
Citation: Băncioiu, C.; Brad, R.

Analyzing Markov Boundary

Discovery Algorithms in Ideal

Conditions Using the d-Separation

Criterion. Algorithms 2022, 15, 105.

https://doi.org/10.3390/a15040105

Academic Editor: Frank Werner

Received: 23 February 2022

Accepted: 21 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Analyzing Markov Boundary Discovery Algorithms in Ideal
Conditions Using the d-Separation Criterion
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Abstract: This article proposes the usage of the d-separation criterion in Markov Boundary Discovery
algorithms, instead of or alongside the statistical tests of conditional independence these algorithms
usually rely on. This is a methodological improvement applicable when designing, studying or
improving such algorithms, but it is not applicable for productive use, because computing the d-
separation criterion requires complete knowledge of a Bayesian network. Yet Bayesian networks
can be made available to the algorithms when studied in controlled conditions. This approach has
the effect of removing sources of suboptimal behavior, allowing the algorithms to perform at their
theoretical best and providing insights about their properties. The article also discusses an extension
of this approach, namely to use d-separation as a complement to the usual statistical tests performed
on synthetic datasets in order to ascertain the overall accuracy of the tests chosen by the algorithms,
for further insights into their behavior. To exemplify these two approaches, two Markov Boundary
Discovery algorithms were used, namely the Incremental Association Markov Blanket algorithm
and the Iterative Parent–Child-Based Search of Markov Blanket algorithm. Firstly, these algorithms
were configured to use d-separation alone as their conditional independence test, computed on
known Bayesian networks. Subsequently, the algorithms were configured to use the statistical G-test
complemented by d-separation to evaluate their behavior on synthetic data.

Keywords: Markov boundary; d-separation; causal inference; feature selection; information theory

1. Introduction

Researchers often need to extract the causal information contained within large
datasets comprising of many variables and samples [1]. Causal information is usually
inaccessible, but extremely useful for producing new knowledge and encoding it for human
or machine consumption, or for reducing the dimensionality of the dataset itself for further
applications. These are the goals of causal inference and feature selection, respectively.

Either way, one of the most fundamental encodings of causal information is the
Bayesian network [2]. A Bayesian network is a directed acyclic graph where nodes represent
the variables of the dataset and the edges represent dependence relationships between the
variables. It must be emphasized that the absence of an edge between two specific nodes
does not imply their independence. To determine independence correctly, the directional
separation criterion (d-separation) must be applied instead [2]. This criterion only requires
the analysis of paths between nodes in the network to determine whether two variables are
independent or not given a subset of other variables.

Knowing the Bayesian network that underlies an observed dataset is ideal in research,
but it is rarely available. A straightforward method of discovering the Bayesian network
from a dataset is to discover the Markov boundaries of a sufficient number of individual
variables in the dataset, then connecting these boundaries together, thus assembling the
underlying network itself [2].

Algorithms that analyze the independence relationships between the variables of a
dataset with the explicit goal of discovering their Markov boundaries are plainly called
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Markov Boundary Discovery (MBD) algorithms [3]. In broad terms, MBD algorithms work
by performing many conditional independence (CI) tests on permutations of variables from
the dataset in order to find the variables that compose the boundary of a specific variable
of interest. This involves steps such as detecting candidate variables for the boundary, then
removing any false positives from the candidates.

MBD algorithms usually rely on statistical conditional independence tests [4–7] such
as the χ2 test or the G-test, but some algorithms use heuristics that stand as a proxy for
conditional independence [8,9].

This article is concerned with the methodological process of evaluating and validating
MBD algorithms. Specifically, it focuses on the source of independence information con-
sumed by such an algorithm during its operation. When the behavior of an MBD algorithm
of interest is evaluated on an actual dataset, it requires a statistical CI test or a heuristic. The
final accuracy and efficiency of the algorithm are affected by the accuracy and efficiency of
the tests or of the heuristic, which are in turn affected by multiple other factors, such as:

• the total number of samples in the entire dataset;
• the number of values taken by the variables;
• the number of samples recorded in the dataset for various combinations of values.

In other words, datasets can contain unintentional biases which can distort the eval-
uation and validation of an MBD algorithm when relying on a statistical CI test. This is
obviously true for both synthetic or sampled datasets.

Moreover, performing statistical CI tests consumes an overwhelming proportion of
the computing resources used in total by the algorithm [10]. If available in such cases,
an efficient implementation of the CI test is essential for providing quick feedback to
the researcher.

