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Abstract: A graph is called Hamiltonian connected if it contains a Hamiltonian path between any
two distinct vertices. In the past, we proved the Hamiltonian path and cycle problems for general
supergrid graphs to be NP-complete. However, they are still open for solid supergrid graphs. In
this paper, first we will verify the Hamiltonian cycle property of C-shaped supergrid graphs, which
are a special case of solid supergrid graphs. Next, we show that C-shaped supergrid graphs are
Hamiltonian connected except in a few conditions. For these excluding conditions of Hamiltonian
connectivity, we compute their longest paths. Then, we design a linear-time algorithm to solve
the longest path problem in these graphs. The Hamiltonian connectivity of C-shaped supergrid
graphs can be applied to compute the optimal stitching trace of computer embroidery machines, and
construct the minimum printing trace of 3D printers with a C-like component being printed.

Keywords: Hamiltonicity; Hamiltonian connectivity; longest (s, t)-path; C-shaped supergrid graphs;
computer embroidery machines; 3D printers

1. Introduction

A Hamiltonian path (cycle) in a graph is a spanning path (cycle) of the graph. The
Hamiltonian path (cycle) problem involves deciding whether or not a graph contains a Hamil-
tonian path (cycle). A graph is called Hamiltonian if it contains a Hamiltonian cycle. A
graph G is said to be Hamiltonian connected if for each pair of distinct vertices u and v of G,
there is a Hamiltonian path between u and v in G. It is well known that the Hamiltonian
path and cycle problems are NP-complete for general graphs [1]. In [2], Harary outlined
the important motivations and applications for Hamiltonian path problem. In addition,
the Hamiltonian problems have been much studied and have numerous applications in
different areas, including establishing transport routes, production launching, the on-line
optimization of flexible manufacturing systems [3], computing the perceptual boundaries of
dot patterns [4], pattern recognition [5–7], hypercube properties [8], molecular and physical
sciences [9,10], biology science [11], etc. It is worth mentioning that Twarock et al. [11]
applied the Hamiltonian path to the analysis of viral genomes, and Balasubramanian [9,10]
pointed out that in molecular and physical sciences, the Hamiltonian path problem is re-
lated to random walks, enumeration of self-returning walks and ring perception algorithms,
and peripherals of fullerenes. The longest path problem, which finds a simple path with
the maximum number of vertices in a graph, is one of the most important problems in
graph theory. The Hamiltonian path problem is clearly a special case of the longest path
problem. Despite the many applications of the problem, it is still open for some classes
of graphs, including solid supergrid graphs and supergrid graphs with some holes [12].
There are few classes of graphs in which the longest path problem is polynomial-time
solvable [13–15]. Because the time complexity of the longest path problem on solid super-
grid graphs is still open, it is interesting to study this problem for the subcalsses of solid
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supergrid graphs. In this paper, we focus on C-shaped supergrid graphs, which form a
subclass of solid supergrid graphs. We will give the necessary and sufficient conditions for
the Hamiltonicity and Hamiltonian connectivity of C-shaped supergrid graphs. We also
present a linear-time algorithm for finding a longest path between any two distinct vertices
in a C-shaped supergrid graph.

The two-dimensional integer grid graph G∞ is an infinite graph whose vertex set consists
of all points of the Euclidean plane with integer coordinates and in which two vertices
are adjacent if the (Euclidean) distance between them is 1. The two-dimensional supergrid
graph S∞ is an infinite graph obtained from G∞ by adding all edges on the lines traced
from up-left to down-right and from up-right to down-left. A graph is a grid graph if it is
a finite induced subgraph of G∞. A supergrid graph is a finite vertex-induced subgraph of
S∞. Supergrid graphs came from our industry-university cooperative research project, and
can be applied to compute the stitching trace of computerized sewing machines [16]. A
solid supergrid graph is a supergrid graph without any hole, and a rectangular supergrid graph
is a solid supergrid graph bounded by a axis-parallel rectangle. A L-shaped or C-shaped
supergrid graph is a supergrid graph obtained from a rectangular supergrid graph by
removing a rectangular supergrid subgraph from it to form a L-like or C-like shape.

The Hamiltonian connectivity and longest path of shaped supergrid graphs can be ap-
plied for computing the optimal stitching trace of computer embroidery machines [12,16,17].
For example, consider that a string of letters will be sewed into an object such that the num-
ber of crossed paths is minimum. The Hamiltonian connectivity and longest path of these
shaped letters play an important role in deciding these sewing traces. In addition, they
can be also applied to construct the minimum printing trace of 3D printers. For example,
consider a 3D printer with a C-like object being printed. The software produces a series of
thin layers, designs a path for each layer, combines these paths of produced layers, and
transmits the above paths to 3D printer. Because 3D printing is performed layer-by-layer
(see Figure 1a), each layer can be considered as a C-shaped supergrid graph. Suppose that
there are k layers under the above 3D printing. If the Hamiltonian connectivity of C-shaped
supergrid graphs holds true, then we can find a Hamiltonian path, starting from si and
ending at ti, of a C-shaped supergrid graph Ci, where Ci, 1 6 i 6 k, represents a layer
under 3D printing. Thus, we can design an optimal trace for the above 3D printing, where
ti is adjacent to si+1 for 1 6 i 6 k− 1. In this application, we restrict the 3D printer nozzle
to be located at integer coordinates. For example, Figure 1a shows five layers C1–C5 of a 3D
printing for a C-type object, Figure 1b depicts the Hamiltonian paths of Ci for 1 6 i 6 5,
and the result of this 3D printing is shown in Figure 1c.

Some related works in the literature are summarized as follows. Recently, Hamiltonian
path (cycle) and Hamiltonian connected problems in grid and supergrid graphs have
received much attention. In [18], Itai et al. proved that the Hamiltonian path problem
on grid graphs is NP-complete. They also gave necessary and sufficient conditions for
a rectangular grid graph having a Hamiltonian path between two given vertices. Note
that rectangular grid graphs are not Hamiltonian connected. Zamfirescu et al. [19] gave
sufficient conditions for a grid graph having a Hamiltonian cycle, and proved that all grid
graphs of positive width have Hamiltonian line graphs. Later, Chen et al. [20] improved
the Hamiltonian path algorithm of [18] on rectangular grid graphs and presented a parallel
algorithm for the Hamiltonian path problem with two given endpoints in rectangular
grid graphs. In addition, there is a polynomial-time algorithm for finding Hamiltonian
cycles in solid grid graphs [21]. However, the Hamiltonian problems are still open for solid
supergrid graphs. In [22], Salman introduced alphabet grid graphs and determined classes
of alphabet grid graphs which contain Hamiltonian cycles. Supergrid graphs first appeared
in [16], and the authors proved that the Hamiltonian cycle and path problems on general
supergrid graphs are NP-complete, and every rectangular supergrid graph always contains
a Hamiltonian cycle. Recently, the Hamiltonian connectivity of L-shaped supergrid graphs
has been verified in [17]. Note that C-shaped supergrid graphs contain L-shaped supergrid
graphs as their subgraphs. Thus, the results of L-shaped supergrid graphs can not be
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directly applied to C-shaped supergrid graphs. However, the results in [17] will be used in
our method. In this paper, we will consider the Hamiltonian, Hamiltonian connectivity,
and longest path of C-shaped supergrid graphs.

(a)

layer 1 ( )C1

(b)

(c)

s
1

t1
s2

t2 s3

t3

layer 2 ( )C2 layer 3 ( )C3 layer 4 ( )C4
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t4

s4 t
5

s5

Figure 1. (a) The five layers C1–C5 of a 3D printing model while printing a C-type object, (b) the
computing Hamiltonian path from si to ti of each layer Ci in (a), and (c) the final result while
performing the five-layered 3D printing.

The rest of the paper is organized as follows. In Section 2, some notations, observations,
known results, and one special Hamiltonian connected property of a special rectangular
supergrid graph are given. In Section 3, we give the necessary and sufficient conditions
for the Hamiltonian and the Hamiltonian connected C-shaped supergrid graphs. This
section shows that C-shaped supergrid graphs are always Hamiltonian and Hamiltonian
connected except for a few conditions. In Section 4, we present a linear-time algorithm to
compute the longest path between any two distinct vertices in a C-shaped supergrid graph.
Finally, a conclusion is given in Section 5.

2. Terminologies and Background Results

In this section, we will introduce some terminologies and symbols. Some observations
and previously established results for the Hamiltonicity and Hamiltonian connectivity of
rectangular and L-shaped supergrid graphs are also given. In addition, we also prove some
Hamiltonian connectivity property of a special class of rectangular supergrid graphs that
will be used in proving our result.

Suppose that G is a graph with vertex set V(G) and edge set E(G). Let S ⊆ V(G),
and let u, v ∈ V(G). We write G[S] for the subgraph of G induced by S, and G− S for the
subgraph G[V(G)− S]. In general, we write G− v instead of G− {v}. The notation u ∼ v
(resp., u � v) means that vertices u and v are adjacent (resp., non-adjacent). A vertex w
adjoins edge (u, v) if w ∼ u and w ∼ v. For two edges e1 = (u1, v1) and e2 = (u2, v2), if
u1 ∼ u2 and v1 ∼ v2 then we say that e1 and e2 are parallel, denoted this by e1 ≈ e2. A
neighbor of vertex v is any vertex adjacent to v. We denote by NG(v) the set of neighbors of
v in G, and let NG[v] = NG(v) ∪ {v}. The degree of vertex v in G, denoted by deg(v), is the
number of vertices adjacent to v. A path P of length |P| in G, denoted by v1 → v2 → · · · →
v|P|−1 → v|P|, is a sequence (v1, v2, · · · , v|P|−1, v|P|) of vertices such that (vi, vi+1) ∈ E(G)
for 1 6 i < |P|, and all vertices except v1, v|P| in it are distinct. The first and last vertices
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visited by P are denoted by start(P) and end(P), respectively. We will use vi ∈ P to denote
“P visits vertex vi” and use (vi, vi+1) ∈ P to denote “P visits edge (vi, vi+1)”. A path from
v1 to vk is denoted by (v1, vk)-path. In addition, we use P to refer to the set of vertices
visited by path P if it is understood without ambiguity. A cycle is a path C with |V(C)| > 3
and start(C) = end(C). Two paths (or cycles) P1 and P2 of graph G are vertex-disjoint if
V(P1) ∩V(P2) = ∅. If end(P1) ∼ start(P2), then two vertex-disjoint paths P1 and P2 can be
concatenated into a path, denoted by P1 ⇒ P2.

