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Abstract: In this article, multi-fidelity kriging and sparse polynomial chaos expansion (SPCE) surro-
gate models are constructed. In addition, a novel combination of the two surrogate approaches into a
multi-fidelity SPCE-Kriging model will be presented. Accurate surrogate models, once obtained, can
be employed for evaluating a large number of designs for uncertainty quantification, optimization,
or design space exploration. Analytical benchmark problems are used to show that accurate multi-
fidelity surrogate models can be obtained at lower computational cost than high-fidelity models. The
benchmarks include non-polynomial and polynomial functions of various input dimensions, lower
dimensional heterogeneous non-polynomial functions, as well as a coupled spring-mass-system.
Overall, multi-fidelity models are more accurate than high-fidelity ones for the same cost, especially
when only a few high-fidelity training points are employed. Full-order PCEs tend to be a factor of
two or so worse than SPCES in terms of overall accuracy. The combination of the two approaches
into the SPCE-Kriging model leads to a more accurate and flexible method overall.

Keywords: multi-fidelity surrogate models; sparse polynomial chaos expansions; kriging; analytical
benchmark problems

1. Introduction

The North Atlantic Treaty Organization (NATO) Science and Technology Organiza-
tion (STO) working group AVT-331 “Goal-driven, multi-fidelity approaches for military
vehicle system-level design” is currently investigating computing frameworks that could
significantly impact the design of next-generation military vehicles [1]. In order to save
computational time for uncertainty quantification, optimization, or design space explo-
ration, the use of surrogate models can be a very good strategy. In a surrogate model,
expensive function evaluations are replaced by an approximation, which is computationally
inexpensive and can thus be evaluated extensively. Especially polynomial chaos expansions
(PCEs) [2–4] and kriging [5–8] have been widely used in the community. Kriging accuracy
can be improved by a dynamic training point selection process rather than picking all
training points randomly at the beginning [9]. This is analogous to the concept of expected
improvement (EI) which tries to keep a balance between exploration (space filling) and
exploitation (resolve interesting areas in the design space).

PCE [10–13] and kriging [14–18] models support the usage of both high- and lower
fidelity training points. A standard multi-fidelity strategy is to combine fittings of the
high-fidelity (HF) data (e.g., better models, experimental data, finer meshes) with trends
from cheaper, low-fidelity (LF) data (e.g., less sophisticated models, coarser meshes). Thus,
the usually less intensively sampled HF data needs to correct the trends given by the
intensively sampled LF data, for instance, via the popular correction-based method [18].
The correction function is known as scaling function, calibration, or bridge function, and
can be additive [19,20], multiplicative [21], or hybrid multiplicative/additive [10,11,13].

Algorithms 2022, 15, 101. https://doi.org/10.3390/a15030101 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15030101
https://doi.org/10.3390/a15030101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15030101
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15030101?type=check_update&version=2


Algorithms 2022, 15, 101 2 of 19

Additionally, the compressive sensing (CS) theory [22–29] has shown great potential
to reduce the curse of dimensionality for PCEs depending on the decay rate of the PCE
coefficients and thus the underlying sparsity of the solution. CS offers a framework to
use fewer training points than basis functions and to still recover a good approximation
to the sparse solution [27–30]. CS also increases the robustness to noise thanks to the
introduced sparsity constraint [28,29]. In summary, CS aims at selecting a small number of
basis polynomials with great impact on the model response [31] and the resulting surrogate
model is called sparse PCE (SPCE).

Thus far, these two distinct surrogate modeling approaches (SPCE and kriging) have
been applied in various fields more or less standalone. There have been a few attempts to
combine kriging and SPCE in a systematic way for single-fidelity applications [32,33], but
none for multi-fidelity. SPCE is well known for capturing the overall trends of the solution,
whereas kriging handles the values around training points well [32,33]. In this work,
a proposed MF SPCE-Kriging method aims at combining the advantages of both meta-
modeling methods, thus expecting fewer training points to be required for constructing an
accurate model in lieu of computationally expensive HF simulations.

The general goal of this work is to construct very accurate surrogate models at small
overall computational cost assuming that the dominant cost factor is obtaining high-fidelity
training point information. The strategy to accomplish this is to enhance surrogate modeling
techniques by employing lower fidelity information, adaptively selecting training points, as
well as compressed sensing and to use a combined SPCE-Kriging meta-modeling method.

2. Methodology

The multi-fidelity kriging and sparse PCE methods in Sections 2.2 and 2.3 have been
presented in previous works [30,34,35], but are briefly presented here for completeness.
Section 2.4 presents the novel combination of the two methods, but first a brief overview of
universal kriging is given in Section 2.1.