This article proposes a methodological alternative to help address these issues: instead
of using statistical tests computed on synthetic data generated from the Bayesian network,
the studied MBD algorithm can be provided with ideal information on conditional indepen-
dence by using the d-separation criterion [2] computed directly on the Bayesian network,
effectively replacing the statistical test. This shields the algorithm from the randomness and
irregularities of the dataset and creates a more controlled setting for algorithm development.
It will also clearly highlight the behavior of the algorithm, for example the choices it makes
at runtime with regard to the conditioning set size of the CI tests. Such a replacement
is possible because the d-separation criterion results in a binary answer, dependent or
independent, just like a statistical CI test.

Most importantly, design errors will become visible early, because a correct MBD
algorithm cannot return incorrect Markov boundaries when provided with information
from the d-separation criterion. Of course, complete knowledge of the Bayesian network is
required to compute the d-separation criterion, therefore such experimental configurations
are likely only feasible in theoretical studies of MBD algorithms.

Using d-separation to evaluate and validate an MBD algorithm might seem a trivially
obvious and natural approach. However, no such attempts have been found in scientific
literature. Section 2 presents a collection of related MBD algorithms, all of which have
been experimentally evaluated with statistical tests only. The respective authors provided
proofs of correctness, but none have validated them with the d-separation criterion. Two
of these algorithms have been shown to be incorrect a few years after publishing, an
unfortunate situation which might have been avoided by validating the algorithms with
the d-separation criterion instead of statistical tests on synthetic datasets.

Apart from the exclusive use of d-separation as CI test during algorithm validation
experiments, there is also the possibility of a hybrid configuration. Algorithms can be
configured to use a usual statistical test for their operation, computed on a dataset, but
to also compute and record the corresponding d-separation result for each test. If an
individual CI test agrees with the corresponding d-separation result, it is an accurate test.
These recordings provide useful information to the researcher which cannot be obtained
in another way. Of course, in this configuration the algorithm never relies on the result of
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the d-separation criterion because it can only be computed on a known Bayesian network,
which is unavailable in most real-world applications; therefore, the algorithm must only
rely on the statistical test alone to find Markov boundaries.

As an example, consider that a researcher is designing a hypothetical algorithm which
configures the statistical CI test at runtime, depending on its current state or on the variables
being tested, in order to perform the most accurate statistical test in each situation. Such
a hypothetical algorithm may be designed to adjust the significance of the statistical test,
to compute the degrees of freedom of the null distribution, select a different statistic to
calculate or even to select a different null distribution for an individual CI test at runtime.
When evaluating this algorithm, recording both the statistical test and the d-separation
criterion as combined information can help the researcher improve the algorithm to make
better decisions about what statistical tests it attempts and to avoid situations in which
statistical tests tend to be inaccurate, such as large conditioning sets or known scarcity of
samples in the dataset for specific combinations of variables.

To empirically exemplify how the d-separation criterion may be methodologically
integrated into a study of MBD algorithms, an experiment was performed in which two
MBD algorithms were configured to use the d-separation criterion. These algorithms are the
Incremental Association Markov Blanket (IAMB) [9] and the Iterative Parent–Child-Based
Search of Markov Blanket algorithm (IPC-MB) [11].

The algorithms were run in two configurations:

1. D-separation exclusively, to isolate the algorithms from any source of randomness;
2. D-separation and G-test at the same time (hybrid configuration), using only the G-test

result for actual operation, but recording both results together for subsequent analysis;
if an individual test performed at runtime agrees with d-separation then it is recorded
as an accurate test.

The choice of algorithms used in this experiment is justified by their evolutionary
relationship: IAMB predates IPC-MB by 5 years, while IPC-MB indirectly inherits design
features from IAMB, but with novel ideas and improvements. It can be said that IAMB
is a simpler, more straightforward algorithm, while IPC-MB is more scalable, yet more
sophisticated. Both algorithms are discussed in more detail later in the article in their
dedicated sections.

The structure of the article is as follows: Section 2 discusses the IAMB and IPC-MB
algorithms and how they were evaluated by their authors. Section 3 provides the theoretical
background needed to discuss the implementation of the algorithms. Section 4 discusses
the design of IAMB and IPC-MB, as well as specific implementation considerations for each
of them. Section 5 describes the experiment which exemplifies the usage of d-separation to
reveal more information about the behavior of algorithms and also contains a discussion of
observed results. The conclusions of the article are stated in Section 6.

2. Related Work

A number of Markov blanket discovery algorithms have been proposed and discussed
since this class of algorithms was first established. In each case, the authors provided the re-
sults of empirical validations. A few of these algorithms are discussed in this section, along
with the method used by the respective authors to validate the algorithm experimentally.