For a node (vertex) v in the plane with integer coordinates, let vx and vy represent
the x and y coordinates of node v, respectively, denoted by v = (vx, vy). A grid graph is a
finite vertex-induced subgraph of G∞. Figure 2a shows a grid graph, and it is clear that
the maximum degree of all vertices is four. A supergrid graph is a finite vertex-induced
subgraph of S∞. Figure 2b depicts a supergrid graph, it is clear that the maximum degree of
all vertices is eight. Thus, supergrid graphs contain grid graphs as subgraphs. Notice that
grid graphs are not a subclass of supergrid graphs, and the converse is also true. Obviously,
all grid graphs are bipartite [18] but supergrid graphs are not bipartite.

( , )v v
x y

(a) (b)

( +1, )v v
x y

( , 1)v v
x y

-

( 1, )v v
x y
-

( , +1)v v
x y

Figure 2. (a) A grid graph and (b) a supergrid graph, where the circles represent the vertices and the
solid lines indicate the edges in the graphs.

A rectangular supergrid graph, denoted by R(m, n), is a supergrid graph whose vertex
set is V(R(m, n)) = {v = (vx, vy)|1 6 vx 6 m and 1 6 vy 6 n}. That is, R(m, n) contains
m columns and n rows of vertices in S∞ and its shape is a rectangle. The size of R(m, n) is
defined to be mn, and R(m, n) is called n-rectangle. The vertex v is called the upper-left (resp.,
upper-right, down-left, down-right) corner of R(m, n) if for any vertex w = (wx, wy) ∈ R(m, n),
wx > vx and wy > vy (resp., wx 6 vx and wy > vy, wx > vx and wy 6 vy, wx 6 vx
and wy 6 vy). The edge (u, v) is said to be horizontal (resp., vertical) if uy = vy (resp.,
ux = vx), and is called crossed if it is neither a horizontal nor a vertical edge. There are
four boundaries in a rectangular supergrid graph R(m, n) with m, n > 2. The edge in the
boundary of R(m, n) is called boundary edge. A path is called boundary of R(m, n) if it visits
all vertices and edges of the same boundary in R(m, n) and its length equals to the number
of vertices in the visited boundary. For example, Figure 3a shows a rectangular supergrid
graph R(9, 8) which is called 8-rectangle and contains 2× (8 + 7) = 30 boundary edges.
Figure 3a also indicates the types of edges and corners. In the figures we will assume that
(1, 1) are coordinates of the upper-left corner in R(m, n), except when we explicitly change
this assumption.

A L-shaped supergrid graph, denoted by L(m, n; k, l), is a supergrid graph obtained
from a rectangular supergrid graph R(m, n) by cutting its subgraph R(k, l) from the upper-
right corner, where m, n > 1 and k, l > 1. A C-shaped supergrid graph C(m, n; k, l; c, d) is
a supergrid graph obtained from a rectangular supergrid graph R(m, n) by removing its
subgraph R(k, l) from its node coordinated as (m, c + 1) while R(m, n) and R(k, l) have
exactly one border side in common, where m > 2, n > 3, k, l > 1, c > 1, d = n− l − c > 1,
and a = m − k > 1. The structures of L(m, n; k, l) and C(m, n; k, l; c, d) are explained in
Figure 3b,c, respectively.
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Figure 3. (a) A rectangular supergrid graph R(9, 8), where the bold dashed lines indicate vertical
and horizontal separations, (b) the structure of L-shaped supergrid graph L(9, 11; 6, 8), and (c) the
structure of C-shaped supergrid graph C(8, 11; 4, 7; 2, 2).

In our method, we need to partition a rectangular or C-shaped supergrid graph into η
disjoint parts, where η > 2. The partition is defined as follows.

Definition 1. Assume that Ĝ is a rectangular supergrid graph R(m, n) or a C-shaped supergrid
graph C(m, n; k, l; c, d). A separation operation on Ĝ is a partition of Ĝ into η vertex-disjoint
rectangular or L-shaped supergrid subgraphs Ĝ1, Ĝ2, · · · , Ĝη , i.e., V(Ĝ) = V(Ĝ1) ∪ V(Ĝ2) ∪
· · · ∪V(Ĝη) and V(Ĝi) ∩V(Ĝj) = ∅ for i 6= j and 1 6 i, j 6 η, where η > 2. A separation is
called horizontal if it consists of a set of vertical edges, and is called vertical if it contains a set of
horizontal edges. Note that horizontal or vertical separation may be empty in our partition for the
presentation of clarity. For example, Figure 3a indicates a horizontal (resp., vertical) separation of
R(9, 8) which partitions it into R(9, 3) and R(9, 5) (resp., R(4, 8) and R(5, 8)).

Let R(m, n) be a rectangular supergrid graph with m > n > 2, C be a cycle of R(m, n),
and let H be a boundary of R(m, n). The restriction of C to H is denoted by C|H . If
|C|H | = 1, i.e., C|H is a boundary path on H, then C|H is called flat face on H. If |C|H | > 1
and C|H contains at least one boundary edge of H, then C|H is called concave face on H.
A Hamiltonian cycle of R(m, 3) is called canonical if it contains three flat faces on two
shorter boundaries and one longer boundary, and it contains one concave face on the other
boundary, where the shorter boundary consists of three vertices. A Hamiltonian cycle of
R(m, n) with n = 2 or n > 4 is said to be canonical if it contains three flat faces on three
boundaries, and it contains one concave face on the other boundary. The following lemma
states the result in [16] concerning the Hamiltonicity of rectangular supergrid graphs.

Lemma 1 (See [16]). Assume that R(m, n) is a rectangular supergrid graph with m > n > 2.
Then, the following statements hold true:
(1) R(m, 3) contains a canonical Hamiltonian cycle;
(2) R(m, n) with n = 2 or n > 4 contains four canonical Hamiltonian cycles with concave faces
being on different boundaries.

Figure 4 shows canonical Hamiltonian cycles for rectangular supergrid graphs found
in Lemma 1. Each Hamiltonian cycle constructed by this lemma contains all the boundary
edges on any three sides of the rectangular supergrid graph. This shows that for any
rectangular supergrid graph R(m, n) with m > n > 4, we can construct four canonical
Hamiltonian cycles such that their concave faces are placed on different boundaries. For
instance, the four distinct canonical Hamiltonian cycles of R(5, 5) are shown in Figure 4b–e.

Let (G, s, t) denote supergrid graph G with two specified distinct vertices s and t.
Without loss of generality, we will assume that sx 6 tx in the rest of the paper. We denote a
Hamiltonian path between s and t in G by HP(G, s, t). We say that HP(G, s, t) does exist
if there is a Hamiltonian (s, t)-path in G. From Lemma 1, HP(R(m, n), s, t) does exist if
m, n > 2 and (s, t) is an edge in the constructed Hamiltonian cycle of R(m, n).
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(b)(a)

th eer
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Figure 4. A canonical Hamiltonian cycle containing three flat faces and one concave face for (a) R(6, 6),
and (b–e) R(5, 5), where the solid arrow lines indicate the edges in the cycles and R(5, 5) contains
four distinct canonical Hamiltonian cycles in (b–e) such that their concave faces are placed on
different boundaries.

Definition 2. Assume that G is a connected supergrid graph and V1 is a subset of the vertex set
V(G). V1 is called a vertex cut if G−V1 is disconnected. A vertex v ∈ V(G) is said to be a cut
vertex if G− {v} is disconnected.

In [12], the authors showed that HP(R(m, n), s, t) does not exist if the following
condition hold:

(F1) s or t is a cut vertex, or {s, t} is a vertex cut (see Figure 5).

(a)

s t

(b)

s

t

Figure 5. Rectangular supergrid graphs in which there is no Hamiltonian (s, t)-path for (a) R(m, 1),
and (b) R(m, 2), where solid lines indicate the longest path between s and t.

Assume G is any supergrid graph. The following lemma shows that HP(G, s, t) does
not exist if (G, s, t) satisfies condition (F1), and can be verified by the same arguments
in [23].

Lemma 2 (See [23]). Assume that G is a supergrid graph with two vertices s and t. If (G, s, t)
satisfies condition (F1), then HP(G, s, t) does not exist.

The Hamiltonian (s, t)-path of R(m, n) constructed in [12] satisfies that it contains at
least one boundary edge of each boundary, and is called canonical.

Lemma 3 (See [12]). Assume R(m, n) is a rectangular supergrid graph and s, t ∈ V(R(m, n)). If
(R(m, n), s, t) does not satisfy condition (F1), then there exists a canonical Hamiltonian (s, t)-path
of R(m, n).

Lemma 4 (See [17]). Assume R(m, n) is a rectangular supergrid graph with m > 3 and n > 2,
and s and t are its two distinct vertices. Let w = (1, 1), z = (2, 1), and f = (3, 1). If (R(m, n), s, t)
does not satisfy condition (F1), then there exists a canonical Hamiltonian (s, t)-path P of R(m, n)
such that (z, f ) ∈ P if (R(m, n), s, t) does satisfy condition (F2); and (w, z) ∈ P otherwise, where
condition (F2) is defined as follows:

(F2) n = 2 and {s, t} ∈ {{w, z}, {(1, 1), (2, 2)}, {(2, 1), (1, 2)}}, or n > 3 and {s, t} =
{w, z}.

We then give some observations on the relations among cycle, path, and vertex. These
propositions will be used in proving our results and are given in [12].

Proposition 1 (See [12]). Let G be a graph. Assume C1 and C2 are two vertex-disjoint cycles of
G, P1 and P2 are two vertex-disjoint paths of G, C1 and P1 are a cycle and a path, respectively, of
G with V(C1) ∩ V(P1) = ∅, and assume x is a vertex in G− V(C1) or G− V(P1). Then, the
following statements hold true:
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(1) If there exist two edges e1 ∈ C1 and e2 ∈ C2 such that e1 ≈ e2, then C1 and C2 can be
combined into a cycle of G (see Figure 6a).

(2) If there exist two edges e1 ∈ C1 and e2 ∈ P1 such that e1 ≈ e2, then C1 and P1 can be
combined into a path of G (see Figure 6b).

(3) If vertex x adjoins one edge (u1, v1) of C1 (resp., P1), then C1 (resp., P1) and x can be merged
into a cycle (resp., path) of G (see Figure 6c).

(4) If there exists one edge (u1, v1) ∈ P1 such that u1 ∼ start(P2) and v1 ∼ end(P2), then P1
and P2 can be combined into a path of G (see Figure 6d).

(a)

u1

v1

u2

v2

(b) (c)

x

(d)

C1 C2 C1

P1 P1 P2

u1

v1

u1

v1

u1

v1

u2

v2
C1

Figure 6. A schematic diagram for (a) Statement (1), (b) Statement (2), (c) Statement (3), and
(d) Statement (4) of Proposition 1, where the bold dashed lines indicate the cycles (paths) and ⊗
represents the destruction of an edge while constructing a cycle or path.