2.1. Single-Fidelity Universal Kriging

Kriging [5] is a Gaussian random process realization to estimate a function value in a
sample location, f̂ (x):

f̂ (x) = βTh(x) + Z(x) (1)

where βTh(x) is the mean value or trend of the Gaussian process and Z(x) represents
a stationary Gaussian process with zero mean, variance σ2 and the covariance of two
locations, xi and xj, is given by Cov

(
Z(xi), Z(xj)

)
= σ2R(xi, xj, θ) where R is an auto-

correlation function, which is only dependent on the distance between the two locations due
to stationarity and a hyper-parameter, θ. In this work Wendland C4 [36] auto-correlation
functions are employed. The most general kriging formulation is called universal kriging,
in which the mean is given by a sum of P + 1 pre-selected trend functions, hk(x), that is

βTh(x) =
P

∑
k=0

βkhk(x) (2)

where βk are the trend coefficients. In ordinary kriging the mean has a constant but
unknown value, so P = 0, h0(x) = 1, and β0 is unknown.

Given a value for θ the calibration of the universal kriging model parameters can be
computed analytically using an empirical best linear unbiased estimator (BLUE):

β(θ) =
(

HT R−1H
)−1

HR−1Y (3)

σ2(θ) =
1
N
(Y− Hβ)T R−1(Y− Hβ) (4)

where Y = { f (xi), i = 1, . . . , N} are the N training point observations and Hij = hj(xi) is
the information matrix.
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The optimal θ̂ is determined here by maximization of a log-likelihood function via a
genetic algorithm (for more details see Yamazaki et al. [16]):

θ̂ = arg max
θ

[
−N ln(σ2)− ln(det(R))

]
(5)

and the resulting β(θ̂) can then be used to predict the kriging response via

f̂ (x) = βTh(x) + r(x)T R−1(Y− Hβ) (6)

where ri(x) = R(x, xi, θ̂) is the correlation between a new sample location, x, and an
existing training point, xi.

2.2. Multi-Fidelity Kriging

In order to create a multi-fidelity surrogate model one has to map the trend of the more
intensively sampled low-fidelity (LF) data to the less intensively sampled high-fidelity (HF)
data. Here, a hybrid bridge function approach adopted from Han et al. [18] is used that
has been presented in previous work [37]. The relationship between low- and high-fidelity
surrogate model values (indicated by a hat) in any location x is given by

f̂HF(x) = φ̂(x) f̂LF(x) + γ̂(x) (7)

where φ̂(x) = gT(x)ρ̂ is a low-order polynomial with q+ 1 basis functions gT(x) = [1, g1(x),
. . . , gq(x)] and corresponding coefficients ρ̂ = [ρ̂0, ρ̂1, . . . , ρ̂q]T and γ̂(x) is an additive
bridge function. A multi-fidelity kriging surrogate model is constructed via the following
three steps (visualized in Figure 1):

Figure 1. MF kriging algorithm flowchart.
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1. Using NLF1 lowest fidelity training points construct a kriging model, f̂LF1 .
2. Construct another kriging model for the additive bridge function, γ̂2, where γ2(xi) =

fLF2(xi) − φ̂2(xi) f̂LF1(xi) in NLF2 training points. Compute an optimal ρ̂2 (and θ̂2)
during the maximum likelihood estimation updates for γ̂2, which means training
point values γ2(xi) will change constantly, but once converged one can evaluate
f̂LF2(x) = φ̂2(x) f̂LF1(x) + γ̂2(x).

3. Repeat step 2 until reaching the highest fidelity level (this is analogous to a multi-
grid strategy).

Numerical experimentation showed what intuition suggests namely that the HF
training locations should be a subset of the LF locations to make sure that no error is added
from f̂LF(x) when computing γ(x) = fHF(x)− φ̂(x) f̂LF(x) in all NHF training points. The
other (NLF − NHF) LF training locations are selected via latin hypercube sampling subject
to a distance constraint to the existing HF points. Furthermore, whenever the dynamic
training point algorithm [9] adds a HF point to the set, the corresponding LF point is
also added.

2.3. Multi-Fidelity Sparse Polynomial Chaos Expansions

An all-at-once approach developed by Bryson and Rumpfkeil [13] is used to simulta-
neously determine additive, δ(x), and multiplicative, α(x), corrections to the low-fidelity
data to best approximate the high-fidelity function in a least-squares sense:

f̂HF(x) = f̂LF(x) + α(x) f̂LF(x) + δ(x). (8)

A non-intrusive point collocation regression procedure is employed and the PCE
coefficients are determined by a singular value decomposition. Gauss–Patterson knots are
used to determine the training points and higher grid levels contain the lower levels as a
subset. In particular, Smolyak sparse grids with a slow-exponential growth rule are used
via Burkardt’s sparse grid mixed growth anisotropic rules library [38].