Koller and Sahami’s algorithm (KS) was the first algorithm to employ the concept
of Markov boundaries for feature selection [3,8] and it uses two heuristics called β and
γ, expressed as Kullback–Leibler divergences. These heuristics were later revealed to
be conditional mutual information [12]. KS did not have a proof of correctness, but the
foundations it laid had a great impact. The authors experimentally evaluated the KS
algorithm by using it to select features from datasets, then feeding these features into a
classifier and evaluating its final accuracy. A separate evaluation compares KS to a simple
selection by thresholding mutual information [13]. Supplementary efficiency optimizations
for the KS algorithm are possible [14], targeting both heuristics of the algorithm.
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The Incremental Association Markov Blanket (IAMB) [9] algorithm was the first to be
regarded as scalable, even if it was not the first to be proven correct [3]; that distinction
belongs to GS [15]. It also introduced a two-phase design, later inherited by other algorithms
of this class. The CI test used by IAMB is a simple threshold applied on conditional mutual
information. The algorithm also uses conditional mutual information as a heuristic to
guide the selection of candidate nodes for the Markov boundary. The authors of IAMB
performed a rigorous analysis of its accuracy and created ROC curves with respect to the
thresholds applied on mutual information, reporting the areas under the ROC curves for
both synthetic and real datasets. However, they provided very little information about its
efficiency with respect to running time or number of CI tests performed. While scalable,
the IAMB algorithm is regarded as sample-inefficient [3].

In the same year IAMB was published, two other related algorithms were published
as well, namely Max–Min Markov and Blanket (MMMB) [6] and HITON [5]. These two
algorithms try to address the inefficiencies of IAMB. Building on the principles of IAMB,
they add novel methods of identifying the parents and children of a variable node within
a Bayesian network. Unfortunately, MMMB and HITON were shown to be incorrect [7].
However, the ideas they introduced have been influential and were inherited by future
algorithms of this class.

The Parent–Child Markov Blanket (PCMB) [7] algorithm expanded on MMMB and
HITON, aiming at achieving higher sample efficiency. The authors of PCMB provide a
detailed analysis of accuracy and present results such as precision, recall and Euclidean
distance from perfect precision and recall. These measures define a “true positive” when
the algorithm correctly selects a node for the Markov boundary of the target node. This
approach works for synthetic datasets when the Bayesian network is known in advance. The
PCMB algorithm achieves its goal of sample efficiency, which is reflected in its increased
accuracy [7]. As is the case of IAMB, the authors of PCMB provide almost no useful
information about its efficiency, except for the total running time on a real dataset.

The Iterative Parent–Child Based Search of Markov Blanket (IPC-MB) [11] algorithm
improved the time and CI test efficiency of PCMB by first performing the CI tests with the
smallest conditioning set. Apart from higher efficiency, the authors also reported increased
accuracy compared to PCMB. They performed the same kind of accuracy analysis as PCMB
did, and reported results such as precision, recall and the Euclidean distance from perfect
precision and recall. Moreover, they provide the number of CI tests performed by the
IPC-MB algorithm (and by PCMB, as part of the comparison).

More detailed evaluations of IAMB, PCMB and IPC-MB algorithms have also been
performed, both for CI test efficiency and for sample efficiency [16]. IAMB often performs
well with regard to CI test efficiency, requiring fewer tests than the other algorithms, but
it performs tests with large conditioning sets, which are inaccurate when there are not
enough samples. On the other hand, IPC-MB performs CI tests with smaller conditioning
sets than IAMB, making it more accurate, and it also performs fewer tests than PCMB [16].

A more detailed discussion on the use of the statistical G-test by MBD algorithms
(IPC-MB in particular) can be found in [10], along with an efficient method of computing
the G statistic, relying on computation reuse, called dcMI. Such an optimization aims at
alleviating the CI test bottleneck.

3. Bayesian Networks and Markov Boundaries

This section provides some theoretical background on Bayesian networks, Markov
boundaries and the d-separation criterion, needed to discuss the algorithms and the experi-
ment presented in this article.

A Bayesian network is a directed acyclic graph that represents conditional dependen-
cies between the variables of the dataset: each node in a Bayesian network is a variable of
the dataset, while each directed edge represents the dependence of the destination node
on the source node. Each node also contains the full conditional probability table of the
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variable it represents, given the variables it depends on (encoded as inbound edges in
the graph).