Next, we will discover one Hamiltonian connected property of 3-rectangle R(m, 3)
with m > 3 that will be used in to prove our result. Let z1 = (m, 1), z2 = (m, 2), and
z3 = (m, 3) be three vertices of R(m, 3). Assume that R̃ = R(m, 3)− {z1, z2, z3} and edges
e12 = (z1, z2), e23 = (z2, z3). Assume that s, t ∈ R̃. We will prove that there exists a
Hamiltonian (s, t)-path P of R(m, 3) such that e12, e23 ∈ P. Before giving this property, we
first give one result in [12] for 3-rectangle as follows.

Lemma 5 (See [12]). Assume R(m, 3) is a 3-rectangle with m > 3 and s, t being its two distinct
vertices. Then, R(m, 3) contains a canonical Hamiltonian (s, t)-path which contains at least one
boundary edge of each boundary in R(m, 3).

By using the above lemma, we will prove the following lemma.

Lemma 6. Assume R(m, 3) is a 3-rectangle with m > 3 and s, t being its two distinct vertices.
Let z1 = (m, 1), z2 = (m, 2), and z3 = (m, 3), which are the three vertices of R(m, 3), and let
edges e12 = (z1, z2), e23 = (z2, z3). If {s, t} ∩ {z1, z2, z3} = ∅, then there exists a Hamiltonian
(s, t)-path of R(m, 3) containing e12 and e23.

Proof. We will prove this lemma by induction on m. Let R̃ = R(m, 3)− {z1, z2, z3}. Then,
R̃ = R(m− 1, 3), where m− 1 > 2. Initially, let m = 3. Then, R̃ = R(2, 3) and s, t ∈ R̃.
By considering every case, we can construct the desired Hamiltonian (s, t)-path of R(3, 3),
as shown in Figure 7a–o. Assume that the lemma holds true when m = k > 3. Consider
that m = k + 1. Then, R̃ = R(k, 3) is a subgraph of R(k + 1, 3), where z1 = (k + 1, 1),
z2 = (k + 1, 2), z3 = (k + 1, 3), and s, t ∈ R̃ = R(k, 3). Let P̂ = z1 → z2 → z3. By Lemma 5,
R̃ contains a Hamiltonian (s, t)-path P̃ such that it contains an edge ẽ = (u, v) locating to
face R(k + 1, 3)− R̃. Then, start(P̂) ∼ u and end(P̂) ∼ v. By Statement (4) of Proposition 1,
P̃ and P̂ can be combined into a Hamiltonian (s, t)-path of R(k + 1, 3). The construction of
such a Hamiltonian path is depicted in Figure 7p. Thus, the lemma holds when m = k + 1.
By induction, the lemma holds true.

In addition to condition (F1) (see Figure 8a,b), in [17], we showed that HP(L(m, n; k, l), s, t)
does not exist whenever one of the following conditions is satisfied.

(F3) assume that G is a supergrid graph, there exists a vertex w ∈ G such that deg(w) = 1,
w 6= s, and w 6= t (see Figure 8c).

(F4) m− k = 1, n− l = 2, l = 1, k > 2, and {s, t} = {(1, 2), (2, 3)} or {(1, 3), (2, 2)} (see
Figure 8d).
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Figure 7. (a–o) The possible Hamiltonian (s, t)-paths of R(3, 3) when s, t 6∈ {z1, z2, z3}, and (p) the
construction of Hamiltonian (s, t)-path of R(k + 1, 3) for k > 3 and s, t ∈ R̃, where the solid lines
indicate the constructed Hamiltonian (s, t)-path and ⊗ represents the destruction of an edge while
constructing a Hamiltonian (s, t)-path of R(k + 1, 3).
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Figure 8. L-shaped supergrid graph in which HP(L(m, n; k, l), s, t) does not exist, where (a,b) satisfy
condition (F1), (c) depicts condition (F2), and (d) shows condition (F3).

Theorem 1 (See [17]). Assume that L(m, n; k, l) is a L-shaped supergrid graph with vertices s
and t. Then, HP(L(m, n; k, l), s, t) does exist if and only if (L(m, n; k, l), s, t) does not satisfy
conditions (F1), (F3), and (F4).

The following lemma shows the Hamiltonicity of L-shaped supergrid graphs.

Theorem 2 (See [17]). Assume that L(m, n; k, l) is a L-shaped supergrid graph. Then, L(m, n; k, l)
contains a Hamiltonian cycle if and only if it does not satisfy condition (F5), where condition (F5)
is defined as follows:

(F5) there exists a vertex w in L(m, n; k, l) such that deg(w) = 1.

Theorem 3 (See [12,17]). Assume that G is R(m, n) or L(m, n; k, l) with two distinct vertices s
and t. Then, a longest (s, t)-path in G can be computed in O(mn)-linear time.

3. The Necessary and Sufficient Conditions for the Hamiltonicity and Hamiltonian
Connectivity of C-Shaped Supergrid Graphs

In this section, we will give the necessary and sufficient conditions for C-shaped
supergrid graphs containing a Hamiltonian cycle and Hamiltonian (s, t)-path. First, we
will verify the Hamiltonicity of C-shaped supergrid graphs. If m− k = 1 or there exists
a vertex w ∈ V(C(m, n; k, l; c, d)) such that deg(w) = 1, then C(m, n; k, l; c, d) contains
no Hamiltonian cycle. Therefore, C(m, n; k, l; c, d) is not Hamiltonian if condition (F6) is
satisfied, where condition (F6) is defined as follows:

(F6) a(= m− k) = 1 or there exists a vertex w ∈ V(C(m, n; k, l; c, d)) such that deg(w) = 1.

Theorem 4. C(m, n; k, l; c, d) has a Hamiltonian cycle if and only if it does not satisfy condi-
tion (F6).

Proof. Only if part (⇒): Assume that C(m, n; k, l; c, d) satisfies condition (F6), then we
will prove that it contains no Hamiltonian cycle. Let v ∈ V(C(m, n; k, l; c, d)) such that
c + 1 6 vy 6 c + l if a(= m − k) = 1; otherwise v ∼ w. It is obvious that any cycle
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in C(m, n; k, l; c, d) must pass through v twice. Therefore, C(m, n; k, l; c, d) contains no
Hamiltonian cycle.

If part (⇐): We will prove this statement by constructing a Hamiltonian cycle of
C(m, n; k, l; c, d). There are two cases:

Case 1: c = 1 and d = 1. If k > 1, then there exists a vertex w ∈ V(C(m, n; k, l; c, d))
such that deg(w) = 1. Thus, k = 1. We make vertical and horizontal separations on
C(m, n; k, l; c, d) to obtain three disjoint rectangular supergrid subgraphs R1 = R(a, n),
R2 = R(k, c), and R3 = R(k, d), as depicted in Figure 9a. Assume that v ∈ V(R2) and
u ∈ V(R3). By Lemma 1, R1 contains a canonical Hamiltonian cycle HC1 (see Figure 9b).
We can place one flat face of HC1 to face R2 and R3. Thus, there exists an edge (w, z) ∈ HC1
such that v ∼ w and v ∼ z. By Statement (3) of Proposition 1, v and HC1 can be combined
into a cycle HC2. By the same argument, u can be merged into the cycle HC2 to form a
Hamiltonian cycle of C(m, n; k, l; c, d), as shown in Figure 9c.

u

v

(a) (d)

R1

R2

R3

R1

R2

u

v

(b)

R1

R2

R3

u

v

(c)

R1

R2

R3

(e)

R1

R2

Figure 9. (a) A vertical and horizontal separation on C(m, n; k, l; c, d), (b) a Hamiltonian cycle in R1, (c)
a Hamiltonian cycle in C(m, n; k, l; c, d), and (d,e) a horizontal separation on C(m, n; k, l; c, d), where
the bold solid lines indicate the constructed Hamiltonian cycle and ⊗ represents the destruction of an
edge while constructing a Hamiltonian cycle.

Case 2: c > 2 or d > 2. By symmetry, assume that d > 2. We make a horizontal
separation on C(m, n; k, l; c, d) to obtain two disjoint supergrid subgraphs R1 = L(m, c +
l; k, l) and R2 = R(m, d), as depicted in Figure 9d,e, where Figure 9d,e respectively, indicate
the case of c = 1 and c > 2. By Theorem 2 (resp. Lemma 1), R1 (resp. R2) contains a
Hamiltonian (resp. canonical Hamiltonian) cycle HC1 (resp. HC2) such that its one flat
face is placed to face R2 (resp. R1). Then, there exist two edges e1 = (u1, u2) ∈ HC1 and
e2 = (v1, v2) ∈ HC2 such that e1 ≈ e2; as shown in Figure 10a,b. By Statement (1) of
Proposition 1, HC1 and HC2 can be combined into a Hamiltonian cycle of C(m, n; k, l; c, d),
as shown in Figure 10c,d.

(a)

R1

R2

(b)

R1

R2

(c)

R1

R2

(d)

R1

R2

Figure 10. (a,b) Hamiltonian cycles in R1 and R2, and (c,d) a Hamiltonian cycle in C(m, n; k, l; c, d)
for Figure 9d,e respectively.

Now, we give the necessary and sufficient conditions for the existence of a Hamiltonian
(s, t)-path in C(m, n; k, l; c, d). In addition to condition (F1) (as depicted in Figure 11a,b)
and (F3) (as depicted in Figure 11c), if (C(m, n; k, l; c, d), s, t) satisfies one of the following
conditions, then it contains no Hamiltonian (s, t)-path.

(F7) m = 3, a(= m− k) = 2, and [(c = 1 and {s, t} = {(1, 1), (2, 2)} or {(1, 2), (2, 1)}) or
(d = 1 and {s, t} = {(1, n), (2, n− 1)} or {(1, n− 1), (2, n)})] (see Figure 11d).

(F8) n = 3, k = c = d = 1, and



Algorithms 2022, 15, 61 10 of 23

(1) a > 2, sx = tx = m− 1, and |sy − ty| = 2 (see Figure 11e); or

(2) a = 2, sx = 1, tx = 2, and |sy − ty| = 2 (see Figure 11f); or

(3) a > 2, sx < m− 1, and t = (m− 1, 2) (see Figure 11g).

(F9) a(= m− k) = 1, and (sy, ty 6 c or sy, ty > c + l) (see Figure 11h).
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Figure 11. Some C-shaped supergrid graphs in which HP(C(m, n; k, l; c, d), s, t) does not exist, where
(a,b) satisfy condition (F1), (c) depicts condition (F3), (d) depicts condition (F7), (e–g) depicts condition
(F8), and (h) shows condition (F9).

