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Abstract: Point cloud upsampling algorithms can improve the resolution of point clouds and generate
dense and uniform point clouds, and are an important image processing technology. Significant
progress has been made in point cloud upsampling research in recent years. This paper provides
a comprehensive survey of point cloud upsampling algorithms. We classify existing point cloud
upsampling algorithms into optimization-based methods and deep learning-based methods, and
analyze the advantages and limitations of different algorithms from a modular perspective. In
addition, we cover some other important issues such as public datasets and performance evaluation
metrics. Finally, we conclude this survey by highlighting several future research directions and open
issues that should be further addressed.

Keywords: point cloud upsampling; deep learning; generative adversarial network (GAN); graph
convolutional network (GCN); unsupervised learning

1. Introduction

The point cloud is the standard output of 3D scanning. As a compact 3D data repre-
sentation and an effective means of processing 3D geometric figures, point clouds have
become more and more popular [1]. However, due to hardware limitations, 3D sensors
such as LiDAR usually produce sparse, noisy, and non-uniform point clouds, especially for
small objects or objects far away from the camera. This has also been proven in various
public benchmark datasets, such as KITTI [2], SUN RGB-D [3], and ScanNet [4]. Although
3D sensing technology has made significant progress in recent years, it is still an expensive
and time-consuming task to obtain a point cloud with high density and complete details.
The sparsity and noise of point clouds affects their application in various fields, such as 3D
shape classification, 3D object detection, and 3D object segmentation. Clearly, it is necessary
to amend raw point cloud data.

Point cloud upsampling means that the given sparse, noisy, and non-uniform point
cloud is upsampled to generate a dense, complete, and uniform point cloud [5]. Under
current conditions, this problem is very challenging. Unlike the image data representation
in a computer, which usually encodes the spatial relationship between pixels, point cloud
data are represented by a set of disordered data points. Therefore, there are many difficulties
in upsampling point clouds, and there are few related works. With the development of
deep learning, models such as PointNet [6] have provided new solutions for processing
point cloud data. As a result, point cloud upsampling tasks have gradually attracted the
attention of researchers.

In this paper, we provide a comprehensive review of point cloud upsampling. We
introduce optimization-based point cloud upsampling and deep learning-based point cloud
upsampling, and focus on deep learning-based point cloud upsampling. Figure 1 shows the
taxonomy of point cloud upsampling covered in this review in a hierarchically structured
way. The main contributions of this work are as follows:
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(1) We provide a comprehensive review of point cloud upsampling, including benchmark
datasets, evaluation metrics, optimization-based point cloud upsampling, and deep
learning-based point cloud upsampling. To the best of our knowledge, this is the first
survey paper that comprehensively introduces point cloud upsampling.

(2) We provide a systematic overview of recent advances in deep learning-based point
cloud upsampling in a component-wise manner, and analyze the strengths and limita-
tions of each component.

(3) We compare the representative point cloud upsampling methods on commonly
used datasets.

(4) We provide a brief summary, and discuss the challenges and future research directions.

Figure 1. Hierarchically structured taxonomy of this review.

The structure of this paper is as follows. Section 2 introduces the datasets and evalua-
tion metrics for point cloud upsampling. Section 3 reviews the methods for point cloud
upsampling based on optimization. Section 4 reviews the point cloud upsampling based
on deep learning from the perspective of components. Section 5 compares and analyzes
representative point cloud upsampling methods. Section 6 discusses future directions and
open issues.

2. Benchmark
2.1. Datasets

At present, there are various point cloud datasets used to evaluate the performance
of point cloud upsampling algorithms in different applications. These datasets have great
differences in sample number, quality, resolution, and diversity. We list some typical
datasets used for point cloud upsampling in Table 1.

During experiments, researchers usually downsample the ground truth and then
upsample the downsampled point cloud to compare the generated point cloud with the
ground truth, and then evaluate the quality. Commonly used downsampling methods
include Poisson disk sampling, random downsampling, curvature-based downsampling,
and farthest point sampling. Some researchers choose to build their own datasets for
training and testing of point cloud upsampling models. These datasets are designed
specially to train and test the upsampling algorithms, and the number of sample data
inside are normally less than those of the typical datasets listed in Table 1. Some datasets
constructed by researchers for point cloud upsampling are listed in Table 2.
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Table 1. Typical point cloud datasets for upsampling.

