude area-wide implementations
in the immediate vicinity. For this reason, we weighted global surveys higher than local
surveys—in part because global attitudes toward SETs are generally positive, but favor a
particular technology. In this context, further visual support can help decision makers to
capture the participants’ opinions and personal prerequisites, as exemplarily provided for
wind power, illustrating distributions of global and local opinions towards wind power,
discrepancies, and potential distances to nearest wind turbines (Figure 5). Figure 6 shows
that higher discrepancies tend to be associated with greater distances.
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Figure 5. The panels ‘windPowerGlobal’ and ‘windPowerLocal’ show the distribution of global and
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and ‘distanceWind’ illustrate the distribution of discrepancies between global and local voting values
and the distribution of potential distances (km) to the nearest wind turbine.
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After the final round of surveys, the findings on citizens’ opinions of SETs are aggre-
gated over time, and provide values for the criterion CC of the subsequent MCDA.

The MCDA is carried out on the basis of the decision alternatives and criteria presented
in Table 2. In this study, the scores of a decision alternative with respect to a specific criterion
are based on a qualitative assessment of the different technologies with regard to the criterion
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in question. The assessment is set out as follows: Profitability, scalability, and relative land
use are significantly better rated for photovoltaics than for wind power. The reaction time
and safety receive a medium-to-positive assessment—similar for both technologies, but
better for photovoltaic. Location dependency is positively assessed for both technologies,
but better for wind power than for photovoltaic power. Volatility is rated negatively for both
technologies, with wind power scoring slightly better. Safety, scalability, relative land use,
and citizen acceptance receive the highest weights in the overall assessments, followed by
profitability. Reaction time, location dependency, and volatility receive the lowest weights.
Each score is normalized proportionally to the sum of all existing scores. In this setting, the
technological mix of 10% wind power and 90% photovoltaic power has the highest rank in
the overall assessment (Figure 7). The option with 70% wind power and 30% photovoltaic
power is the least popular. In addition to the absolute rankings of the decision alternatives,
the decision makers can also see the contributions of each criterion to the overall assessment.
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The next step is to analyze the stability of these results and their robustness against
small value/weight changes. For example, changing the weighting of a criterion does
not affect the ranking of alternatives. If the weighting of the criterion “profitability” were
increased, the assessment of the highest ranked alternative would improve, and the assess-
ment of the lowest ranked alternative would deteriorate; reducing the weight would have
the opposite effect. If the weighting of the criterion “location dependency” were increased,
the assessment of the highest ranked alternative would deteriorate, and the assessment
of the lowest ranked alternative would improve; reducing the weight would have the
opposite effect. The “scalability” criterion has a high weighting; reducing the weighting
would worsen the assessment of the best ranked alternative and improve the assessment of
the worst-ranked alternative; the same applies to the criterion “relative land use”. Changes
in the weights of the criteria “reaction time”, “safety”, and “citizen acceptance” have little
effect on the evaluation of the alternatives. The strongest effect when changing the weight-
ing is observable for the criterion “volatility”; as the weighting increases, the differences in
the assessments of the individual alternatives decrease. Figures 8 and 9 illustrate analyses
of the criteria “profitability” and “volatility”, respectively.
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Therefore, the result is robust to changes in the weighting of individual criteria.
However, changes in the weighting of the criterion “volatility” make the assessments of
the decision alternatives less distinguishable.

Sensitivity analyses can also be performed with respect to technological mixes. The
decision alternatives are formed from certain percentage shares of wind power plants
and photovoltaic plants. The higher the percentage of wind turbines in the technological
mix, the worse the corresponding decision alternative is evaluated. The evaluation of the
decision alternatives thus decreases with increasing weighting of the wind turbines.

Visual support, such as that used in this study by means of a sophisticated MCDA
tool, clearly helps decision makers in deciding between different technological mixes.