Lemma 7. If HP(C(m, n; k, l; c, d), s, t) exists, then (C(m, n; k, l; c, d), s, t) does not satisfy condi-
tions (F1), (F3), (F7), (F8), and (F9).

Proof. Assume that (C(m, n; k, l; c, d), s, t) satisfies one of the conditions (F1), (F3), (F7),
(F8), and (F9), then we show that HP(C(m, n; k, l; c, d), s, t) does not exist. For conditions
(F1) and (F3), it is clear (see Figure 11a–c). For condition (F7), by inspecting all cases
of Figure 11d there exists no Hamiltonian (s, t)-path. For cases (1)–(2) of condition (F8),
consider Figure 11e,f. Let v be a vertex depicted in these figures. Since {s, t, v} is a vertex
cut of C(m, n; k, l; c, d), then C(m, n; k, l; c, d)− {s, t, v} is disconnected and contains three
(or two) components in which two components (or one component) consist of only one
vertex. Hence, any path between s and t must pass through s or v twice. Therefore,
C(m, n; k, l; c, d) contains no Hamiltonian (s, t)-path. For case (3) of condition (F8), consider
Figure 11g. A simple check shows that there is no Hamiltonian (s, t)-path in C(m, n; k, l; c, d)
containing both of vertices u and v. For condition (F9), consider Figure 11h. Let v ∈
V(C(m, n; k, l; c, d) such that vx = 1 and c + 1 6 vy 6 c + l. Since a = 1, v is a cut vertex
of C(m, n; k, l; c, d). Obviously, any path between s and t must pass through v two times.
Therefore, C(m, n; k, l; c, d) contains no Hamiltonian (s, t)-path.

In the following, we will show that C(m, n; k, l; c, d) has a Hamiltonian (s, t)-path when
(C(m, n; k, l; c, d), s, t) does not satisfy conditions (F1), (F3), (F7), (F8), and (F9). We consider
the case of a = 1 in Lemma 8 and the case of a > 2 in Lemmas 9 and 10.

Lemma 8. Assume that a(= m− k) = 1 and (C(m, n; k, l; c, d), s, t) does not satisfy conditions
(F1), (F3), and (F9). Then HP(C(m, n; k, l; c, d), s, t) does exist.

Proof. Notice that, here, (sy 6 c and ty > c + l) or (ty 6 c and sy > c + l). If sy, ty 6 c,
sy, ty > c + l, or c + 1 6 sy(or ty) 6 c + l, then (C(m, n; k, l; c, d), s, t) satisfies condition
(F1) or (F9). Without loss of generality, assume that sy 6 c and ty > c + l. We make a
horizontal separation on C(m, n; k, l; c, d) to obtain two disjoint subgraphs R1 = R(m, c),
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R2 = L(m, n− c; k, l). Let p ∈ V(R1) and q ∈ V(R2) such that p ∼ q, q = (1, c + 1), and
p = (1, c) if s 6= (1, c); otherwise p = (2, c) (see Figure 12a). Consider (R1, s, p). Condition
(F1) holds, if

(i) c = 1, k > 1, and sx 6= m. Clearly, if this case holds, then (C(m, n; k, l; c, d), s, t) satisfies
condition (F1), a contradiction.

(ii) c = 2 and sx = px > 2. Clearly, in this case, sx = px = 2. It contradicts that p = (1, c)
when s 6= (1, c).

Therefore, (R1, s, p) does not satisfy condition (F1). Now, consider (R2, q, t). Since
qy = c + 1 and ty > c + l, it is enough to show that (R2, q, t) does not satisfy condition
(F1). Condition (F1) holds, if d = 1, k > 1, and tx 6= m. Clearly, if this case holds, then
(C(m, n; k, l; c, d), s, t) satisfies condition (F1), a contradiction. Therefore, (R2, q, t) does not
satisfy conditions (F1), (F3), and (F4). Since (R1, s, p) and (R2, q, t) do not satisfy conditions
(F1), (F3), and (F4), by Lemma 3 and Theorem 1, there exist Hamiltonian (s, p)-path P1 and
Hamiltonian (q, t)-path P2 of R1 and R2, respectively (see Figure 12b). Then, P = P1 ⇒ P2
forms a Hamiltonian (s, t)-path of C(m, n; k, l; c, d), as depicted in Figure 12c.
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(b) (c)
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t
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Figure 12. (a) A horizontal separation on C(m, n; k, l; c, d), (b) Hamiltonian paths P1 and P2 in (R1, s, p)
and (R2, q, t), respectively, and (c) a Hamiltonian (s, t)-path in C(m, n; k, l; c, d), where a = 1 and bold
lines indicate the constructed Hamiltonian path.

Lemma 9. Assume c = d = 1, a(= m− k) > 1, and (C(m, n; k, l; c, d), s, t) does not satisfy
conditions (F1), (F3), (F7), and (F8). Then HP(C(m, n; k, l; c, d), s, t) does exist.

Proof. Depending on whether n = 3, we consider the following cases:
Case 1: n = 3. Notice that, here, if k > 1, then sx = tx = m. If k > 1 and sx 6= m and

tx 6= m, then (C(m, n; k, l; c, d), s, t) satisfies (F1) or (F3). Consider the positions of s and t,
as there are the following two subcases:

Case 1.1: sx > a or tx > a. Without loss of generality, assume that tx > a and ty = 1.
We make a vertical and a horizontal separations on C(m, n; k, l; c, d) to obtain two disjoint
supergrid subgraphs R2 = R(k, c) and R1 = L(m, n; k, c + l), as depicted in Figure 13a–c.
Let p ∈ V(R1) and q ∈ V(R2) such that p ∼ q, q = (a + 1, 1), and p = (a, 1) if s 6= (a, 1);
otherwise p = (a, 2) (see Figure 13a–c). Here, if |V(R2)| = 1 (i.e., k = 1), then q = t.
Consider (R1, s, p). Condition (F1) holds, if a = 2 and sy = py > 2, or p = (a, 2) and
s = (a, 3). Clearly, in any case, it contradicts that p = (a, 1) when s 6= (a, 1). Condition (F3)
holds, if k > 1 and sx 6 a. If this case holds, then (C(m, n; k, l; c, d), s, t) satisfies condition
(F3), a contradiction. Condition (F4) holds, if n = 3, a = 2, k = 1, s = (1, n), and p = (a, 2).
It contradicts that p = (a, 1) when s 6= (a, 1). Thus, (R1, s, p) does not satisfy conditions
(F1), (F3), and (F4). Now, consider (R2, q, t). Since q = (a + 1, 1) and t = (m, 1), clearly
(R2, q, t) does not satisfy condition (F1). A Hamiltonian (s, t)-path of C(m, n; k, l; c, d) can
be constructed by similar arguments in proving Lemma 8, as shown in Figure 13d.

Case 1.2: sx, tx 6 a. In this subcase, k = 1 and hence a = m − 1. If k > 1, then
(C(m, n; k, l; c, d), s, t) satisfies (F3). Since (C(m, n; k, l; c, d), s, t) does not satisfy condition
(F8), sx 6= m− 1. There are two subcases:

Case 1.2.1: sx, tx < m− 1. Let z1 = (m− 1, 1), z2 = (m− 1, 2), and z3 = (m− 1, 3).
Let e1 = (z1, z2) and e2 = (z2, z3). We make a vertical and horizontal separations on
C(m, n; k, l; c, d) to obtain three disjoint rectangular supergrid subgraphs R1 = R(a, n),
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R2 = R(k, c), and R3 = R(k, d); as depicted in Figure 14a. Assume that v ∈ V(R2) and
u ∈ V(R3). By Lemma 6, where a > 2, or Lemma 3, where a = 2, R1 contains a Hamiltonian
(s, t)-path P1 such that e1, e2 ∈ P1 (see Figure 14b). Then, P1, u, v can be combined into a
Hamiltonian (s, t)-path of C(m, n; k, l; c, d) by Statement (3) of Proposition 1 (see Figure 14c).

(a) (b) (c) (d)
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s
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Figure 13. (a–c) A vertical and a horizontal separation on C(m, n; k, l; c, d) under that a > 2, c = d = 1,
n = 3, and tx > a, and (d) a Hamiltonian (s, t)-path in C(m, n; k, l; c, d) for (a), where bold lines
indicate the constructed Hamiltonian path.
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Figure 14. (a) A vertical and a horizontal separation on C(m, n; k, l; c, d) under that sx, tx < m− 1,
(b) a Hamiltonian (s, t)-path in R1 for (a), (c) a Hamiltonian (s, t)-path of C(m, n; k, l; c, d) for (a),
(d,e) a vertical separation on C(m, n; k, l; c, d) for sx < m− 1 and tx = m− 1, and (f) a Hamiltonian
(s, t)-path of C(m, n; k, l; c, d) for (d), where the bold lines indicate the constructed Hamiltonian path
and ⊗ represents the destruction of an edge while constructing a Hamiltonian cycle.

Case 1.2.2: sx < m− 1 and tx = m− 1. Since (C(m, n; k, l; c, d), s, t) does not satisfy
conditions (F1), (F7), and (F8), we have that (1) t = (m− 1, 1) or t = (m− 1, 3) if m− 1 > 2,
and (2) sy = ty = 1 or sy = ty = 3 if m− 1 = 2. Thus, ty = 1 or ty = 3. By symmetry,
assume that t = (m− 1, 1). We make a vertical separation on C(m, n; k, l; c, d) to obtain
two disjoint supergrid subgraphs R1 = R(m− 2, n) and R2 = C(2, n; k, l; c, d), as depicted
in Figure 14d,e. Let q ∈ V(R2) and p ∈ V(R1) such that p ∼ q, q = (m − 1, 3), and
p = (m− 2, 3) if s 6= (m− 2, 3); otherwise p = (m− 2, 2) (see Figure 14d,e).

Notice that, here, if s = (m− 2, 3), then m > 4. If m = 3 and s = (m− 2, 3), then
(C(m, n; k, l; c, d), s, t) satisfies condition (F8). Consider (R2, q, t). Since a = d = c = 1,
t = (m− 1, 1), and q = (m− 1, 3), clearly (R2, q, t) does not satisfy conditions (F1), (F3),
and (F9). Here, (R2, q, t) lies on Lemma 8. Now, consider (R1, s, p). Condition (F1) holds, if

(i) m− 2 = 1 and s = (m− 2, 2). In this case, (C(m, n; k, l; c, d), s, t) satisfies condition
(F7), a contradiction.

(ii) m− 2 = 2 and sy = py = 2. Clearly if sy = 2, then py = 3. Hence, sy 6= py.