An essential property of the Bayesian is that any node is conditionally independent
of all its ancestors, given its immediate parents. Expressed differently, a node is only
dependent on its immediate parents:

Pr(X1, X2, X3, . . . , Xn) =
n

∏
i=1

Pr(Xi | Parents(Xi))

where Parents(Xi) ⊂ {X1, X2, X3, . . . , Xn}
(1)

Moreover, a Bayesian network is the minimal I-map for the joint probability distri-
bution of the variables [2]. This means that the network encodes all the marginal and
conditional independence relationships of the form I(X|Z|Y) that present in the joint prob-
ability distribution, and removing any edge from the network would break at least one
encoding of conditional independence. The notation I(X|Z|Y) means that X and Y are
conditionally independent given the set of variables Z.

The fact that the edges of a Bayesian network are directed enables it to encode the
marginal dependence of a cause and its effect distinctly from the conditional dependence
between two causes that share the same effect, given the effect is known, and the causes are
otherwise marginally independent. This is the case of the variables X1, X3, X5 and X6 from
the simple Bayesian network in Figure 1.

Figure 1. The Markov boundary of variable X3 emphasised with light gray in a simple Bayesian
network.

Here, the conditional probability table of variable X1 is only defined based on variables
X3, X5 and X6. However, if X1 were not part of the dataset at all, then X6 would appear
marginally independent of either X5 and X3. But the Bayesian network correctly expresses
the fact that knowing X1 would render X6 dependent on both X3 and X5, because knowing
one cause and its effect provides information about the other causes that share the effect.

In the Bayesian network shown in Figure 1, the variables X6, X3 and X5 are the
“parents” of X1, which is their “child”. Because they share a child, X6, X3 and X5 are
“spouses”.

To correctly determine the true relationship between these variables in the network,
the d-separation criterion is applied, as discussed in Section 3.1. This criterion works
by giving special meaning to nodes that have converging or diverging arrows. In other
words, a path between two nodes cannot be unambiguously interpreted on its own as
“dependence” or “independence” (d-connected or d-separated, respectively). The direction
of the edges that compose it must be taken into account, along with the conditioning set.

In a Bayesian network, the Markov boundary of a variable Xi is the smallest subset
of variables which renders Xi conditionally independent of the entire Bayesian network,
given the Markov boundary itself, not only of its ancestors. Therefore, if U is the set of all
the variables of the dataset and MB(Xi) is the Markov boundary of Xi, then

I(Xi |MB(Xi) |U −MB(Xi)− Xi). (2)
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Note that the network may contain multiple sets for which this property holds. They
are called Markov blankets, and the Markov boundary is the smallest blanket. The Markov
boundary is also unique for a specific variable Xi [2].

Due to this property, knowing the variables in the Markov boundary of Xi renders Xi
itself obsolete, because the behavior of Xi can be predicted entirely by its Markov boundary.
A Markov boundary is illustrated in the same Figure 1.

It is highly desirable to know the Markov boundary of any individual variable of
interest in a dataset because it holds such predictive power for the variable. However,
knowing enough boundaries allows for the construction of the complete Bayesian network,
which is a much more useful source of information.

As a corollary, knowing the entire Bayesian network that underlies a dataset will
trivially reveal all the Markov boundaries of the variables within it [2]: the boundary of
a target node consists, by definition, of its parents, children and spouses (the nodes that
share children with the target node). However, as stated above, the Bayesian network is
usually unknown and the sole source of information is the dataset itself.

The Markov boundary and the Markov blanket are concepts originating from Markov
networks, which are similar encodings to Bayesian networks, but are undirected graphs,
which limits their expressive power [2]. For this reason, Bayesian networks are preferred
when encoding causal information. However, there are relationships that Bayesian net-
works cannot represent but Markov networks can [2].

3.1. The d-Separation Criterion

In order to determine whether two variables of a Bayesian network are independent
or not, given a conditioning set of other variables, the directional separation (d-separation)
criterion must be applied [2]. By definition, two variables are independent given the condi-
tioning set if all the paths between their corresponding nodes in the network contain either:

• A node with diverging edges, which is in the conditioning set, or
• A node with converging edges, which is outside the conditioning set and also all of its

descendants are outside the conditioning set.

If there is a path in the network that connects the two nodes but contains no node for
which any of the above conditions is broken, then the two variables are dependent even
after the conditioning set is given [2]. In this case, the nodes that represent the variables are
said to be d-connected, as opposed to d-separated.

Conversely, a path that contains a node for which the above conditions hold is consid-
ered a “blocked” path, thus it will not convey dependence. If all possible paths between
two specific nodes are blocked given the conditioning set, then the nodes are d-separated,
thus the variables they represent are conditionally independent given the conditioning set.