Name Samples Training Test Type Representation

ModelNet10 [7] 4899 3991 605 Synthetic Mesh

ModelNet40 [7] 12,311 9843 2468 Synthetic Mesh

ShapeNet [8] 51,190 - - Synthetic Mesh

SHREC15 [9] 1200 - - Synthetic Mesh

FAUST [10] 300 100 200 Real-world Mesh

ScanObjectNN [11] 2902 2321 581 Real-world Point Clouds

Table 2. Datasets constructed by researchers for upsampling.

Name Samples Training Test Type Representation

PU-Net [5] 60 40 20 Synthetic Mesh

EC-Net [12] 36 36 - Synthetic CAD

PU-GAN [13] 147 120 27 Synthetic Mesh

PU1K [14] 1147 1020 127 Synthetic Mesh

PUGeo-Net [15] 103 90 13 Synthetic Mesh

2.2. Evaluation Metrics

The current evaluation metrics mainly evaluate the quality of the upsampled point
cloud from two aspects: the deviation between the ground truth and the generated point
cloud and the uniformity of the generated point cloud.

Surface Deviation (SD) [5]. This is defined to find the closest point y on the mesh for
each predicted point x; the distance between them is then calculated, and the mean and
standard deviation are finally computed over all the points.

Chamfer Distance (CD) [16]. This is the sum of positive distances, which is defined as
an unsigned distance function, usually the distance between two curves or two 2D images.
Applying CD to 3D space, it is defined as follows:

dCD(S1, S2) =
1
S1

∑
x∈S1

min
y∈S2
||x− y||22 +

1
S2

∑
y∈S2

min
x∈S1
||y− x||22 (1)

where S1, S2 represent two sets of 3D point clouds respectively. The formula represents the
sum of the minimum distance from any point x to S2 in S1, plus the sum of the minimum
distance from any point y to S1 in S2.

Hausdorff Distance (HD) [17]. HD measures the distance between proper subsets in
the metric space. A proper subset is defined as a finite (possibly infinite) set of numbers
of elements (points). HD distance can be viewed as the maximum value of the shortest
distance from a point set to another, and is defined as follows:

dH(S1, S2) = max
[
sup
x∈S1

inf
y∈S2

d(x, y), sup
y∈S2

inf
x∈S1

d(x, y)
]

(2)

where sup and inf define the supremum and infimum calculations.
Earth Mover’s Distance (EMD) [18]. EMD is the histogram similarity measure based

on the efficiency of transportation problems. It is a normalized minimum cost of changing
from one distribution to another. It measures, in a certain feature space, the difference
between two multi-dimensional distributions. It is defined as follows:

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x− φ(x) ||2 (3)
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where φ : S1 → S2 is the bijection mapping. The formula finds a bijection φ between the
point sets S1 and S2, which are one-to-one corresponding, so that the sum of Euclidean
distances calculated by them is the smallest.

Point to Surface (P2F). Evaluation indicators such as CD and HD evaluate the devia-
tion from point to point, whereas P2F measures the distance of the generated point from
the surface of the original point cloud. It is the distance between each point and its closest
plane. Unlike CD, HD, and other indicators that can be calculated under the XYZ format,
P2F requires raw data in mesh format.

In addition to evaluating the deviation between point clouds, the uniformity of point
clouds is also an important evaluation indicator.

Normalized Uniformity Coefficient (NUC) [5]. PU-Net defines NUC, which ran-
domly places D disks of equal size on the surface of the generated point cloud, calculates
the standard deviation of the points in the disk, and then normalizes each object’s density
and calculates the overall uniformity of the set of points across all objects in the test dataset.
Define NUC using the percentage of disk area p:

avg =
1

K ∗ D

K

∑
k=1

D

∑
i=1

nk
i

Nk ∗ p
(4)

NUC=
1

K ∗ D ∑K
k=1 ∑D

i=1

(
nk

i
Nk ∗ p

− avg

)2

(5)

where nk
i is the number of points within the i-th disk of the k-th object. Nk is the total

number of points on the k-th object. K is the total number of test objects. p is the percentage
of the disk area over the total object surface area.