5. Conclusions

Regional energy system planning and the decentralized integration of sustainable
energy technologies should be carried out in cooperation with the population through
suitable participation and engagement formats. Although the achievement of climate goals
through climate protection measures is generally highly respected, concrete regional inte-
gration of sustainable energy technology and grid expansion potentially meet resistance if
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implemented nearby. The question is how decision makers, such as grid planners or politi-
cians, should deal with these ambiguities. This paper presents a novel decision support
methodology for the exemplary task of integrating sustainable energy technologies, which
deals with the ambiguities that arise in opinion surveys on local implementations of these
technologies. The methodology includes structured double surveys to help reveal ambigui-
ties. Moreover, the approach suggests statistical analyses to identify socioeconomic factors
driving the discrepancies. Based on the additional insights gained and the multicriteria
decision analysis proposed, decision makers are offered multiple possibilities to decide how
to take these ambiguities into account in order to fairly consider citizen acceptance along-
side other criteria. The cascading procedure to aggregate single-level surveys in multiple
stages—each with the possibility for statistical analysis and specific parametrization of the
aggregation—shows a structured, novel, and general way to approach similar challenges,
and is therefore applicable in a wide variety of problems where ambiguities referring to a
group of stakeholders may occur. The double surveys in particular serve as a procedural
innovation step (especially in the context of smart cities) to make precisely these ambigu-
ities visible and workable. The evaluation of the suggested process flow by simulation
of the survey behavior of artificial stakeholders and their changes in attitude over time
proved the validity and applicability of the suggested method on the one hand, and on the
other showed a practicable means of evaluation when no real survey data or stakeholder
participation is readily available. As is common for multicriteria decision analysis, this
approach depends on the specific executing operator and, thus, can only provide the means
to identify potential drivers of discrepancies. The resolution by determining weights and
aggregating is subjective to the operator.

Several directions for future work are apparent. The selection of socioeconomic fac-
tors in the context of statistical analyses of discrepancies regarding dominant factors, the
treatment of marginalized groups, etc., is a topic that must be deeply researched. A bal-
anced composition of participants and the consideration of different groups each play a
role, especially in the aggregation of the global and local survey results. It is essential to
more closely examine how to deal with imbalances as well as, if necessary, a changing
group composition. In addition to the pure information presentation of statistical analy-
ses, methodologies need to be developed that systematically support decision makers in
deriving robust decisions or alternatives from the insights gained from statistics. These
issues are the subject of current research, and will be further explored in the context of real
surveys and studies at the methodological level, where data privacy and data protection are
considered with utmost caution when dealing with socioeconomic data. Furthermore, plain
correlations such as those seen in the discrepancy maps can easily be determined. However,
complex statistical analyses may be difficult to perform and present to the decision makers
in a meaningful way, thus causing further difficulties as to what to infer from the given
information in a specific case. The results of these analyses influence both the values of
the citizen acceptance criterion and its weighting in the multicriteria decision analysis.
Transferring this knowledge to the personal preferences and weightings is a complex un-
dertaking, and of course requires further research. Furthermore, against the background
of iterative surveys with a representative or fixed stakeholder group, the handling of bias
and associated distortions in the results should be systematically investigated. To illustrate
the added value of our methodology, we set up an agent-based simulation framework
to iteratively conduct global–local surveys and generate synthetic data, based on specific
participant voting behavior derived from empirical data. For future work, it would be
beneficial to gain more knowledge in this respect, or to work with real data that are elicited
via several structured survey rounds. In particular, information on the actual socioeconomic
characteristics of a sample group of participants would help to better uncover the potential
of statistical analyses in terms of discrepancies, and to improve approaches to processing
the findings in order to make them useful for decision making.
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Moreover, general aspects referring to multicriteria-based decision making for sustain-
able energy technology integration, including the selection and participation of appropriate
experts and stakeholders, is the subject of current and future interdisciplinary research.
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31. Stober, D.; Suškevičs, M.; Eiter, S.; Müller, S.; Martinát, S.; Buchecker, M. What Is the Quality of Participatory Renewable Energy
Planning in Europe? A Comparative Analysis of Innovative Practices in 25 Projects. Energy Res. Soc. Sci. 2021, 71, 101804. [CrossRef]

32. Diakoulaki, D.; Antunes, C.H.; Gomes Martins, A. MCDA and Energy Planning. In Multiple Criteria Decision Analysis: State of the
Art Surveys; International Series in Operations Research & Management Science; Springer: New York, NY, USA, 2005; Volume 78,
pp. 859–890, ISBN 978-0-387-23067-2.