Because the d-separation criterion simply evaluates to either “dependent” or “inde-
pendent” when applied to two variables and a conditioning set, it is obvious that Markov
Boundary Discovery algorithms can use d-separation just as easily as using a statistical
test of independence. As stated earlier, applying the d-separation criterion requires the
Bayesian network.

4. Algorithms and Implementation

Two algorithms were chosen for the experiment, namely IAMB and IPC-MB, presented
in context in Section 2. Both algorithms have been implemented in an easily configurable
form compatible with any kind of CI test. The implementations and the experimental
framework are part of the Markov Boundary Toolkit (MBTK) [17], a free and open-source
library designed for research on Markov boundary discovery algorithms. MBTK is imple-
mented in Python and contains all the components used by this experiment. This library
was also used to implement and evaluate the dcMI optimization [10]. Wherever the G-test
is used in the experiment, its computation is accelerated with dcMI.
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The following two subsections describe the aforementioned algorithms, and a third
subsection discusses the implementation of the algorithm for the d-separation criterion
used in the experiment.

4.1. IAMB

The Incremental Association Markov Blanket (IAMB) [9] algorithm discovers the
Markov boundary of a target variable by running two phases. In the first phase, called
the forward phase, the algorithm constructs a set of candidate variables based on their
correlation with the target variable. In the second phase, the algorithm eliminates the
candidates that are rendered conditionally independent from the target given the other
candidates [9].

IAMB relies on conditional mutual information as a heuristic for correlation, used
to determine which variables are good candidates for the Markov boundary. The CI test
employed by IAMB is thresholded conditional mutual information.

The authors of PCMB [7] have compared their algorithm to IAMB and, interestingly,
they mention that IAMB uses the G-test for conditional independence. Moreover, they
mention that it uses the p-value of the test as a heuristic for correlation. However, IAMB
relies on conditional mutual information, as stated earlier. On the other hand, the G-test
is indeed used by HITON [5] and MMMB [6], also discussed in the PCMB article [7].
This minor inconsistency is addressed here because it is present in the references of the
current article.

Regardless, IAMB can indeed be adapted to use the G-test due to the relationship of the
G-test with the mutual information upon which IAMB originally relied. This replacement
was made for the experiment for consistency with IPC-MB and in order to avoid having to
choose a manual threshold for conditional mutual information.

Moreover, IAMB can also use d-separation as a CI test with ease, but it still requires
a heuristic for correlation. To address its need for a heuristic, a synthetic heuristic was
implemented which only relies on the Bayesian network. It returns the following values:

• The length of the shortest path between the corresponding nodes in the Bayesian
network, if the two variables of interest are d-connected, given the conditioning set;

• The value 0, if the two variables of interest are d-separated, given the conditioning set.

This replacement was possible because IAMB only uses the heuristic to compare
variables among themselves. The data-processing inequality [18] makes the length of the
path an acceptable replacement for this specific case.

4.2. IPC-MB

The Iterative Parent–Child-Based Search of Markov Blanket (IPC-MB) [11] algorithm
takes a more fine-grained approach and breaks the discovery problem into smaller sub-
problems. It relies on concepts refined by PCMB [7], originally introduced by HITON [5]
and MMMB [6]. In short, IPC-MB first discovers the parents and children of the given
target variable, then repeats this discovery process for each of the parents and children. The
goal is to find the spouses of the target variable, which are the variables that have common
children with the target.

The key improvement of IPC-MB lies in the tactic employed when searching for
parents and children: it ensures that the first CI tests performed during the search are those
with the smallest conditioning set. The algorithm ensures this by iteratively incrementing
the size of the conditioning set used in the CI tests. This way, the algorithm eliminates false
positives as early as possible, therefore performing fewer tests. Moreover, the tests that it
needs to perform have smaller conditioning sets overall.

IPC-MB requires no heuristic at all, only a CI test implementation. This makes IPC-MB
very appropriate for the experiment described in this article.
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4.3. d-Separation

Currently, MBTK contains a very simple but inefficient algorithm for computing d-
separation. The algorithm is essentially a straightforward implementation of the definition
of the d-separation criterion [2,19]. It is very simple because it enumerates all possible
undirected paths between two nodes and then checks each node on each path to see if it
‘blocks’ the path, following the conditions described in Section 3.1. However, at the same
time, this simplicity is detrimental. Its inefficiency is largely caused by the full enumeration
of paths, and the number of paths between two nodes can be exponential in the size of the
graph [19]. The algorithm is defined as follows:

Algorithm 1 shows the pseudocode for computing the d-separation criterion as it
is currently implemented in MBTK. The procedure DSeparation receives two nodes X
and Y as arguments, along with a conditioning set Z, and returns true or false indicating
whether X and Y are independent or not given the nodes in Z. As stated earlier, the MBD
algorithms only truly need the binary information about the conditional independence
of two variables given a conditioning set, therefore the DSeparation procedure above is
sufficient for their operation. The procedure FindAllUndirectedPaths was not specified
in detail in Algorithm 1 because it is a generic graph operation.