Uniform metric in PU-GAN [13]. NUC ignores the local clutter of points and cannot
distinguish between different disks containing the same number of points. Another evalua-
tion metric for evaluating the uniformity of point clouds is proposed in PU-GAN to avoid
this problem, and is defined as follows:

Uni f orm
(
Sj
)
=

M

∑
j=1

[ (∣∣Sj − n̂
∣∣)2

n̂
×

|Sj|

∑
j=1

(
dj,k − d̂

)2

d̂

]
(6)

where M is obtained by farthest sampling of the generated point cloud Q. Sj is the point set
obtained using a ball query for each point in M with radius rd. n̂ = Q̂× r2

d is the expected
number of points in Sj. dj,k is the distance from each point in Sj to its k nearest neighbors.

d̂ =

√
2πr2

d
|Sj|
√

3
is the expected distance of the point in the uniform point cloud to its k nearest

neighbors. The deviation of Sj from n̂, dj,k from d̂ is evaluated using a chi-squared model.
F-Score [19]. The above two mainstream methods are susceptible to the influence of

outliers. AR-GCN [20] uses the F-score to evaluate the quality of generated point clouds
by manipulating the upsampling of point clouds as a classification problem. It evaluates
the precision by checking the percentage of points in the generated point cloud or ground
truth that can find a neighbor from the other dataset within a certain threshold τ. Then, it
calculates the F-score as the harmonic mean of precision and recall. For this metric, larger
is better.

3. Optimization-Based Point Cloud Upsampling

In 2003, Alexa et al. [1] proposed the first algorithm for point cloud upsampling. They
upsample a point set by interpolating points as vertices of a Voronoi diagram on the moving
least squares (MLS) surface. It takes any three points on the plane and draws a Voronoi
diagram. Each Voronoi vertex is the center of a circle that touches three or more of the
points without any point inside. After obtaining the Voronoi diagram, it selects the center
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of the circle with the largest radius and projects it onto the MLS surface. The result is an
upsampled point. This process is repeated until the radius of the largest circle is smaller
than the specified threshold. The local approximation method is chosen to improve the
calculation efficiency.

Subsequently, Lipman et al. [21] proposed a non-parameterized point resampling
and surface reconstruction method and applied it to point cloud upsampling. The locally
optimal projection operator (LOP) is introduced to approximate the surface from the point
set data, which can be used to project any set of points onto the input point cloud. After
performing multiple LOP iterations on the point set, the initial point set can be upsampled.
The operator is non-parameterized and does not rely on estimating local normals, fitting
local planes, or using any other local parameter representation. This method works well
in situations in which the orientation is not clear and the geometry is complex. Huang
et al. [22] made modifications and extensions based on LOP. They proposed a weighted
locally optimal projection (WLOP), which adds local adaptive density weights to LOP to
make the original point cloud distribution more even. The irregular particle distribution
produced by the original LOP operator may cause some closed-cell defects when generating
the surface, and WLOP can improve this problem. Later, Preiner et al. [23] proposed a
WLOP operator based on a Gaussian mixture describing the input point density, called
Continuous LOP (CLOP). The Gaussian mixture model was used to describe the point
cloud density’s geometric maintenance method, making it suitable for more compact and
continuous point cloud representation. Compared with WLOP, CLOP adopts more particles
than input points, generating better point cloud upsampling results.

None of the above solutions consider how to deal with sharp features, and some
methods require reliable normals as part of the input. Thus, Huang et al. [24] proposed
a resampling method, edge-aware resampling (EAR), which relies on the median to deal
with noisy and possibly outlier point sets in an edge-aware manner. It resamples from the
edge so that a reliable normal can be calculated at the sampling point, based on which
the orientation point is inserted and projected onto the potential surface, which is an
unknown base surface defined by the input point set. Then, it determines the bottom
surface, direction, and distance of the projection. To correctly handle the sharp features,
the position information and normal information are added in the above steps to give
the projection operator bilateral and edge perception. Repeating the above-mentioned
upsampling process and incrementally filling the gaps along the edge, singular points can
reconstruct sharp features while increasing or decreasing the point density.