For the compressive sensing one can recover the signal b̂ from an incomplete measure-
ment vector Y by solving an optimization problem of the form

min
b̂

0.5||Ab̂− Y||22 + λ||b̂||1 (9)

where λ is a penalty coefficient and A is the regression matrix. The LASSO (least absolute
shrinkage and selection operator) algorithm is employed to solve Equation (9) implemented
via the software library mlpack [39]. Note that selecting a good value for λ is crucial: If
λ is too small, it may result in over-fitting or a less sparse solution, while for large values
of λ, the reconstructed signal may not be accurate enough. Following Salehi et al. [31] to
determine an optimal λ̂, either the leave-one-out cross-validation error [40] or a true root-
mean-square error (RMSE) has been used in previous work [30] and the latter is employed
here. In order to find λ̂, the optimization problem is solved for various values of λ and
the corresponding RMSE is computed. Then, λ̂ is defined as the value of λ yielding the
smallest RMSE.

2.4. Multi-Fidelity SPCE-Kriging

The descriptions given in Sections 2.1 and 2.3 show that kriging is interpolatory in
nature and PCE is a regression. Thus, kriging usually recreates the local variations well,
whereas PCE captures the global trends better [32,33]. Therefore, it is natural to try to
combine the advantages of both kriging and SPCE for a more efficient meta-modeling tech-
nique. The resulting SPCE-Kriging model is a kriging surrogate, whose trend functions are
determined by an SPCE model using the same underlying training data. The construction
of a single-fidelity SPCE-Kriging consists of the following three main steps:

1. Choose PCE orthogonal bases associated with the probability distributions of the
(random) inputs;
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2. Solve for the PCE coefficients using the LASSO algorithm as described in Section 2.3
to determine which bases are most important;

3. Use only those important bases as trend functions hk in the universal kriging mean
value given by Equation (2) as well as in the maximum likelihood estimation using
Equation (5).

For the construction of a multi-fidelity SPCE-Kriging, which to the authors’ knowledge is a
novel contribution, the algorithm presented in Section 2.2 is employed. However, there
is an important caveat: SPCE-Kriging is only used in the first step (the training of the
lowest fidelity surrogate model, f̂LF1 ) and for the additive bridge function, γ̂2, an ordinary
kriging model is constructed. The reason for this is that in step two, the genetic algorithm
requires a lot of log-likelihood evaluations to compute the optimal ρ̂2 (and θ̂2), which is
required to compute φ̂2(x) = gT(x)ρ̂2 and thus the NLF2 training points for the additive
bridge function, γ2(xi) = fLF2(xi)− φ̂2(xi) f̂LF1(xi). Hence, using SPCE-Kriging for the
construction of the additive bridge function, γ̂2, would require a lot of SPCE evaluations,
which are much more expensive than simple ordinary kriging constant trend computations.

3. Numerical Experiments Setup

The AVT-331 group aims to investigate goal-driven, multi-fidelity approaches for the
system-level design of military vehicles, which usually requires the solution of optimization
problems and the exploration/visualization of the global design space.

3.1. Assessment Metric

In order to assess the global accuracy of a surrogate model the root mean square
error (RMSE) between the exact, f , and surrogate function predictions, f̂ , calculated on a
D-dimensional Cartesian mesh with Nt total nodes will be used

RMSE =

√√√√ 1
Nt

Nt

∑
i=1

(
fi − f̂i

)2
. (10)

If the surrogate model is not deterministic (e.g., kriging) it will be executed five times,
and the average RMSE and its standard deviation will be reported. For a deterministic
surrogate (e.g., PCE) a single run is sufficient. The Cartesian mesh is equispaced with Nx
nodes in one coordinate direction as given in Table 1.

Table 1. Number of equispaced points, Nx, used per input direction as a function of input dimen-
sion, D.

D 1 2 3 4 5 10
Nx 1001 101 31 21 11 3

Note that for D = 10 not the entire normalized interval [0, 1] is covered but rather only
[0.05, 0.95] since otherwise a majority of the points are likely located in the extrapolation
regimes of the surrogate models, which tend to be less accurate.

3.2. Benchmark Problems

Table 2 summarizes the recommended analytical benchmarks by the AVT-331 group to
assess and compare the performance of multifidelity methods. The following subsections
provide more details for each of the functions.
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Table 2. Summary of employed benchmark problems.