Algorithm 1 Simple algorithm for computing d-separation

1: procedure DSeparation(X, Y : Node, Z : List[Node])
2: paths = FindAllUndirectedPaths(X, Y)
3: for all path ∈ paths do
4: if ¬IsPathBlockedByNodes(path, Z) then
5: return FALSE
6: return TRUE
7:
8: procedure IsPathBlockedByNodes(path, Z : List[Node])
9: for all node ∈ path[1 : − 1] do . skip first and last nodes

10: isCollider = IsNodeCollider(path, node)
11: hasConditionedDescendants = ∃n ∈ node.descendants such that n ∈ Z
12: if isCollider ∧ node /∈ Z ∧ ¬hasConditionedDescendants then
13: return TRUE
14: if ¬isCollider ∧ n ∈ Z then
15: return TRUE
16: return FALSE
17:
18: procedure IsNodeCollider(path : List[Node], node : Node)
19: edgeInboundFromPrev = node ∈ node.previous.descendants
20: edgeInboundFromNext = node ∈ node.next.descendants
21: return edgeInboundFromPrev ∧ edgeInboundFromNext
22:
23: procedure FindAllUndirectedPaths(start, end : Node) . unspecified for brevity

For context, Koller and Friedman [19] present a much more efficient algorithm in-
formally called Reached (the name of the procedure in their pseudocode). The Reached
algorithm is linear in the size of the graph, but it is far more complex. Because the Bayesian
networks chosen for the experiment are quite small, implementing Reached was deemed
unnecessary at the time.

5. Experiment and Results

An experiment was implemented to illustrate the use of the d-separation criterion
when evaluating MBD algorithms. A selection of three Bayesian networks were used
throughout the experiment. These are the CHILD, ALARM and MILDEW networks, part
of the bnlearn repository [20]. The CHILD network consists of 20 nodes, the ALARM



Algorithms 2022, 15, 105 9 of 13

network consists of 37 and MILDEW consists of 35. The repository classifies the size of
these three networks as “medium networks” [20].

The experiment contains two groups of algorithm runs, called BN and DS, based on
the source of CI information used by the algorithms when discovering Markov boundaries:

• The BN group contains algorithm runs where the CI information was the d-separation
criterion exclusively, computed on the three Bayesian networks in their original,
abstract form; the runs in the BN group do not require any sampling or dataset
synthesis;

• The DS group contains algorithm runs that apply statistical CI tests on synthetic
datasets randomly generated from the three Bayesian networks; the DS group also
uses the d-separation criterion on the original Bayesian networks, but only to record
the accuracy of each test, where ‘accurate’ means in agreement with the d-separation
criterion, while ‘inaccurate‘ means in disagreement.

5.1. The Algorithm Runs in the BN Group

The BN group consists of algorithm runs that use d-separation as a CI test exclusively
and no dataset was synthetically generated for them. There are 6 algorithm runs in total:
each of the 2 algorithms has one run for each of the 3 Bayesian networks.

Of interest are the following measures:

• The total number of CI tests performed by the algorithms on each Bayesian network,
considered a measure of the overall efficiency of the algorithms;

• The average size of the conditioning set used in the CI tests, considered a measure for
the overall sample efficiency of the algorithms.

Table 1 confirms what was already reported by the authors of IPC-MB [16], but the
information presented in this table is far more accurate due to the exclusive usage of d-
separation as a CI test instead of statistical tests. Indeed, IAMB performs far fewer CI tests
than IPC-MB, but the tests it performs have much larger conditioning sets, unequivocally
revealing that IAMB is sample inefficient. The values indicating the highest efficiency per
column are shown bolded.

Table 1. Overall d-separation test count and average conditioning set size.