Wu et al. [25] defined the concept of deep points and proposed a consolidation method
based on deep points. Based on EAR, new samples close to the input data are projected
onto the basic surface using bilateral projection. This can effectively restore small geometric
details. In addition, bilateral normal smoothing can be performed to adjust the surface
points’ normals to better retain clear features on the merged surface.

Compared with LOP, the above two edge-sensing upsampling methods made specific
improvements but still have a certain degree of smooth surface transition. Dinesh et al. [26]
proposed a 3D point cloud super-resolution local algorithm based on the graph total
variation (GTV). For each point set, to promote piece-wise smoothness in reconstructed
2D surfaces while preserving the original point coordinates, the GTV target adjacent to the
surface normal was designed and the point cloud upsampling problem was defined as the
minimum GTV problem. The authors used part of the Stanford 3D scanning repository
data to verify the algorithm, and selected two evaluation criteria, point-to-point and point-
to-plane, to quantitatively evaluate the algorithm model.

In general, although optimization-based methods can achieve the purpose of up-
sampling point clouds to a certain extent, they are not data driven and have significant
limitations. They rely on priors, such as normal estimation and the hypothesis of smooth-
ness surfaces with fewer features. These methods also struggle with the preservation of
multiscale structures.
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4. Deep Learning-Based Point Cloud Upsampling

With the introduction of network models such as PointNet [6], PointNet++ [27], and
DGCNN [28], irregular point clouds can be directly used for training. To benefit from
this approach, the application of deep learning to point clouds has gradually become a
popular research topic, and point cloud upsampling models with deep learning have also
achieved a variety of results. Deep learning-based point cloud upsampling can be divided
into supervised point cloud upsampling and unsupervised point cloud upsampling.

4.1. Supervised Upsampling

Supervised point cloud upsampling is trained with both low-resolution point clouds
and corresponding high-resolution point clouds. Although these models are very different,
they are essentially composed of individual components, such as a feature extraction
component, an upsampling component, a point set generation component, and a loss
function. A schematic diagram of the network model is shown in Figure 2.

Figure 2. Schematic diagram of a point cloud upsampling model based on deep learning. C and C′

are the features of the point, r is the upsampling rate.

4.1.1. Feature Extraction Components

The first step in point cloud upsampling using deep learning models is to extract point
cloud features. Several different feature extraction components are introduced here.

PointNet-Based Feature Extraction

Yu et al. [5] proposed the first deep learning model for point cloud upsampling,
PU-Net, in which two feature learning strategies are used, hierarchical feature learning
and multi-level feature aggregation. For hierarchical feature learning, PU-Net adopts the
hierarchical feature learning mechanism proposed in PointNet++ [27] as the frontal part
of the network. In order to obtain more of the local context, PU-Net specifically uses a
relatively small grouping radius in each layer. For multi-level feature aggregation, PU-Net
first uses the interpolation method in PointNet++ to upsample the downsampled point
features in hierarchical feature learning and restore all original point features. Then it uses
convolution to reduce the dimensionality of the interpolated features at different levels to
the same dimension. Finally, the features of each level are concatenated as embedded point
features. DensePCR [29] and EC-Net [12] also use similar feature extraction strategies.

Zeng et al. [30] proposed spatial feature extractor block (SFE block) to replace Point-
Net++ to extract local features. Compared with PU-Net’s point feature embedding, SFE
block exploits local point relationships to extract rich local details. In particular, each point
in the local region has different effects on the local spatial features, which represent different
spatial distributions of the local geometry. After combining point-to-point features, the
extracted features from the point cloud and local geometry can be captured more accurately.

The feature extraction method based on PointNet can combine global and local features,
but requires an additional point set downsampling and interpolation process, which
consumes more computing resources.