Function Dimension, D Comp. Budget
Cost per Fidelity Level

1 2 3 4

Forrester 1 100 1 0.5 0.1 0.05

Rosenbrock 2 200 1 0.5 0.1 -
5 500 1 0.5 0.1 -

10 1000 1 0.5 0.1 -

Rastrigin 2 200 1 0.0625 0.00390625 -
5 500 1 0.0625 0.00390625 -

10 1000 1 0.0625 0.00390625 -

ALOS 1 100 1 0.2 - -
2 200 1 0.2 - -
3 300 1 0.2 - -

Spring-Mass 2 (springs) 200 1 1/60 - -
4 (springs + masses) 400 1 1/60 - -

3.2.1. Forrester Function

The Forrester function [41] is a well-known one-dimensional benchmark for multi-
fidelity methods, described by the following equations in the domain 0 ≤ x ≤ 1 (from
1 highest fidelity to 4 lowest fidelity level) and shown in Figure 2.

f1(x) = (6x− 2)2 sin(12x− 4) (11)

f2(x) = (5.5x− 2.5)2 sin(12x− 4) (12)

f3(x) = 0.75 f1(x) + 5(x− 0.5)− 2 (13)

f4(x) = 0.5 f1(x) + 10(x− 0.5)− 5 (14)

0.0 0.2 0.4 0.6 0.8 1.0

x [−]

−10

−5

0

5

10

15

f
(x

)
[−

]

f1 [−]

f2 [−]

f3 [−]

f4 [−]

Figure 2. All four fidelity levels of Forrester function.

3.2.2. Rosenbrock Function

The Rosenbrock function is a well-known D-dimensional optimization benchmark
problem in [−2, 2]D described by the following equation:

f1(x) =
D−1

∑
i=1

100
(

xi+1 − x2
i

)2
+ (1− xi)

2 (15)
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The global minimum is inside a long, narrow, parabolic shaped flat valley. It is
relatively straightforward to capture the overall quartic shape, but it is difficult to capture
the local flat valleys.

The extension to multi-fidelity is described by the following equations, where f2 can
be considered as a medium-fidelity level and f3 as the lowest fidelity.

f2(x) =
D−1

∑
i=1

50
(

xi+1 − x2
i

)2
+ (−2− xi)

2 −
D

∑
i=1

0.5xi (16)

f3(x) =
f1(x)− 4−∑D

i=1 0.5xi

10 + ∑D
i=1 0.25xi

(17)

The three-fidelity levels are shown for two dimensions in Figure 3.
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f
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]
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x1
[−]

−2
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0
1

2

x
2 [−]

−2
−1

0
1

2

f
2 (x

)
[−

]

0
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x
2 [−]

−2
−1

0
1

2

f
3 (x
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[−

]

0

1000
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3000
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Figure 3. Rosenbrock function (from left to right, high-, medium-, and low-fidelity).

3.2.3. Shifted-Rotated Rastrigin Function

To address real-world optimization problems, where the design space of the objective
function is usually multi-modal, the Rastrigin function is selected as benchmark. The
variable range is defined as x ∈ [−0.1, 0.2]D, and the function is shifted to change the
position of the minimum and rotated to change the properties of the function itself within
the variable space:

f1(z) =
D

∑
i=1

(
z2

i + 1− cos(10πzi)
)

(18)

with

z = R(θ)(x− x?) with R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
(19)

where R is the rotation matrix in two dimensions which can be extended to D dimensions
by using the Aguilera–Perez algorithm [42] and the rotation angle is set to θ = 0.2.

The fidelity levels can be defined following the work of Wang and Jin [43] as

fi(z, φi) = f1(z) + er(z, φi) for i = 1, 2, 3 (20)

with φ1 = 10,000 (high-fidelity), φ2 = 5000 (medium-fidelity), and φ3 = 2500 (low-fidelity).
The resolution error is given by

er(z, φ) =
D

∑
i=1

a(φ) cos2(w(φ)zi + b(φ) + π) (21)

with a(φ) = Θ(φ), w(φ) = 10πΘ(φ), b(φ) = 0.5πΘ(φ), and Θ(φ) = 1− 0.0001φ. These
fidelity levels are displayed in Figure 4.
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Figure 4. Shifted-rotated Rastrigin function (from left to right, high-, medium-, and low-fidelity).