Therefore, (R1, s, p) does not satisfy condition (F1). By Lemmas 3 and 8, R1 and R2
contain Hamiltonian (s, p)-path P1 and (q, p)-path P2, respectively. Then, P = P1 ⇒ P2
forms a Hamiltonian (s, t)-path of C(m, n; k, l; c, d), as depicted in Figure 14f.

Case 2: n > 3. Since n > 3 and c = d = 1, it follows that l > 1. We make
a horizontal separation on C(m, n; k, l; c, d) to obtain two disjoint supergrid subgraphs
R1 = L(m, n− n2; k, l1) and R2 = L(n2, m; l2, k), where n2 = c + l − 1, l1 = c + l − n2, and
l2 = l − l1 (see Figure 15a–c). Since n2 = c + l − 1 and d = 1, clearly n− n2 = 2. Also since
n− n2 = 2 and n > 3, it follows that n2 > 2. Depending on the positions of s and t, there
are the following two subcases:

Case 2.1: s, t ∈ R1 or s, t ∈ R2. Without loss of generality, assume that s, t ∈ R2. Here,
k = 1. If k > 1, then (C(m, n; k, l; c, d), s, t) satisfies condition (F3).

Case 2.1.1: (n2 > 2) or (n2 = 2 and [(sx 6= tx) or (sx = tx = 1)]). Since k = 1, it
is enough to show that (R2, s, t) does not satisfy conditions (F1) and (F4). Condition (F1)
holds, if

(i) 2 6 sx = tx 6 a. By assumption, this case does not occur.
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(ii) a = 2 and 2 6 sy = ty 6 n2. Clearly if this case holds, then (C(m, n; k, l; c, d), s, t)
satisfies condition (F1), a contradiction.

(a) (b) (c) (d)

R2
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R1

R2

n2

n n- 2
k

R1
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R1

s

t

R2

R1

s

t

Figure 15. (a–c) A horizontal separation on C(m, n; k, l; c, d) for n > 3, (d) a Hamiltonian (s, t)-path in
R2 and a Hamiltonian cycle in R1, and (e) a Hamiltonian (s, t)-path in C(m, n; k, l; c, d).

Condition (F4) holds, if a = 2, n2 > 2, sx, tx 6 2, sy, ty 6 2, sx 6= tx, and sy 6= ty.
Clearly, if this case holds, then (C(m, n; k, l; c, d), s, t) satisfies condition (F7), a contradiction.
Therefore, (R2, s, t) does not satisfy conditions (F1), (F3), and (F4). Since (R2, s, t) does not
satisfy conditions (F1), (F3), and (F4). By Theorem 1, R2 contains a Hamiltonian (s, t)-path
P2 in which one edge e2 is placed to face R1. By Theorem 2, R1 contains a Hamiltonian cycle
HC1 such that its one flat face is placed to face R2. Then, there exist two edges e1 ∈ HC1
and e2 ∈ P2 such that e1 ≈ e2 (see Figure 15d). By Statement (2) of Proposition 1, P2 and
HC1 can be combined into a Hamiltonian (s, t)-path of C(m, n; k, l; c, d). The construction
of a such Hamiltonian path is depicted in Figure 15e.

Case 2.1.2: n2 = 2 and sx, tx > 1. In this case, n = 4, a > 2, l = 2, and
2 6 sx = tx 6 a − 1. If sx = tx = a, then (C(m, n; k, l; c, d), s, t) satisfies condition (F1).
Depending on whether a = 3, we consider the following two subcases:

Case 2.1.2.1: a = 3. In this subcase, we can construct a Hamiltonian (s, t)-path
by the pattern shown in Figure 16a. Consider Figure 16a. Since w = (1, 3) and z = (3, 3),
clearly (R1, w, z) does not satisfy conditions (F1), (F3), and (F4). Thus by Theorem 1, R1
contains a Hamiltonian (w, z)-path P1. For (R2, s, t), we can construct two paths P21 and P22
such that P21 connects s and p, P22 connects q and t, V(P21) ∩V(P22) = ∅, V(P21 ∪ P22) =
V(R2), p ∼ w, and q ∼ z, as shown in Figure 16a. Then, P = P21 ⇒ P1 ⇒ P22 forms a
Hamiltonian (s, t)-path of C(m, n; k, l; c, d) (see Figure 16a).
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Figure 16. (a) A Hamiltonian (s, t)-path in C(m, n; k, l; c, d), (b,c) a vertical and horizontal separations
on C(m, n; k, l; c, d) where 2 6 sx = tx 6 a− 1, (d) a Hamiltonian (s, t)-path in R21 and Hamilto-
nian cycles in R1 and R22 for (b), (e) a Hamiltonian (s, t)-path in C(m, n; k, l; c, d) for (b), and (f) a
Hamiltonian (s, t)-path in C(m, n; k, l; c, d) for (c).

Case 2.1.2.2: a > 3. We make a vertical separation on R2 to obtain two disjoint
subgraphs R21 = R(m′, n2) and R22 = L(n2, m − m′; 1, 1), where m′ = sx if sx < a − 1;
otherwise m′ = sx− 1; as shown in Figure 16b,c. First, let s, t ∈ R21 and consider Figure 16b.
Clearly since sx = tx = m′, (R21, s, t) does not satisfy condition (F1). By Lemma 3, R21
contains a canonical Hamiltonian (s, t)-path P21. Then, there exists one edge e21 ∈ P21 that
is placed to face R1. By Theorem 2, R22 and R1 contain Hamiltonian cycle HC22 and HC1,
respectively. Using the algorithm of [17], we can construct HC22 and HC1 to satisfy that
one flat face of HC1, which is placed to face R21 and R22, and one flat face of HC22, which
is placed to face R1 (see Figure 16d). Then, there exist four edges e1, e2 ∈ HC1, e21 ∈ P21,
and e22 ∈ HC22 such that e1 ≈ e21 and e2 ≈ e22. By Statements (1) and (2) of Proposition 1,
P21, HC1, and HC22 can be combined into a Hamiltonian (s, t)-path of C(m, n; k, l; c, d). The
construction of a such Hamiltonian path is depicted in Figure 16e. Now, let s, t ∈ R22 and
consider Figure 16c. Since sx = tx = 1 and sx, tx < a (in R22), it is clear that (R22, s, t) does
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not satisfy conditions (F1), (F3), and (F4). By similar arguments in proving s, t ∈ R21, a
Hamiltonian (s, t)-path of C(m, n; k, l; c, d) can be constructed (see Figure 16f).

Case 2.2: (s ∈ R1 and t ∈ R2) or (t ∈ R1 and s ∈ R2). Without loss of generality,
assume that t ∈ R1 and s ∈ R2. Let q ∈ V(R1) and p ∈ V(R2) such that p ∼ q, where

p = (1, n2) and q = (1, n2 + 1), if s 6= (1, n2) and t 6= (1, n2 + 1);
p = (2, n2) and q = (2, n2 + 1), if s = (1, n2) and t = (1, n2 + 1);
p = (2, n2) and q = (1, n2 + 1), if s = (1, n2) and t 6= (1, n2 + 1);
p = (1, n2) and q = (2, n2 + 1), otherwise.

Consider (R2, s, p) and (R1, q, t). Condition (F1) holds, if

(i) (n2 = 2 and sx = px = 2) or (n− n2 = 2 and qx = tx = 2). Obviously in this case,
sx = px = 2 and qx = tx = 2. It contradicts that px = qx = 1 when sx 6= 1 and tx 6= 1.

(ii) k > 1 and a < sx, tx < m. If this case holds, then (C(m, n; k, l; c, d), s, t) satisfies
condition (F1), a contradiction.

Condition (F3) holds, if k > 1 and sx, tx 6 a. If this case holds, then (C(m, n;
k, l; c, d), s, t) satisfies condition (F3), a contradiction. Condition (F4) holds, if a = 2 and
[(n2 > 2 and sy, py 6 2) or (n− n2 > 2 and qy, ty > n− 1)]. A simple check shows that these
cases do not occur. Therefore, (R2, s, p) and (R1, q, t) do not satisfy conditions (F1), (F3), and
(F4). A Hamiltonian (s, t)-path of C(m, n; k, l; c, d) can be constructed by similar arguments
in proving Lemma 8. Notice that, here, R1 and R2 are L-shaped supergrid graphs.

Lemma 10. Assume a(= m− k) > 1, (c > 1 or d > 1), and (C(m, n; k, l; c, d), s, t) does not
satisfy conditions (F1), (F3), (F7), and (F8). Then HP(C(m, n; k, l; c, d), s, t) does exist.

Proof. Without loss of generality, assume that d > 1. Since d > 1, c > 1, and l > 1, thus
n > 4. We make a horizontal separation on C(m, n; k, l; c, d) to obtain two disjoint supergrid
subgraphs R2 = L(n2, m; l, k) and R1 = R(m, n− n2), where n2 = c + l and n− n2 = d (see
Figure 17a,b). Since n > 4, n2 = c + l, c, l > 1, and d > 1, it follows that n− n2, n2 > 2.
Depending on the positions of s and t, there are the following three subcases:

(a) (b) (c)

R2

n2

n n- 2

k

R1

l

R2

R1

(d)

R2

R1

s
t

R2

R1

s
t

Figure 17. (a,b) A horizontal separation on C(m, n; k, l; c, d) under that a > 1 and d > 1, (c) a
Hamiltonian (s, t)-path in R1 and a Hamiltonian cycle in R2, and (d) a Hamiltonian (s, t)-path in
C(m, n; k, l; c, d) for (c).

Case 1: s, t ∈ R1. In this case, (c > 1) or (c = 1 and k = 1). If c = 1 and k > 1, then
(C(m, n; k, l; c, d), s, t) satisfies condition (F3), a contradiction. Depending on the size of
n− n2, we consider the following two subcases:

Case 1.1: (n − n2 > 2) or (n − n2 = 2 and [(sx 6= tx), (sx = tx = 1), or (sx =
tx = m)]). In this subcase, {s, t} is not a vertex cut of R1. Then, (R1, s, t) does not satisfy
condition (F1). By Lemma 3, R1 contains a canonical Hamiltonian (s, t)-path P1. Using
the algorithm of [12], we can construct a Hamiltonian (s, t)-path P1 of R1 in which one
edge e1 is placed to face R2. By Theorem 2, R2 contains a Hamiltonian cycle HC2. Using
the algorithm of [17], we can construct HC2 such that its one flat face is placed to face R1.
Then, there exist two edges e1 ∈ P1 and e2 ∈ HC2 such that e1 ≈ e2 (see Figure 17c). By
Statement (2) of Proposition 1, P1 and HC2 can be combined into a Hamiltonian (s, t)-path
of C(m, n; k, l; c, d). The construction of a such Hamiltonian path is depicted in Figure 17d.