Graph Convolution-Based Feature Extraction

Wang et al. [16] proposed a multi-step point cloud upsampling network (MPU), which
was inspired by dynamic graph convolution to define local neighborhoods in feature space.
Point features are extracted from local neighborhoods through a k-nearest neighbors (kNN)
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search based on feature similarity. This method does not require point set subsampling
to obtain long-range and non-local information. Specifically, the feature extraction unit
consists of a dense sequence of blocks, where the MPU converts the input into a fixed
number of features, uses a feature-based kNN to group the features, refines each grouped
feature through a tightly connected multilayer perceptron (MLP) chain, and finally obtains
point features through maxpooling. The MPU introduces dense connections within and
between blocks. This connection style enables explicit information reuse, which improves
the reconstruction accuracy while significantly reducing the model size. This feature
extraction method has applications in PU-GAN [13] and PU-EVA [31]. GC-PCU [32]
simplifies this feature extraction method into a shallow-and-wide structure; only two
extraction blocks are involved, and the number of channels is increased before activation.

Qian et al. [14] proposed a graph convolutional network-based point cloud upsampling
model, PU-GCN, which is a new Inception DenseGCN feature extractor, and integrates
the densely connected GCN (DenseGCN) module from DeepGCNs [33] into the Inception
module of GoogLeNet [34]. Inception DenseGCN first compresses features through a set of
MLPs to reduce the amount of computation, then passes the compressed features into two
parallel DenseGCNs and a global pooling layer, and finally splices to obtain multi-scale
feature information.

AR-GCN [20] also uses graph convolution blocks to extract features. Unlike MPU and
PU-GCN, it introduces residual connections between different convolution blocks instead
of dense connections. PUGeo-Net [15] adds a feature re-calibration module on the basis of
using DGCNN to extract features. Multi-scale features are recalibrated through one layer of
MLP and one layer of softmax. Zhao et al. [35] introduced a channel attention mechanism
in PUI-Net to extract features. They calculate the feature mean of each channel, and control
the features of each dimension through two fully connected layers, which are spliced with
the extracted features to form the output features.

The feature extraction method based on graph convolution can extract local and
global features more effectively, has fewer parameters and is easy to train, and has been
widely used.

4.1.2. Upsampling Component

The main function of the upsampling component is to expand the feature space,
which is equivalent to expanding the number of points, because points and features are
interchangeable. Figure 3 shows several common upsampling component frameworks.

Multi-branch upsampling. As the first deep learning-based point cloud upsampling
model, PU-Net [5] uses a multi-branch feature expansion module to expand features
through multiple parallel sub-pixel convolutional layers. SPE-Net [30] adopts a similar
upsampling strategy.

This approach can lead to agglomeration of points around the original point location,
which needs to be mitigated by introducing a repulsion loss. GC-PCU [32] introduces per-
turbation learning to try to solve this problem. It applies an MLP learning 2D perturbation
to each set of features after feature expansion. Different convolutions are used for each
set of features, so that the weighting parameters are not shared across the MLPs. In this
manner, the resulting perturbation depends on the shape of the input point cloud, and
thereby guarantees the geometric consistency. These perturbations are then appended to
the duplicated features for further residual learning. In residual learning, three convolution
operations are performed to map input features to residual values. Then the input features
are added to these residuals using skip connections to further refine the features, resulting
in expanded features.
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Figure 3. Several common upsampling component frameworks. C, C′ and C′′ are the features of the
point, r is the upsampling rate, w is the weight. Subfigures are described in detail in Section 4.1.2.

Multi-step upsampling. Multi-step supervision is a common practice in image super-
resolution. The MPU [16] introduces this mechanism into point cloud upsampling. The
MPU uses an upsampling unit that consists of a feature extraction unit and a feature
expansion unit (in Section 4.1.1). For the feature expansion component, the MPU first
duplicates the features, then assigns each duplicated feature a 1D code, with a value of
−1 or 1, to transform them to different locations. Finally, MPU compresses the duplicated
features using a set of MLPs as residuals, and adds residuals to input coordinates to generate
output points. The MPU introduces inter-level skip-connections between upsampling units
for features extracted with different scopes of the receptive fields. AR-GCN [20] adopts
the same upsampling strategy. An upsampling unit is formed using the residual graph
convolution block and the unpooling block to progressively upsample the point cloud.
The unpooling block predicts the residuals of the input and output point clouds through a
graph convolutional layer. This exploits the similarity between the input and output point
clouds, resulting in faster convergence and better performance.