3.2.4. ALOS Function

This function employs heterogeneous non-polynomial analytic functions defined on
unit cubes in one, two, and three dimensions. The one- and two-dimensional high-fidelity
functions are taken from Clark and Bae [44] and are given by

f (x) = sin[30(x− 0.9)4] cos[2(x− 0.9)] + (x− 0.9)/2 (22)

and
g(x, y) = sin[21(x− 0.9)4] cos[2(x− 0.9)] + (x− 0.7)/2 + 2y2 sin[xy] (23)

An extension to three dimensions is given by

h(x, y, z) = sin[21(x− 0.9)4] cos[2(x− 0.9)]+ (x− 0.7)/2+ 2y2 sin[xy] + 3z3 sin[xyz] (24)

Low-fidelity versions are obtained by using linear additive and multiplicative bridge
functions:

fLF(x) = ( f − 1.0 + x)/(1.0 + 0.25x) (25)

gLF(x, y) = (g− 2.0 + x + y)/(5.0 + 0.25x + 0.5y) (26)

hLF(x, y, z) = (h− 2.0 + x + y + z)/(5.0 + 0.25x + 0.5y− 0.75z) (27)

The advantages of this problem are that it is heterogeneous and non-polynomial. The
disadvantages are that it cannot be scaled to arbitrary dimensions and that the LF model is
a simple non-linear polynomial scaling.

The one- and two-dimensional functions are displayed together with their low-fidelity
approximations in Figure 5.

-1.5

-1

-0.5

 0

 0.5

 0  0.2  0.4  0.6  0.8  1

f(
x)

x

HF
HF training points

LF

Figure 5. Plot of one- (left) and two-dimensional (right) HF and LF ALOS functions with initial HF
training points.

3.2.5. Coupled Spring-Mass-System

Three masses sliding along a frictionless surface are attached to each other by four
springs, as shown in Figure 6.
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Figure 6. Springs connecting three masses.

The following constants, variables and assumptions are going to be used in the analysis:

Spring Constants
The springs obey Hooke’s law with constants ki, i = 1, . . . , 4 and the mass
of each spring is negligible.

Fixed Ends
The first and last spring are attached to fixed walls and have the same spring
constant.

Mass Constants m1, m2, m3 are point masses.

Position Variables
The variables x1(t), x2(t), x3(t) represent the mass positions measured from
their equilibrium positions (negative is left and positive is right).

The equations of motion for this setup are given by

m1 ẍ1(t) = −k1x1(t) + k2[x2(t)− x1(t)]

m2 ẍ2(t) = −k2[x2(t)− x1(t)] + k3[x3(t)− x2(t)] (28)

m3 ẍ3(t) = −k3[x3(t)− x2(t)]− k4x3(t)

which can be rewritten as
Mẍ(t) = Kx(t) (29)

where the mass matrix M, stiffness matrix K and the displacement x are defined as

M =

 m1 0 0
0 m2 0
0 0 m3

 K =

 −k1 − k2 k2 0
k2 −k2 − k3 k3
0 k3 −k3 − k4

 x =

 x1
x2
x3


This is a constant-coefficient homogeneous system of second-order ODEs, the solution

of which is given by

x(t) =
3

∑
i=1

[ai cos(ωit) + bi sin(ωit)]vi (30)

where ωi =
√−λi and λi are the eigenvalues of the matrix M−1K and vi are the corre-

sponding eigenvectors. The constants ai and bi are determined by the initial conditions
x(t = 0) = x0 and ẋ(t = 0) = ẋ0.

Proposed Benchmark Problem

As a small numerical example, let m1 = m2 = 1, k1 = k2 = k3 = 1 as well as
x0 = (1 0)T and ẋ0 = (0 0)T , then

M−1K =

( −2 1
1 −2

)
with real eigenvalues λ1 = −1 and λ2 = −3 and corresponding eigenvectors

v1 =

(
1
1

)
v2 =

(
1
−1

)
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Since the initial velocity is zero, we have b1 = b2 = 0 and using x(t = 0) = x0 in
Equation (30) yields a1 = a2 = 0.5 such that

x1(t) = 0.5 cos(t) + 0.5 cos(
√

3t) and x2(t) = 0.5 cos(t)− 0.5 cos(
√

3t) (31)

These solutions are plotted in Figure 7 for 0 ≤ t ≤ 30.

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30

x

t

x1
x2

Figure 7. Analytical solution for the spring-mass problem for 0 ≤ t ≤ 30.

Converting Equation (29) into a system of first-order ODEs and using the fourth-order
accurate Runge–Kutta time-marching method yields a multi-fidelity analysis problem by
varying the time-step size ∆t as shown in Figure 8. Note that the high-fidelity (HF) analysis
with ∆t = 0.01 is not distinguishable from the analytical solution given by Equation (31)
and shown in Figure 7, while the low-fidelity (LF) analysis with ∆t = 0.6 is exhibiting the
correct trends but is somewhat inaccurate.

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6

x
1

t

HF
LF

Figure 8. Numerical solution for x1(t) of the example problem for 0 ≤ t ≤ 6 using ∆t = 0.01 labeled
as high-fidelity (HF) and ∆t = 0.6 labeled as low-fidelity (LF).