Algorithm Network Tests Avgerage Cond. Set Size Duration (s)

IAMB CHILD 148 9.66 0.001
IAMB ALARM 319 11.41 0.005
IAMB MILDEW 407 13.95 0.104

IPC-MB CHILD 32,310 5.96 0.360
IPC-MB ALARM 57,831 4.06 4.793
IPC-MB MILDEW 313,479 5.60 87.281

It is worth emphasizing that these results are fully repeatable and deterministic, de-
pending only on the structure of the Bayesian networks and on the design of the algorithms.
There is no randomly synthesized dataset, no sampling process that could be biased and
no scarcity of samples for specific combinations of variables. It can be considered that these
runs to have been performed in ideal conditions, because the algorithms received perfect
information about the CI relationships between variables.

The “Duration” column in Table 1 shows that running MBD algorithms exclusively
configured with d-separation consumes very little computing time, even with the simple
and very inefficient method described by Algorithm 1. This is essential, because it means
that such validation runs can be executed as software integration tests when developing
MBD algorithms. The method described by Koller and Friedman [19], mentioned in
Section 3.1, would reduce the duration even further.
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5.2. The Algorithm Runs in the DS Group

The DS group consists of runs that use the statistical G-test on synthetic datasets
to discover the Markov boundaries of variables, but each test is also verified using the
d-separation criterion for the tested variables on the source Bayesian network. The d-
separation result is recorded for later analysis. A random sampler was employed to
generate datasets of 800, 4000, 8000 and 20,000 samples for each of the three Bayesian
networks in the experiment.

Of interest are the following measures:

• The total number of CI tests performed by the algorithms on each dataset, considered
a measure of the overall efficiency of the algorithms;

• The percentage of statistical tests performed by the algorithms that were accurately
evaluated, i.e., the statistical tests in agreement with the simultaneously computed
d-separation criterion;

• The average size of the conditioning set used in the CI tests, considered a measure for
the overall sample efficiency of the algorithms;

• The precision–recall Euclidean distance from perfect precision and recall, as calculated
by the authors of PCMB [7] and of IPC-MB [11].

Tables 2–5 capture the behavior of IAMB and IPC-MB with G-tests on the three
Bayesian networks, recording the measures of interest mentioned above. There are a few
interesting facts to observe in the results. Values representing the highest efficiency and
accuracy in their respective columns are shown bolded.

Table 2. G-test results across all datasets of 800 samples for IAMB and IPC-MB.

Algorithm Network Tests Average Cond. Set Size Accurate Tests PR Distance Duration (s)

IAMB CHILD 144 10.78 86.11% 0.216 1.070
IAMB ALARM 223 6.18 89.24% 0.235 0.484
IAMB MILDEW 713 9.63 20.48% 0.827 5.179

IPC-MB CHILD 10,581 3.94 92.74% 0.366 22.225
IPC-MB ALARM 19,042 2.34 92.70% 0.270 30.213
IPC-MB MILDEW 4176 1.34 42.94% 1.306 8.240

Table 3. G-test results across all datasets of 4000 samples for IAMB and IPC-MB.

Algorithm Network Tests Average Cond. Set Size Accurate Tests PR Distance Duration (s)

IAMB CHILD 177 18.42 77.97% 0.097 9.783
IAMB ALARM 255 8.25 93.73% 0.165 2.098
IAMB MILDEW 1019 22.55 28.95% 0.711 83.683

IPC-MB CHILD 26,588 6.67 97.65% 0.022 237.000
IPC-MB ALARM 26,430 2.72 94.62% 0.116 131.340
IPC-MB MILDEW 10,104 1.46 59.12% 1.122 70.179

Table 4. G-test results across all datasets of 8000 samples for IAMB and IPC-MB.

Algorithm Network Tests Average Cond. Set Size Accurate Tests PR Distance Duration (s)

IAMB CHILD 207 23.44 67.63% 0.137 27.523
IAMB ALARM 267 9.01 95.51% 0.144 4.248
IAMB MILDEW 1131 24.17 30.15% 0.668 193.901

IPC-MB CHILD 25,343 6.64 97.89% 0.039 357.632
IPC-MB ALARM 33,183 2.94 94.84% 0.115 310.035
IPC-MB MILDEW 18,536 1.64 69.50% 0.880 229.154
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Table 5. G-test results across all datasets of 20,000 samples for IAMB and IPC-MB.