Case 1.2: n− n2 = 2 and 1 < sx = tx < m. In this subcase, {s, t} is a vertex cut
of R1. Notice that, here, sx, tx 6 a. If sx, tx > a and k > 1, then (C(m, n; k, l; c, d), s, t)
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satisfies condition (F1). Without loss of generality, assume that sy < ty. We make a
vertical and a horizontal separations on R1 to obtain two disjoint supergrid subgraphs
R11 = L(sx, n− n2; 1, 1) and R12 = R1−R11. Let p ∈ V(R12), q ∈ V(R11), and w, z ∈ V(R2)
such that p ∼ z, q ∼ w, q = (1, n2 + 1), w = (1, n2), p = (sx + 1, n2 + 1), and z = (sx, n2)
(see Figure 18a,b). A simple check shows that (R12, s, p), (R2, z, w), and (R11, q, t) do not
satisfy conditions (F1), (F3), and (F4). Thus, by Theorem 1, R12, R2, and R11 contain a
Hamiltonian (s, p)-path P12, Hamiltonian (z, w)-path P2, and Hamiltonian (q, t)-path P11,
respectively. Then, P = P12 ⇒ P2 ⇒ P11 forms a Hamiltonian (s, t)-path of C(m, n; k, l; c, d).
The construction of a such Hamiltonian path is depicted in Figure 18c.

(a)

R2

R12

s

t

R2

s

t
R11

(b)

R12R11

R2

s

t

(c)

R12R11

pq

w
z

pq

w
z

p
q

w
z

Figure 18. (a,b) A vertical and horizontal separation on R1 under that s, t ∈ R1 and {s, t} is a vertex
cut of R1, and (c) a Hamiltonian (s, t)-path in C(m, n; k, l; c, d).

Case 2: s, t ∈ R2. A Hamiltonian (s, t)-path of (C(m, n; k, l; c, d) can be constructed
by similar arguments in proving Case 2.1 of Lemma 9. Notice that, in this case, R1 is a
rectangular supergrid graph.

Case 3: (s ∈ R1 and t ∈ R2) or (s ∈ R2 and t ∈ R1). A Hamiltonian (s, t)-path of
(C(m, n; k, l; c, d) can be constructed by similar arguments in proving Case 2.2 of Lemma 9.
Notice that, in this case, R1 is a rectangular supergrid graphs.

It immediately follows from Lemmas 7–10 that the following theorem holds true.

Theorem 5. HP(C(m, n; k, l; c, d), s, t) does exist if and only if (C(m, n; k, l; c, d), s, t) does not
satisfy conditions (F1), (F3), (F7), (F8), and (F9).

4. The Longest (s, t)-Paths in C-Shaped Supergrid Graphs

In this section, first for the cases where HP(C(m, n; k, l; c, d), s, t) does not exist, we
give the upper bounds on the lengths of the longest paths between s and t. Then, we show
that these upper bounds are equal to the lengths of the longest path between s and t. Notice
that the isomorphic cases are omitted. In the following, we use L̂(G, s, t) to denote the
length of the longest (s, t)-paths and Û(G, s, t) to indicate the upper bound on the length of
the longest (s, t)-paths, where G is a rectangular, L-shaped, or C-shaped supergrid graph.
By the length of a path we mean the number of vertices visited by the path. These upper
bounds are given in Lemmas 11–13.

We first consider the case of a = 1 , where a = m− k. In this case, (C(m, n; k, l; c, d), s, t)
may satisfy conditions (F1), (F3), or (F9). We compute the upper bound of the longest
(s, t)-path in this case as the following lemma.

Lemma 11. Let a = 1 and w = (1, c + 1). Assume that C(m, n; k, l; c, d), s, t) satisfies one of the
conditions (F1), (F3), and (F9). Then, the following conditions hold:

(UB1) If sy, ty > c (resp., sy, ty 6 c), then the length of any (s, t)-path cannot exceed L̂(G1, s, t),
where G1 = L(m, n− c; k, l) (resp., G1 = L(c + 1, m; 1, k)) (see Figure 19a,b).

(UB2) If (sy 6 c and ty > c) or (ty 6 c and sy > c), without loss of generality assume that
sy 6 c, then the length of any (s, t)-path cannot exceed L̂(G2, s, z) + L̂(G1, w, t), where
G2 = R(m, c), G1 = L(m, n− c; k, l), and z = (1, c) if s 6= (1, c); otherwise z = (2, c) (see
Figure 19c,d).

Proof. The proof is straightforward, see Figure 19.
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G1
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Figure 19. A longest (s, t)-path under that a = 1 for (a,b) (UB1) holds, and (c,d) (UB2) holds, where the
bold lines indicate the constructed longest (s, t)-path and the bold dash lines indicate the separations.

Next, we consider the case of a > 2. In this case, (C(m, n; k, l; c, d), s, t) may satisfy con-
ditions (F1), (F3), (F7), or (F8). Depending on the sizes of c and d, we consider the subcases
of (1) c, d > 2 and (2) c = 1 or d = 1. Consider that c, d > 2. Then, (C(m, n; k, l; c, d), s, t)
does not satisfy conditions (F3), (F7), and (F8). Thus, (C(m, n; k, l; c, d), s, t) may satisfy
condition (F1) only. We can see that s or t is not a cut vertex when a, c, d > 2. Thus,
{s, t} is a vertex cut when (C(m, n; k, l; c, d), s, t) satisfies condition (F1). We can see from
the structure of C(m, n; k, l; c, d) that a, c, or d is equal to 2 if {s, t} is a vertex cut. The
following lemma shows the upper bound of the longest (s, t)-path under that a, c, d > 2
and (C(m, n; k, l; c, d), s, t) satisfies condition (F1).

Lemma 12. Assume that a, c, d > 2 and {s, t} is a vertex cut. Then, the following conditions hold:

(UB3) If a = 2 and c + 1 6 sy = ty 6 c + l, then the length of any (s, t)-path cannot exceed
max{L̂(G11, s, t), L̂(G12, s, t)}, where G11 = L(m, n′; k, l′), G12 = L(sy, m; k′, k), n′ =
n− sy + 1, l′ = n′ − d, and k′ = sy − 1 (see Figure 20a,b).

(UB4) If k > 2, a + 1 6 sx, tx 6 a + k− 1(= m− 1), and [(c = 2 and sy, ty 6 c) or (d = 2,
and sy, ty > c + l)], without loss of generality assume that d = 2 and sy, ty > c + l, then the
length of any (s, t)-path cannot exceed L̂(G1, s, t) + |V(G2)| = L̂(G1, s, t) + k× c, where
G1 = L(m, n; k, l + c) and G2 = R(k, c) (see Figure 20c,d).

(a)

s t

(b)

G12

s t
G11

G1 s

t

(d)

G2

G2

s

t

(c)

G1

Figure 20. A longest (s, t)-path under that a > 2 and c, d > 2 for (a,b) (UB3) holds, and (c,d) (UB4)
holds, where the bold lines indicate the constructed longest (s, t)-path.

Proof. Consider Figure 20a,b. Removing s and t clearly disconnects C(m, n; k, l; c, d) into
two components G1 and G2. Thus, a simple path between s and t can only go through one
of these components. Therefore, its length cannot exceed the size of the largest component.
Notice that, for (UB4), the length of any path between s and t is equal to max{L̂(G1, s, t) +
|V(G2)|, 2× (m− sx + 1)} (see Figure 20c,d). Since a, c > 1, it is obvious that the length of
any (s, t)-path cannot exceed L̂(G1, s, t) + |V(G2)| = L̂(G1, s, t) + k× c.

In the following, we will consider that a > 2, and (c = 1 or d = 1). Without loss
of generality, assume that c = 1. We first make a horizontal and a vertical separation on
C(m, n; k, l; c, d) to obtain two disjoint subgraphs G1 = L(m, n; k, l + c) and G2 = R(m−
a, c), as depicted in Figure 21a, where a > 2, c = 1, and G2 is a path graph. Depending the
locations of s and t, we consider the following cases:
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(a)

G1

G2

(b) (c) (d)

G1

G2

s t

G1

G2

s

t

G1

G2

s

t

Figure 21. (a) The separations on C(m, n; k, l; c, d) for a > 2 and c = 1, (b) the case of s, t ∈ G2, (c) the
case of s ∈ G1 and t ∈ G2, and (d) the case of s, t ∈ G1.

Case I: s, t ∈ G2. In this case, k > 1, sy = ty = 1, and a + 1 6 sx, tx 6 m. Then,
(C(m, n; k, l; c, d), s, t) may satisfy conditions (F1) or (F3), as depicted in Figure 21b.

Case II: s ∈ G1 and t ∈ G2. In this case, (C(m, n; k, l; c, d), s, t) may satisfy conditions
(F1) or (F3), as depicted in Figure 21c.

Case III: s, t ∈ G1. In this case, (C(m, n; k, l; c, d), s, t) may satisfy conditions (F1), (F3),
(F7), or (F8), as depicted in Figure 21d. If d = 1, sy = ty = n, and a + 1 6 sx, tx 6 m, then it
is the same as Case I. Depending on whether (G1, s, t) satisfies condition (F1), there are the
following three subcases:

Case III.1: s or t is a cut vertex of G1. In this subcase, d = 1, and it is the same as
Cases I or II.

Case III.2: {s, t} is a vertex cut of G1. Consider the following subcases:
Case III.2.1: {s, t} = {(a, 1), (a, 2)}. In this subcase, k = 1 or k > 1, as shown

in Figure 22a,b. If k > 1, then (C(m, n; k, l; c, d), s, t) satisfies conditions (F1) and (F3);
otherwise it satisfies condition (F1).

Case III.2.2: a = 2, sy = ty, and c + 1 6 sx, tx 6 c + l. In this subcase, it is similar
to condition (UB3) in Lemma 12 (see Figure 22c).

Case III.2.3: d = 2, k > 1, a < sx = tx < m, and n− 1 6 sy, ty 6 n. In this subcase,
it is similar to condition (UB4) in Lemma 12 (see Figure 22d).

Case III.3: (G1, s, t) does not satisfy condition (F1). In this subcase, s and t are not
cut vertices and {s, t} is not a vertex cut of G1. Then, (C(m, n; k, l; c, d), s, t) may satisfy
conditions (F3), (F7), or (F8). Depending on the size of k, we consider the following subcases:

(a) (b) (c)

s t

(d)

s

t

s

t

s

t

G1 G1

G2

G1

G2

G1

Figure 22. The cases for s, t ∈ G1 and {s, t} is a vertex cut of G1, where (a,b) {s, t} = {(a, 1), (a, 2)},
(c) a = 2 and sy = ty, and (d) d = 2, k > 1, and a < sx = tx < m.