33. Loken, E. Use of Multicriteria Decision Analysis Methods for Energy Planning Problems. Renew. Sustain. Energy Rev. 2007, 11,
1584–1595. [CrossRef]

34. Polatidis, H.; Haralambopoulos, D.A.; Munda, G.; Vreeker, R. Selecting an Appropriate Multi-Criteria Decision Analysis Technique
for Renewable Energy Planning. Energy Sources Part B Econ. Plan. Policy 2006, 1, 181–193. [CrossRef]

35. Triantaphyllou, E. Multi-Criteria Decision Making Methods: A Comparative Study; Applied Optimization; Springer: Boston, MA,
USA, 2000; Volume 44, ISBN 978-1-4419-4838-0.

36. Wilkens (nee Braune), I.; Schmuck, P. Transdisciplinary Evaluation of Energy Scenarios for a German Village Using Multi-Criteria
Decision Analysis. Sustainability 2012, 4, 604–629. [CrossRef]

37. Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A.-T.; Wang, J.-W. A Combined Data Envelopment Analysis (DEA) and Grey Based Multiple
Criteria Decision Making (G-MCDM) for Solar PV Power Plants Site Selection: A Case Study in Vietnam. Energy Rep. 2022, 8,
1124–1142. [CrossRef]

38. Wang, C.-N.; Dang, T.-T.; Tibo, H.; Duong, D.-H. Assessing Renewable Energy Production Capabilities Using DEA Window and
Fuzzy TOPSIS Model. Symmetry 2021, 13, 334. [CrossRef]

http://doi.org/10.1016/j.egyr.2019.12.028
http://doi.org/10.1016/j.erss.2020.101826
http://doi.org/10.1016/j.esd.2019.11.004
http://doi.org/10.1016/j.landusepol.2021.105527
http://doi.org/10.1016/j.rser.2016.12.033
https://www.wasserstoffrat.de/fileadmin/wasserstoffrat/media/Dokumente/NWR_Aktionsplan_Wasserstoff_2021-2025_WEB-Bf.pdf
https://www.wasserstoffrat.de/fileadmin/wasserstoffrat/media/Dokumente/NWR_Aktionsplan_Wasserstoff_2021-2025_WEB-Bf.pdf
http://doi.org/10.1016/j.ijhydene.2021.05.160
http://doi.org/10.9734/jenrr/2020/v4i330128
http://doi.org/10.1016/j.rser.2018.07.048
http://doi.org/10.1016/j.biocon.2008.07.014
http://doi.org/10.1111/cag.12601
http://doi.org/10.1080/03932729.2021.1959755
http://doi.org/10.1111/rec.12541
http://doi.org/10.1016/j.giq.2019.101412
http://doi.org/10.1016/j.scs.2019.101627
http://doi.org/10.1016/j.rser.2017.04.004
http://doi.org/10.1016/j.erss.2020.101804
http://doi.org/10.1016/j.rser.2005.11.005
http://doi.org/10.1080/009083190881607
http://doi.org/10.3390/su4040604
http://doi.org/10.1016/j.egyr.2021.12.045
http://doi.org/10.3390/sym13020334


Algorithms 2022, 15, 47 20 of 20

39. Florio, P.; Munari Probst, M.C.; Schüler, A.; Roecker, C.; Scartezzini, J.-L. Assessing Visibility in Multi-Scale Urban Planning: A
Contribution to a Method Enhancing Social Acceptability of Solar Energy in Cities. Sol. Energy 2018, 173, 97–109. [CrossRef]

40. Harper, M.; Anderson, B.; James, P.; Bahaj, A. Assessing Socially Acceptable Locations for Onshore Wind Energy Using a
GIS-MCDA Approach. Int. J. Low Carbon Technol. 2019, 14, 160–169. [CrossRef]
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