Algorithm Network Tests Average Cond. Set Size Accurate Tests PR Distance Duration (s)

IAMB CHILD 178 22.79 75.28% 0.079 57.649
IAMB ALARM 277 9.24 96.75% 0.109 10.230
IAMB MILDEW 1220 28.49 28.11% 0.702 611.964

IPC-MB CHILD 37,240 6.88 98.85% 0.000 1177.597
IPC-MB ALARM 36,139 2.95 95.34% 0.121 792.971
IPC-MB MILDEW 33,480 2.45 85.62% 0.467 978.469

Firstly, IPC-MB has issues with the MILDEW datasets of 800, 4000 and 8000 samples,
resulting in high PR distances, while IAMB performs much better. This happens in spite
of IPC-MB performing tests with very small conditioning sets. This is also not an effect of
inaccurate tests, because the d-separation results agree with the G-tests performed by IPC-
MB almost twice as often as for IAMB. Still, IAMB produces much more accurate Markov
boundaries (lower PR distances) in spite of performing G-tests that end up being accurate
in less than 30% of cases, for any dataset size. A simple and satisfactory explanation for
this observation could not be found as part of this experiment, although it was indeed
surprising. At this moment, an implementation mistake cannot be ruled out, although this
is highly unlikely because IAMB and IPC-MB have been developed under the same suite
of unit tests and they also produce the same Markov boundaries when configured with the
d-separation CI test. It is also worth mentioning that MILDEW causes the lowest CI test
accuracies of all the Bayesian networks for both algorithms at all sample sizes. On top of
that, IAMB appears to be more accurate than IPC-MB for all datasets of 800 samples.

Apart from the anomaly described above, IPC-MB consistently outperforms IAMB
with respect to accuracy, producing lower PR distances. On the CHILD dataset at 20,000 sam-
ples, IPC-MB achieves 0.000 PR distance, the best value in the experiment.

Secondly, the average conditioning set size in the G-tests performed by the algorithms
grows as the number of samples in the dataset grows. The most noteworthy increase is
observed for IAMB on the MILDEW dataset: at 800 samples, IAMB performs tests with
an average conditioning set size of 9.63, but at 20,000 samples, this average becomes 28.49.
Note that the entire MILDEW network consists of 35 nodes in total and 28.49 represents
81.4% of the whole network.

In contrast, IPC-MB appears much more stable: the greatest difference in the average
conditioning set size is seen on the CHILD datasets, but it starts at 3.94 at 800 samples
and reaches 6.88 at 20,000 samples, a much smaller increase than that which is observed
for IAMB.

Thirdly, the d-separation validations recorded for the G-tests reveal another interesting
fact: the CI tests performed by IAMB do not have a clear trend in accuracy with respect to
sample size, but those performed by IPC-MB become more and more accurate as sample
size increases. The lack of a trend in IAMB is somewhat surprising, because a higher
sample count should provide more accurate tests, but this potential increase in accuracy
is cancelled by the growing average conditioning set seen for IAMB as the sample count
increases, described above.

The values in the “Duration” column in Tables 2–5 reinforce the fact that CI tests
consume the overwhelming majority of the computing resources used by an MBD algorithm.
It also highlights another drawback of CI tests when used during algorithm development,
namely the delay they introduce in the design loop. However, the G-test was computed
here with the dcMI optimization, which can reduce the computation time of the G statistic
by a factor of 20 [10]. Without optimization, the durations observed in this experiment
would have been much greater.

However, configuring an MBD algorithm to use a statistical CI test alongside d-
separation during the design phase may be a necessary condition, depending on the
algorithm, as hypothesized in the Introduction (Section 1).
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6. Conclusions

The main contribution of this article is the proposed usage of d-separation when
designing, developing and evaluating Markov Boundary Discovery algorithms. Thus, it
discussed how the d-separation criterion can help researchers design and validate novel
MBD algorithms. This usefulness stems from it being a perfect source of conditional
independence information, unlike statistical tests, and it is far more efficient to compute
than a statistical test, shortening the design feedback loop considerably.

Moreover, adding the d-separation criterion as a CI test to Markov boundary discovery
algorithms has the potential to provide researchers and algorithm designers with new and
unexpected insights into the behavior of the algorithms. Of course, computing d-separation
requires the Bayesian network to be known, but this is normally the case when evaluating
algorithms on synthetic data. In the exemplifying experiment presented in this article, a
new measure was described consisting of the percentage of accurate statistical tests. This
measure would not have been possible without implementing d-separation itself as a CI
test. The observed behavior of algorithms also presented an unexpected anomaly which
needs to be studied and explained in a future analysis. However, this is only a simple
attempt to illustrate the possibilities that open up when d-separation is an integral part of
the experiment.
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13. Băncioiu, C.; Vint,an, L. A Comparison between Two Feature Selection Algorithms. In Proceedings of the ICSTCC 2017, Sinaia,
Romania, 19–21 October 2017; pp. 242–247.
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