Case III.3.1: k = 1. In this subcase, (C(m, n; k, l; c, d), s, t) may satisfy conditions
(F7) and (F8), as follows:

Case III.3.1.1: (C(m, n; k, l; c, d), s, t) satisfies condition (F7). In this subcase,
a = 2 and [(c = 1 and {s, t} = {(1, 1), (2, 2)} or {(1, 2), (2, 1)}) or (d = 1 and {s, t} =
{(1, n), (2, n− 1)} or {(1, n− 1), (2, n)})] (see Figure 23a).

Case III.3.1.2: (C(m, n; k, l; c, d), s, t) satisfies condition (F8). In this subcase, n = 3
and k = c = d = 1 (see Figure 23c–e).

Case III.3.2: k > 1. In this subcase, (C(m, n; k, l; c, d), s, t) satisfies condition (F3)
but it does not satisfy condition (F1). There are the following subcases:

Case III.3.2.1: a = 2 and [(c = 1 and {s, t} = {(1, 1), (2, 2)} or {(1, 2), (2, 1)}) or
(d = 1 and {s, t} = {(1, n), (2, n− 1)} or {(1, n− 1), (2, n)})]. In this subcase, it is the same
as Case III.3.1.1 (see Figure 23b).

Case III.3.2.2: (c = 1 and {s, t} 6= {(1, 1), (2, 2)} and {(1, 2), (2, 1)}) or (d = 1
and {s, t} 6= {(1, n), (2, n− 1)} and {(1, n− 1), (2, n)}) (see Figure 23e,f).



Algorithms 2022, 15, 61 18 of 23

(a) (b) (c)

G1

G2
s

t

(d)

G1

G2
s

t

t

s

a> 1

c=1

n=3 t
s

a> 2

t

s

a= 2

(e)

G1

G2

s

t
(f)

G1

G2
s

t
(g)

Figure 23. The cases for s, t ∈ G1 and {s, t} is not a vertex cut of G1, where (a,b) a = 2, sy, ty 6 2,
sy 6= ty, and sx 6= tx, (c–e) (C(m, n; k, l; c, d), s, t) satisfies condition (F8), and (f,g) (G1, s, t) satisfies
condition (F3) but it does not satisfy condition (F1).

Based on the above cases, we compute the upper bounds of the longest (s, t)-paths on
(C(m, n; k, l; c, d), s, t) under that a > 2 and c = 1 as the following lemma.

Lemma 13. Assume that a > 2 and c = 1. Let w = (a+ 1, 1). Then, the following conditions hold:

(UB5) If k > 1, a + 1 6 sx, tx 6 m, and (sy = ty = 1 or sy = ty = n), then the length of any
(s, t)-path cannot exceed tx − sx + 1 (see Figure 24a,b, and refer to Case I and Case III.1).

(UB6) If tx > 1, ty = 1, and [(sx 6 a) or (sx > a and sy > c + l)], then the length of any (s, t)-
path cannot exceed L̂(G1, s, z) + L̂(G2, w, t), where G1 = L(m, n; k, l + c), G2 = R(k, c),
and z = (a, 1) if s 6= (a, 1); otherwise z = (a, 2) (see Figure 24c,d, and refer to Cases II
and III.1).

(UB7) If {s, t} = {(a, 1), (a, 2)} (resp., d = 1 and {s, t} = {(a, n − 1), (a, n)}), then the
length of any (s, t)-path cannot exceed L̂(G1, s, t), where G1 = L(m, n; k, l + c) (resp.,
G1 = L(n, m; l + d, k)) (see Figure 25a,b, and refer to Case III.2.1).

(UB8) If a = 2, sy = ty, and c + 1 6 sy, ty 6 c + l, then the length of any (s, t)-path cannot
exceed max{L̂(G11, s, t), L̂(G12, s, t)}, where G11 = L(m, n′; k, l′), G12 = L(sy, m; k′, k),
n′ = n− sy + 1, l′ = n′ − d, and k′ = sy − 1 (see Figure 25c,d, and refer to Case III.2.2).

(UB9) If d = 2, k > 1, a < sx = tx < m, and n − 1 6 sy, ty 6 n, then the length of any
(s, t)-path cannot exceed max{L̂(G11, s, t), L̂(G12, s, t)}, where G11 = C(m′, n; k′, l; c, d),
G12 = R(m− m′ + 1, d), m′ = sx, and k′ = m′ − a (see Figure 25e,f, and refer to Case
III.2.3).

(UB10) If a = 2 and ({s, t} = {(1, 1), (2, 2)} or {(1, 2), (2, 1)}) (resp., d = 1 and {s, t} =
{(1, n), (2, n − 1)} or {(1, n − 1), (2, n)}), then the length of (s, t)-path cannot exceed
L̂(G1, s, t), where G1 = L(m, n; k, l + c) (resp., G1 = L(n, m; l + d, k)) (see Figure 26a–c,
and refer to Case III.3.1.1 and Case III.3.2.1).

(UB11) If (C(m, n; k, l; c, d), s, t) satisfies condition (F8), then the length of (s, t)-path cannot
exceed L̂(G1, s, t), where G1 = L(m, n; k, l + c) (see Figure 26d–f, and refer to Case III.3.1.2).

(UB12) If (C(m, n; k, l; c, d), s, t) does not satisfy condition (F1), k > 1, and [(a > 2) or (a =
2, {s, t} 6= {(1, 1), (2, 2)} and {(1, 2), (2, 1)})] (resp., d = 1 and {s, t} 6= {(1, n), (2, n−
1)} and {(1, n− 1), (2, n)}), then the length of any (s, t)-path cannot exceed L̂(G1, s, t) + 1,
where G1 = L(m, n; k, l + c) (resp., G1 = L(n, m; l + d, k)) (see Figure 26g,h, and refer to
Case III.3.2.2).
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Figure 24. The longest (s, t)-path under that a > 2 and c = 1, where (a,b) (UB5) holds and (c,d) (UB6)
holds, where the bold lines indicate the constructed longest (s, t)-path.



Algorithms 2022, 15, 61 19 of 23

(a) (b) (c)

G11

s t

(d)

s

t

s

t

G12s t

s

t

(e)

G11

(f)

G1 G1 s

t

G12

Figure 25. The longest (s, t)-path under that a > 2 and c = 1, where (a,b) (UB7) holds, (c,d) (UB8)
holds, and (e,f) (UB9) holds.
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Figure 26. The longest (s, t)-path under that a > 2 and c = 1, where (a–c) (UB10) holds, (d–f) (UB11)
holds, and (g,h) (UB12) holds.

Proof. For (UB5), consider Figure 24a,b. There is only one single path between s and t that
has the specified. For (UB6), consider Figure 24c,d. Since c = 1 and w is a cut vertex, it is
clear that the length of any (s, t)-path cannot exceed L̂(G1, s, z) + L̂(G2, w, t).

For (UB7), consider Figure 25a,b. In Figure 25a,b, {s, t} is a vertex cut and hence
removing s and t clearly disconnects C(m, n; k, l; c, d) into two components. Thus, a simple
path between s and t can only go through one of these components. Therefore, its length
cannot exceed the size of the largest component. Since c = 1, the larger component will
be G1 = L(m, n; k, l + c). For (UB8) and (UB9), consider Figure 25c–f. The computations of
their upper bounds are the same as (UB7), and (UB3) in Lemma 12.

For (UB10), consider Figure 26a–c. A simple check shows that the length of any (s, t)-
path cannot exceed L̂(Ga, s, p) + L̂(Gb, q, t) = L̂(L(m, n; k, l + c), s, t), where Ga, Gb, p, q are
defined in Figure 26a–c. For (UB11), consider Figure 26d–f. In Figure 26d–f, let r = (a, 1)
and z = (a, 2), where r, z may be one of s and t. Removing r and z clearly disconnects
C(m, n; k, l; c, d) into two components and a simple path between s and t can only go
through a component that contains s, t, r, and z. Since the one disjoint component contains
only one vertex, the upper bound of the longest (s, t)-path will be L̂(L(m, n; k, l + c), s, t).
For (UB12), consider Figure 26g,h. Since w is a cut vertex, we can easily show that the length
of any path between s and t cannot exceed L̂(G1, s, t) + 1, where G1 = L(m, n; k, l + c) or
L(n, m; l + d, k).

Assume that condition (C0) is defined as follows:

(C0) (C(m, n; k, l; c, d), s, t) does not satisfy any of conditions (F1), (F3), (F7), (F8), and (F9).

Clearly (C(m, n; k, l; c, d), s, t) must satisfy one of conditions (C0), (UB1), (UB2), (UB3),
(UB4), (UB5), (UB6), (UB7), (UB8), (UB9), (UB10), (UB11), and (UB12). If (C(m, n; k, l; c, d), s,
t) satisfies (C0), then Û(C(m, n; k, l; c, d), s, t) = |V(C(m, n; k, l; c, d))| = mn− kl. Other-
wise, Û(C(m, n; k, l; c, d), s, t) can be computed using Lemmas 11–13. We summarize them
as follows:
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Û(C(m, n; k, l; c, d), s, t) =



L̂(G1, s, t), if (UB1), (UB7), (UB10), or

(UB11) holds;

L̂(G1, s, z) + L̂(G2, w, t), if (UB2) or (UB6) holds;

max{L̂(G11, s, t), L̂(G12, s, t)}, if (UB3), (UB8), or

(UB9) holds;

L̂(G1, s, t) + k× c, if (UB4) holds;

tx − sx + 1, if (UB5) holds;

L̂(G1, s, t) + 1, if (UB12) holds;

mn− kl, if (C0) holds.

In the following, we will show how to obtain a longest (s, t)-path for C-shaped super-
grid graphs. Notice that if (C(m, n; k, l; c, d), s, t) satisfies condition (C0), then, by Theorem 5,
it contains a Hamiltonian (s, t)-path.

Lemma 14. If (C(m, n; k, l; c, d), s, t) satisfies one of the conditions (UB1)–(UB12), then L̂(C(m, n;
k, l; c, d), s, t) = Û(C(m, n; k, l; c, d), s, t).

Proof. We prove this lemma by constructing a (s, t)-path P such that its length equals to
Û(C(m, n; k, l; c, d), s, t). Consider the following cases:

Case 1: Condition (UB1), (UB7), (UB10), or (UB11) holds. Then, by Lemma 11 (resp.
Lemma 13), Û(C(m, n; k, l; c, d), s, t) = L̂(G1, s, t), where G1 = L(m, n − c; k, l) or G1 =
L(c + 1, m; 1, k) (resp. G1 = L(m, n; k, l + c) or G1 = L(n, m; l + d, k)) (see Figures 19a,b,
25a,b and 26a–f). Since G1 is a L-shaped supergrid graph, by the algorithm of [17], we can
construct a longest (s, t)-path in G1.