Treating two spring constants as independent input variables with 1 ≤ k1 = k3, k2 ≤ 4
while m1 = m2 = 1 and computing x1(t = 6) yields the two-dimensional design space
shown in Figure 9. One can infer that the lower fidelity trends match the high-fidelity ones.

In this work, a two-dimensional (by varying the two spring constants) and four-
dimensional (varying two springs and two masses) version of this benchmark problem will
be employed. However, other benchmark problems based on this problem for uncertainty
quantification and optimization can be easily conceived [35].
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Figure 9. x1(t = 6) when 1 ≤ k1, k2 ≤ 4 with HF and LF results shown in red and blue, respectively.

4. Results

In the following, the results for each benchmark problem will be shown and discussed.
Note that lines are plotted between markers as a visual aide, but do not necessarily reflect
performance at intermediate points. For the PCE models, an oversampling ratio of two is
always imposed, and the (full-order) PCE results are shown with dashed lines. In general,
sparse PCEs (solid lines) outperform full-order PCEs up to a point when the λ term in
Equation (9) introduces errors into the fit and the RMSE cannot drop further. SPCE runs for
higher than four dimensions (and two for MF) were not possible due to memory issues
because of the resulting large matrices. Ordinary kriging results are shown in dashed lines
and SPCE-Kriging results (abbreviated as SK in the figures) are displayed in solid lines.

Results for high-fidelity (HF) training data alone are always shown in black whereas
multi-fidelity results using fidelity levels 2, 3 or 4 are shown in red, green, and blue,
respectively. For the stochastic kriging model, five runs were performed, and the figures
show the average RMSE and its standard deviation. The total computational cost is
calculated by the sum over all fidelity levels of the product of the number of function
evaluations at that level and the given cost at that fidelity level (as given in Table 2). Please
note that the vertical error axes differ in each figure since they were chosen to best display
each particular result.

4.1. Forrester

The Forrester function results are shown in Figure 10 for both MF SPCE and MF
kriging. The acronyms in this and following figures should be interpreted as follows: HF
is using high-fidelity data alone with either PCE or ordinary kriging surrogate models
whereas HFS and HFSK are employing SPCE and SPCE-Kriging surrogates, respectively.
MF2 implies a multi-fidelity surrogate (either PCE or kriging) using data from the highest
fidelity level and in this case fidelity level 2. Again, MF2S and MF2SK are instead employing
SPCE and SPCE-Kriging surrogates, respectively. Since for MF kriging the number of low-
fidelity points can be arbitrary, the starting amount is given. In this case, as 30 LF (that is
all the starting HF locations plus latin hypercube sampled locations subject to a distance
constraint). The number of LF training points for the MF PCEs is thirty levels higher for
the Forrester function (i.e., 63 LF points are used when using 15 HF points). For the MF
SPCE models, various orders for the polynomials were combined with several values of λ
to find the combination with the lowest root-mean-square error (RMSE). The resulting best
values for HF only and MF3 are shown in Table 3. Values for MF2 and MF4 are somewhat
similar and are thus omitted here. One can infer that SPCE performs better than PCE up
to a point and that MF models perform better than HF models, except for MF2, where the



Algorithms 2022, 15, 101 12 of 19

LF model is just too expensive. Kriging performs similarly to PCE when using only a few
training points but then falls behind. SPCE-Kriging performs similarly to ordinary kriging.

Table 3. Best order and λ values for the Forrester function using MF SPCE.

# of HF Points # of LF3 Points λ Order, P Additive, R Multiplicative, Q

3 0 10−5 6 – –
7 0 10−1 9 – –

15 0 10−8 20 – –
31 0 10−8 22 – –
63 0 10−8 22 – –

127 0 10−8 23 – –

3 63 10−8 11 1 4
7 63 10−8 12 1 3

15 63 10−8 21 11 12
31 63 10−8 22 12 13
31 127 10−8 22 12 13
63 127 10−8 22 14 14
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Figure 10. Forrester function RMSE (from left to right, PCE and kriging).

4.2. Rosenbrock

The Rosenbrock function results are shown in Figure 11 for MF SPCE and in Figure 12
for MF Kriging. The PCE model should match the truth function exactly as soon as sufficient
training data is available to build a fourth-order polynomial (including an oversampling
ratio of two). For example, the full-order PCE surrogate model requires 30 HF training
points in two dimensions and 2002 points in ten dimensions. Some of these points may
be LF for the MF models. The number of LF training points in two dimensions is four
grid levels higher (i.e., 97 LF points are used when using 17 HF points) and in five and
ten dimensions it is one level higher (e.g., 51 HF are combined with 151 LF points in
five dimensions and 201 HF are combined with 1201 LF points for ten dimensions). For
ten dimensions, a two level difference was also tried, leading to, as expected, a better
performance for the cheaper low-fidelity model, but a worse performance for the more
expensive one. Overall, the results are behaving as one would expect, verifying that the
PCE surrogate models are correctly implemented.