This multi-step upsampling method has better geometric detail and lower noise, but
is computationally expensive, and requires more data to supervise the mid-term output of
the network.

NodeShuffle. PixelShuffle has achieved success in the field of image super-resolution,
and inspired PU-GCN [14] and led to the proposal of NodeShuffle. NodeShuffle uses graph
convolution layers to expand features, and rearranges the expanded features through
shuffle operations. NodeShuffle employs graph convolutions instead of CNNs to expand
features, enable the upsampler to encode spatial information from point neighborhoods,
and learn new points from the latent space, rather than simply duplicating the original
points. PU-GACNet [36] improves NodeShuffle and proposes edge-aware NodeShuffle
(ENS). The ENS module can not only smoothly expand local point features but also properly
emphasizes local edge features with graph convolution operations.

Up-and-down sampling. Li et al. [13] introduced the mechanism of up-and-down
sampling in PU-GAN. It upsamples the point feature to obtain the expanded feature,
which is then downsampled to compute the difference between the features before and
after upsampling. The difference is upsampled and added to the first-step expanded
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feature to self-correct the expanded feature. For the up-feature operator, PU-GAN first
duplicates the input features and adopts the 2D grid mechanism in FoldingNet [37] to
generate a unique 2D vector for each feature-map, and appends this vector to each point
feature. A self-attention unit and a set of MLPs are then used to generate output upsampled
features. The down-feature operator consists of a reshape operation and a set of MLPs.
Up-UNet [38] also applies upsampling operations. Up-UNet first upsamples the point
features through the up-feature operator, which can adjust the point features according to
the adjacent point features through the channel attention operator while extracting the local
point features. Then, in order to keep the consistency of the guided point cloud, the first
N point features are split from the upsampling features. The first down-feature operator
only conducts the sampling operation without changing the number of points to extract
adjacent features, which extracts neighboring information and builds the relation of closing
points. The second down-feature operator performs real downsampling to extract key point
and important point features. Then, through continuous upsampling operations, together
with extension paths, the network can propagate context information and reconstruct
extended features.

This approach is better able to mine the deep relationship between the generated point
cloud and the original point cloud, thus providing higher quality upsampling results.

Disentangled refinement. Li et al. [39] proposed a network model for disentangle-
ment refinement, Dis-PU, which divides upsampling into two steps, a feature expansion
unit and a spatial refinement unit. The feature expansion unit first expands the features
through regular expansion operations and generates rough point sets through a set of MLPs.
The spatial refiner is used to further fine-tune the spatial position of each point in the coarse
point set and generate a high-quality dense point set Q with uniform distribution. Coarse
but dense point clouds and associated features are fed into local and global refinement
units. The two outputs generated by the two refinement units are added to obtain the
refined feature map. Finally, residual learning is used to regress the offset Q at each point.

This upsampling strategy allows each sub-network to better focus on its specific
sub-goal, while complementing each other in the upsampling task.

Meta upscale. The previous methods need to predefine the upsampling factor, such as
training different upsampling modules for different factors, which is inefficient and limits
the application of the model. Ye et al. [40] proposed a model that can be sampled at any
scale, Meta-PU. Its backbone is based on a graph convolution network, which consists of
several residual graph convolution blocks. It dynamically adjusts the weight of the residual
graph convolution block by learning the meta-subnetwork. Then meta-convolution uses
these weights to extract features, adaptively customize the scale factor, and jointly train
multi-scale factors under the same model. PU-EVA [31] decouples the upsampling rate
from the network structure, and adopts an approximate solution based on edge vectors to
generate new points by encoding neighboring connectivity, enabling arbitrary upsampling
rates in one-shot training.

Others. The above several methods achieve the purpose of upsampling by extending
the features of the feature space, and other upsampling methods exist.

Wang et al. [41] proposed an interpolation-based point cloud upsampling model.
Firstly, the dense point cloud is obtained using an interpolation algorithm based on dynamic
point expansion, and then the coordinates of the insertion points are adjusted through
two network models. Interpolation algorithms often result in some side effects, such as
computational complexity, noise amplification, and blurred results. Therefore, the current
trend is to replace interpolation-based methods with learnable upsampling layers.