Case 2: Condition (UB2) or (UB6) holds. By Lemma 11 (resp. Lemma 13), Û(C(m, n; k, l;
c, d), s, t) = L̂(G1, s, z) + L̂(G2, w, t) (see Figures 19c,d and 24c,d), where G1 = L(m, n−
c; k, l), G2 = R(m, c) (resp. G1 = L(m, n; k, l + c) and G2 = R(k, c)), and z ∼ w. Then,
G1 and G2 are L-shaped and rectangular supergrid graphs, respectively. First, by the
algorithms [12,17], we can construct a longest (s, z)-path P2 (resp. P1) in G2 (resp. G1) and
a longest (w, t)-path P1 (resp. P2) in G1 (resp. G2), respectively. Then, P = P2 ⇒ P1 (resp.
P1 ⇒ P2) forms a longest (s, t)-path of C(m, n; k, l; c, d). Figures 19c,d and 24c,d show the
constructions of such a longest (s, t)-path.

Case 3: Conditions (UB3), (UB8), or (UB9) hold. Assume that (UB3) holds. By Lemma 12,
Û(C(m, n; k, l; c, d), s, t) = max{L̂(G11, s, t), L̂(G12, s, t)}, where G11 = L(m, n′; k, l′), G12 =
L(sy, m; k′, k), n′ = n− sy + 1, l′ = n′ − d, and k′ = sy − 1 (see Figure 20a,b). Since G11 and
G12 are L-shaped supergrid graphs, by the algorithm of [17] we can construct a longest path
between s and t in G11 and G12. Figure 20a,b depicts such a construction. For conditions (UB8)
and (UB9), consider Figure 25c–f. Then, G12 may be a rectangle. By the algorithm of [12] we
can construct a longest (s, t)-path in G12 if it is a rectangle. In addition, G11 is a C-shaped
supergrid graph in (UB9) (see Figure 25e). Then, (G11, s, t) satisfies condition (UB12). Its
longest (s, t)-path can be computed by the algorithm in [17]. Its construction is shown in Case
6 and Figure 25e shows such a construction of the longest (s, t)-path.

Case 4: Condition (UB4) holds. By Lemma 12, Û(C(m, n; k, l; c, d), s, t) = L̂(G1, s, t) +
|V(G2)| = L̂(G1, s, t) + k × c, where G1 = L(m, n; k, l + c) and G2 = R(k, c). Consider
Figure 20c,d. Then, G1 is a L-shaped supergrid graph and G2 is a rectangle. By the
algorithm of [17], we can construct a longest (s, t)-path P1 in G1 that contains edge e1
locating to face G2. By Lemma 1, G2 contains a canonical Hamiltonian cycle HC2 such that
its one flat face is placed to face G1. Thus, by Statement (2) of Proposition 1, P1 and HC2
can be combined into a longest (s, t)-path of C(m, n; k, l; c, d).

Case 5: Condition (UB5) holds. By Lemma 13, Û(C(m, n; k, l; c, d), s, t) = tx − sx + 1.
Obviously, the lemma holds for the single possible path between s and t (see Figure 24a,b).

Case 6: Condition (UB12) holds. By Lemma 13, Û(C(m, n; k, l; c, d), s, t) = L̂(G1, s, t) +
1, where G1 = L(m, n; k, l + c). We make a vertical and a horizontal separation on
C(m, n; k, l; c, d) to obtain two disjoint supergrid subgraphs R2 = L(n2, m2; 1, 1) and R1 =



Algorithms 2022, 15, 61 21 of 23

R(m, n− n2), where n2 = c + l and m2 = a + 1 (see Figure 27a). Note that (C(m, n; k, l; c, d),
s, t) does not satisfy condition (F1) in this case. Depending on the positions of s and t, these
are the following three subcases:
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Figure 27. A longest (s, t)-path in C(m, n; k, l; c, d) when (UB12) holds, where (a,b) s, t ∈ R1, and (c,d)
s, t ∈ R2.

Case 6.1: s, t ∈ R1. A longest (s, t)-path of (C(m, n; k, l; c, d) can be constructed by
similar arguments in proving Case 1 of Lemma 10 (see Figure 27a,b). Then, we can construct
a Hamiltonian (s, t)-path of R1 ∪ R2. Figure 27a,b depicts such constructions. The size of
constructed Hamiltonian (s, t)-path equals to L̂(L(m, n; k, l + c)) + 1 = |V(R1 ∪ R2)|, and
hence it is the longest (s, t)-path of (C(m, n; k, l; c, d).

Case 6.2: s, t ∈ R2. A longest (s, t)-path of (C(m, n; k, l; c, d) can be constructed
by similar arguments in proving Case 2 of Lemma 10 (see Figure 27c,d). Depending on
whether {s, t} is a vertex cut of R2, we consider Figure 27c,d. Then, we can construct
a Hamiltonian (s, t)-path of R1 ∪ R2, as shown in Figure 27a,b. The size of constructed
Hamiltonian (s, t)-path equals to L̂(L(m, n; k, l + c)) + 1 = |V(R1 ∪ R2)|, and hence it is the
longest (s, t)-path of (C(m, n; k, l; c, d).

Case 6.3: (s ∈ R1 and t ∈ R2) or (s ∈ R2 and t ∈ R1). Without loos of generality,
assume that s ∈ R1 and t ∈ R2. A longest (s, t)-path of (C(m, n; k, l; c, d) can be constructed
by similar arguments in proving Case 2.2 of Lemma 9 and Case 3 of Lemma 10.

Based on Lemmas 8–10 and Lemmas 11–14, we present Algorithm 1 to solve the
longest path problem on C-shaped supergrid graph. Let the input of Algorithm 1 be a
C-shaped supergrid C(m, n; k, l; c, d) and vertices s, t ∈ V(C(m, n; k, l; c, d)). In Algorithm 1,
it needs to determine whether (C(m, n; k, l; c, d), s, t) satisfies conditions (F1), (F3), (F7), (F8),
or (F9). Clearly, it can be done in constant time. By Lemmas 8–10, HP(C(m, n; k, l; c, d), s, t)
does exist if (C(m, n; k, l; c, d), s, t) does not satisfy any of conditions (F1), (F3), (F7), (F8),
and (F9). By the proofs of Lemmas 8–10, HP(C(m, n; k, l; c, d), s, t) can be constructed in
O(|V(C(m, n; k, l; c, d))|) = O(mn− kl) = O(mn) time. Consider that (C(m, n; k, l; c, d), s, t)
satisfies conditions (F1), (F3), (F7), (F8), or (F9). By Theorem 5, HP(C(m, n; k, l; c, d), s, t)
does not exist. By the proofs of Lemmas 11–14, the longest (s, t)-path can be constructed
in O(|V(C(m, n; k, l; c, d))|) = O(mn − kl) = O(mn) time. Thus, Algorithm 1 runs in
O(mn)-linear time. We finally conclude the following main result.

Algorithm 1: The longest (s, t)-path algorithm.

Input: A C-shaped supergrid graph C(m, n; k, l; c, d) with mn > 2, and two
distinct vertices s and t in C(m, n; k, l; c, d).

Output: The longest (s, t)-path.
1. if a(= m− k) = 1 and (C(m, n; k, l; c, d), s, t) does not satisfy the forbidden

conditions (F1), (F3), (F7), (F8), and (F9), then output HP(C(m, n; k, l; c, d), s, t)
constructed from Lemma 8;

2. if a(= m− k) > 1, c = d = 1, and (C(m, n; k, l; c, d), s, t) does not satisfy the
forbidden conditions (F1), (F3), (F7), and (F8), then output
HP(C(m, n; k, l; c, d), s, t) constructed from Lemma 9;

3. if a(= m− k) > 1, [c > 1 or d > 1], and (C(m, n; k, l; c, d), s, t) does not satisfy the
forbidden conditions (F1), (F3), (F7), and (F8), then output
HP(C(m, n; k, l; c, d), s, t) constructed from Lemma 10;

4. if (C(m, n; k, l; c, d), s, t) satisfies one of the forbidden conditions (F1), (F3), (F7),
(F8), and (F9), then output the longest (s, t)-path based on Lemma 14.
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Theorem 6. Given a C-shaped supergrid graph C(m, n; k, l; c, d) and its two distinct vertices s
and t, Algorithm 1 computes a longest (s, t)-path in O(mn)-linear time.

Let G be a graph and let η = |V(G)|. The all-pairs longest path problem is to find
the longest paths between all pairs of vertices in G. The most obvious solution to the
all-pairs longest path problem is to run a longest path algorithm η2 times since there are
(η

2) =
η(η−1)

2 pairs of vertices. Let G = C(m, n; k, l; c, d). Then, η = mn− kl = O(mn). By
calling Algorithm 1 η2 times, the all-pairs longest path problem for C(m, n; k, l; c, d) can be
solved. Thus, the following corollary holds true.

Corollary 1. Given a C-shaped supergrid graph C(m, n; k, l; c, d), the all-pairs longest path prob-
lem can be solved in O(m3n3) time by calling Algorithm 1 (mn− kl)2 times.

5. Conclusions

The Hamiltonian problems can be applied to many fields including computer science,
biology, molecular science, etc. However, they are NP-complete for general graphs and
supergrid graphs. The Hamiltonian path problem is a special case of the longest path
problem, and hence the longest path problem is generally difficult. The time complexities
of these problems for solid supergrid graphs are still unknown. In this paper, we study
these problems on C-shaped supergrid graphs, which form a subclass of solid supergrid
graphs. We first discover some Hamiltonian connected properties of rectangular supergrid
graphs. We then prove C-shaped supergrid graphs to be Hamiltonian connected except in
a few conditions. Finally, we presented a linear-time algorithm for finding a longest path
in C-shaped supergrid graphs between any two given vertices. This result can be applied
to find the longest path on C-like objects with a supergrid structure. It is well known
that Floyd’s algorithm computes all-pairs shortest paths of a digraph. It is interesting to
construct a modification of Floyd’s algorithm for solving the all-pairs longest path problem
on C-shaped supergrid graphs in linear time. We will post it as an open problem for
interested readers. In addition, Laplacian matrix is a matrix representation of a graph.
Together with Kirchhoff’s theorem, it can be used to calculate the number of spanning
trees for a given graph. It is interesting to see whether there exists a modification of the
above result such that it can compute the number of longest paths between two vertices
in C-shaped supergrid graphs efficiently. We would like to post it as an open problem to
interested readers.
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