Kriging clearly does not perform as well as PCE for this polynomial test case, but
one can infer that MF Kriging at least for the cheaper low-fidelity model outperforms
kriging based on HF data alone. One can also see again that an expensive LF model (MF2)
is not worth considering. HF SPCE-Kriging performs better than both PCE and SPCE,
and MF SPCE-Kriging performs better than MF ordinary kriging, but not as well as HF
SPCE-Kriging, though MF3 is better when using only a few HF training points. This
demonstrates that the ordinary kriging performance, at least for polynomial functions, can
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be dramatically improved and also that only using ordinary kriging for the additive bridge
function needs to be improved.
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Figure 11. PCE: Rosenbrock function RMSE (from left to right, two, five and ten dimensions). PCE
and SPCE in dashed and solid lines, respectively.
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Figure 12. Kriging: Rosenbrock function RMSE (from left to right, two, five and ten dimensions).
Ordinary and SPCE-Kriging in dashed and solid lines, respectively.

4.3. Rastrigin

The Rastrigin function results are shown in Figure 13 for MF SPCE and in Figure 14
for MF Kriging. Again, many different orders for the polynomials were combined with
various values of λ to find the combination with the lowest root-mean-square error (RMSE)
for the SPCE models. The resulting best values for HF and MF2 for the two-dimensional
case are shown in Table 4.

Table 4. Best order and λ values for the two-dimensional Rastrigin function using MF SPCE.

# of HF Points # of LF2 Points λ Order, P Additive, R Multiplicative, Q

5 0 100 6 – –
9 0 100 6 – –

17 0 10−3 8 – –
33 0 10−4 9 – –
65 0 10−7 7 – –
97 0 10−8 10 – –

161 0 10−8 17 – –
257 0 10−8 18 – –

5 33 10−3 10 1 1
9 65 10−3 9 1 1

17 97 10−3 12 6 4
33 97 10−7 12 6 2
33 161 10−8 12 6 3
65 161 10−7 10 6 5
97 161 10−7 15 10 10

161 321 10−8 15 9 10
257 449 10−8 17 10 10

One can infer that SPCE performs better than PCE and that MF models perform better
than HF models in the beginning when only a few HF training points are used. Once
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again, for ten dimensions, a one and two grid level difference was used, leading to, counter-
intuitively, a better performance for the more expensive low-fidelity model, but a worse
one for the cheaper one. Kriging performs similarly to PCE in both five and ten dimensions,
but falls behind for more training points in one dimension. Both HF and MF SPCE-Kriging
again perform similarly to ordinary kriging.
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Figure 13. PCE: Rastrigin function RMSE (from left to right, two, five and ten dimensions). PCE and
SPCE in dashed and solid lines, respectively.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0  50  100  150  200

R
M

S
E

Total computational cost

HF
HFSK

MF2 50 LF
MF2SK 50 LF

MF3 50 LF
MF3SK 50 LF

 0.5

 1

 1.5

 2

 2.5

 3

 0  100  200  300  400  500

R
M

S
E

Total computational cost

HF
HFSK

MF2 250 LF
MF2SK 250 LF

MF3 250 LF
MF3SK 250 LF

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

 2.75

 0  200  400  600  800  1000  1200

R
M

S
E

Total computational cost

HF
MF2 350 LF
MF3 350 LF

Figure 14. Kriging: Rastrigin function RMSE (from left to right, two, five and ten dimensions).
Ordinary and SPCE-Kriging in dashed and solid lines, respectively.

4.4. ALOS

The ALOS function results are shown in Figure 15 for MF SPCE and in Figure 16 for
MF Kriging. Again, many different orders for the polynomials were combined with various
values of λ to find the combination with the lowest root-mean-square error (RMSE) for the
SPCE models. The resulting best values for HF and MF2 for the two-dimensional case are
shown in Table 5.

Table 5. Best order and λ values for the two-dimensional ALOS function using MF SPCE.

# of HF Points # of LF2 Points λ Order, P Additive, R Multiplicative, Q

5 0 10−1 6 – –
9 0 10−1 6 – –

17 0 10−6 6 – –
33 0 10−5 6 – –
65 0 10−8 11 – –
97 0 10−8 12 – –

161 0 10−8 12 – –
257 0 10−8 11 – –

5 33 10−8 6 1 1
9 65 10−8 11 1 1

17 97 10−8 12 1 1
33 97 10−8 12 1 1
33 161 10−8 12 1 1
65 161 10−8 12 1 1
97 161 10−8 12 3 1

161 321 10−8 12 3 1
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Figure 15. PCE: ALOS function RMSE (from left to right, one, two and three dimensions). PCE and
SPCE in dashed and solid lines, respectively.
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Figure 16. Kriging: ALOS function RMSE (from left to right, one, two and three dimensions).
Ordinary and SPCE-Kriging in dashed and solid lines, respectively.