PUGeo-Net [15] achieves point cloud upsampling through a purely geometric sam-
pling method. It represents the 3D surface as a 2D parameter space, and then samples from
the parameter space, and finally uses the learned Jacobian matrix and normal displace-
ment to remap the amplified 2D parameter samples to the 3D surface. Considering that
computing and learning global parameters consume huge computational resources, the
researchers simplified the approach to a local parameterization problem for each point.
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This method takes into account the geometric features of the input shape. However, their
method requires additional supervision in the form of normals, which many point clouds
do not have, such as those produced by LiDAR sensors.

4.1.3. Point Set Generation

The point set generation component is the last step of the upsampling model, and
reconstructs the expanded features into 3D features. Compared with the feature extraction
and feature expansion components, this component is simpler in structure and usually con-
sists of one or more MLP layers, such as PU-Net [5], MPU [16], or PUI-Net [35]. Although
the component is simple in structure, there is still a requirement for improvement. Through
an edge distance regression component, EC-Net [12] learns the perturbation of the position
of the generated point cloud relative to the original point cloud to obtain distance features.
The distance feature and the extended feature are connected and input into the point set
generation component, and the point coordinates are obtained through two MLPs. This
helps to supplement missing edge points on the surface of regular objects. PU-GAN [13]
applies farthest point sampling after one layer of MLP, which can further improve the
uniformity of point set distribution. PU-EVA [31] obtains the regression displacement error
through the learned neighborhood features, adds it to the point coordinates obtained by
the MLP layer, and calculates the final coordinates of the output point.

4.1.4. Loss Function

The loss function is used to guide model optimization, resulting in higher quality
point clouds.

Reconstruction loss. The reconstruction loss constrains the geometry of the generated
points so that they are underlying on the target surface. Commonly used reconstruction
loss functions are Chamfer distance, earth mover’s distance, and Hausdorff distance.
They can measure the similarity between two point clouds. Their definitions are given in
Equations (1)–(3).

Uniform loss. To make the point cloud distribution more uniform, PU-GAN [13] pro-
poses a uniform loss. The uniform loss assumes that the neighboring points are hexagonal,
and the specific definition is given in Equation (6).

Repulsion loss. The point cloud generated by feature expansion is often located near
the original point. In order to solve this problem, a repulsion loss is proposed in PU-Net [5],
which is defined as follows:

Lrep =

S2

∑
i=0

∑
i′∈K(i)

η(||xi′ − xi||)w(||xi′ − xi||) (7)

where S2 is the number of output points, K(i) is the index set of the k-nearest neighbors of
point xi, and ||·|| is the L2-norm. η(r) = r is called the repulsion term, which is a decreasing
function to penalize xi if xi is located too close to other points in K(i). To penalize xi only
when it is too close to its neighboring points, PU-Net adds two restrictions: (i) only consider
points xi′ in the k-nearest neighborhood of xi, and (ii) use the fast-decaying weight function
w(r) in the repulsion loss, w(r) = e −r2/h2

.
Adversarial loss. In recent years, GANs [42] have received extensive attention due to

their powerful learning ability. A GAN consists of a generator and a discriminator. The
discriminator takes the generator output and ground truth as input, and distinguishes
whether each input is the generator output. The generator and discriminator are optimized
alternatively during GAN training. There are currently many models that use adversarial
learning to assist in training upsampling models, such as PU-GAN [13], AR-GCN [20],
PUSA-GAN [43], and CM-Net [44]. Usually, a least-squares loss [45] is used as an adversar-
ial loss:

LG =
1
2
[D(S1)− 1]2 (8)
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LD =
1
2
[
D(S1)

2 + (D(S2)− 1)2] (9)

where D(S1) is the confidence value predicted by the discriminator from generator output
S1. During the network training, the generator aims to generate S1 to fool the discriminator
by minimizing LG, while the discriminator aims to minimize LD to learn to distinguish S1
from S2.

Researchers usually combine multiple loss functions using weights to form a com-
pound loss to train the model.