As usual, SPCE performs better than PCE up to a point and MF models perform better
than HF models in the beginning when only a few HF training points are used. Overall,
the performance of the multi-fidelity kriging is somewhat better than MF SPCE in two
and three dimensions and somewhat comparable in one dimension. Both HF and MF
SPCE-Kriging perform slightly better than ordinary kriging especially when more training
points are used and in two and three dimensions.

4.5. Coupled Spring-Mass-System

For the MF SPCE models of the coupled spring-mass-system, many different orders for
the polynomials were combined with several values of λ to find the combination with the
lowest root-mean-square error (RMSE). The resulting best values for the two-dimensional
case are shown in Table 6.

Table 6. Best order and λ values for the two-dimensional coupled spring-mass-system using
MF SPCE.

# of HF Points # of LF Points λ Order, P Additive, R Multiplicative, Q

5 0 10−1 6 – –
9 0 10−4 9 – –
17 0 10−2 9 – –
33 0 10−4 6 – –
65 0 10−8 7 – –
97 0 10−7 12 – –

161 0 10−8 11 – –
257 0 10−8 11 – –

5 33 10−4 6 1 1
9 65 10−2 12 2 4
17 97 10−8 10 4 3
33 97 10−8 12 6 1
33 161 10−8 12 6 1
65 161 10−8 12 6 4
97 161 10−8 12 6 6

161 321 10−8 11 6 6
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The results for these settings are plotted on the left in Figure 17, whereas the per-
formance of a MF kriging model is shown on the right. In general, one can see that the
SPCE surrogate models outperform the full order ones (compare solid to dashed lines)
again up to a point, and the mono-fidelity models are inferior to the multi-fidelity ones
(compare black to red lines) for both the MF SPCE and MF kriging models. Overall, the
performance of the multi-fidelity ordinary kriging is comparable to the one of MF SPCE
and MF SPCE-Kriging.
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Figure 17. Spring-mass system (only springs) RMSE (from left to right, PCE and Kriging).

In addition to the two-dimensional case, a four-dimensional one where both spring
constants and both masses are varied between one and four was considered as well. Again,
many different orders for the SPCE are combined with various values for λ to find the
combination with the lowest RMSE. The resulting best values are given in Table 7, and the
results are shown in Figure 18.

Table 7. Best order and λ values for the four-dimensional coupled spring-mass-system using
MF SPCE.

# of HF Points # of LF Points λ Order, P Additive, R Multiplicative, Q

9 0 100 6 – –
33 0 10−1 10 – –
81 0 10−1 10 – –

193 0 10−1 7 – –
385 0 10−3 7 – –
641 0 10−4 8 – –
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Figure 18. Spring-Mass System RMSE (from left to right, PCE and Kriging).

Once again, one can see that the SPCE surrogate model outperforms the full order one
(compare solid to dashed line), and the MF models are better than the mono-fidelity ones
(compare red to black lines) for both the MF SPCE and MF kriging models. Overall, the
performance of the multi-fidelity ordinary kriging is somewhat better than MF SPCE.
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5. Conclusions

The goal of this work was to build very accurate surrogate models for applications in
design space exploration and optimization, as well as uncertainty quantification at small
overall computational cost assuming that the dominant cost factor is obtaining high-fidelity
training point information. The employed strategy was to enhance surrogate modeling
techniques by employing lower fidelity information and adaptively selecting training
points as well as to use compressed sensing and a combined SPCE-Kriging meta-modeling
method.

Several analytical benchmark problems have been used to assess the performance
of a multi-fidelity sparse polynomial chaos expansion (MF SPCE) model, a MF ordinary
kriging model as well as a MF SPCE-Kriging model. Overall, multi-fidelity models are
more accurate than high-fidelity ones for the same computational cost especially when only
a few high-fidelity training points are employed. Full-order PCEs tend to be a factor of two
or so worse than SPCES in terms of overall accuracy as measured by the root-mean-square
error (RMSE) compared to a truth model. The combination of the sparse PCE and kriging
models into a SPCE-Kriging model leads to a more accurate model overall, which for the
employed benchmark problems was either on par with or outperformed both underlying
methods, since it is incorporating the best of both approaches. It is also more flexible than
the PCE or SPCE models, since the training points can be in arbitrary locations.
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