4.2. Unsupervised Upsampling

Existing deep learning-based upsampling methods mainly focus on supervised learn-
ing. However, because it is difficult to collect point clouds of the same object with dif-
ferent resolutions, the low-resolution point clouds in the training set are often obtained
by downsampling the real point clouds. Therefore, a trained point cloud upsampling
model inevitably learns the reverse process of downsampling. To learn upsampling with-
out introducing manual downsampling priors, researchers have increasingly focused on
unsupervised upsampling models. We briefly introduce several existing unsupervised
point cloud upsampling models.

To learn the point cloud’s entire structure and local structure simultaneously, Liu
et al. [46] proposed a new autoencoder, local to global autoencoder (L2G-AE). The benefit
of local to global reconstruction design is that L2G-AE can be applied to the application
of unsupervised point cloud upsampling. This was the first method to use deep neural
networks for unsupervised upsampling. Unlike the results of PU-Net and EC-Net obtained
from the input upsampling in a supervised manner, L2G-AE obtains the local reconstruction
result and downsamples it to the target level. L2G-AE is not as effective as the first two
networks in some categories, due to its unsupervised learning method and the inability to
see ground truth labels.

Although L2G-AE can perform unsupervised upsampling by reconstructing over-
lapping local areas, it focuses on capturing global shape information through local to
global reconstruction. Limiting the network to capture the inherent upsampling mode
generates a high-quality upsampling point set. For the shortcomings in L2G-AE, Liu
et al. [47] proposed a new self-supervised point cloud upsampling model, SPU-Net. Its
framework includes two main parts: point feature extraction and point feature expansion
from coarse to fine. In point feature extraction, the self-attention module is combined with
the graph convolutional network. The context information within and between the local
regions is captured at the same time. In the point feature expansion, a hierarchical and
learnable folding strategy is introduced to generate an upsampled point set with a learnable
two-dimensional grid. To further optimize the noise points in the generated point set, the
author proposes a new self-projection optimization, which is associated with joint loss,
reconstruction loss, and uniform loss as a joint loss to promote self-supervised point cloud
upsampling. SPU-Net does not require 3D ground truth dense point cloud supervision and
can repeatedly upsample from the downsampled patch, is not limited by paired training
data, and can retain the original data distribution.

4.3. Other Methods of Point Cloud Upsampling Models

In addition to the mainstream upsampling models mentioned above, other techniques
can further improve point cloud upsampling models.

Zhang et al. [48] proposed a point cloud upsampling model that uses the entire object
model as the input and can learn potential features in the point cloud belonging to different
object categories. They studied the effects of random downsampling and curvature-based
downsampling, in addition to upsampling at different magnifications. Similarly, this model
also has some limitations. It cannot effectively process defective point cloud data because it
learns the entire object’s features, which limits its application to low-resolution inputs.
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Naik et al. [49] proposed a network structure that can learn point cloud normals
and color features. Its network structure is constructed as a variant of PU-Net, and other
features and coordinates of the point cloud are used as model inputs. Although the
network’s sampling effect is not outstanding, adding the normal and color of the point
cloud to the model for training can retain features other than the shape, which is a research
direction having high potential.

Wang et al. [50] proposed a sequential point cloud upsampling framework to gener-
ate fine-grained and temporally consistent upsampling results for dynamic point cloud
sequences. They extract features from multiple low-resolution point clouds (such as previ-
ous/current/subsequent frame) and fuse the features to perform an upsampling operation.
The model can capture multi-scale information of dynamic sequences and improve the
upsampling effect. This model also has significant limitations, including requiring a contin-
uous point cloud input and consuming a large quantity of computing resources.

5. Algorithm Comparison and Analysis

Since there is currently no recognized benchmark dataset, researchers typically choose
to collect 3D models from existing public datasets for algorithm training and testing. In
addition, there is no consensus on which evaluation metrics to use. This makes it difficult
to compare different models. We selected the dataset provided by PU-GAN [13], which
is relatively widely used. The dataset contains 147 3D models, in which 120 models were
randomly selected for training, and the rest were used for testing. For EAR, we employed
the released demo code to generate the results. For other deep learning-based upsampling
models, we used their public code and retrained their networks with the dataset provided
by PU-GAN. We conducted experiments on a NVIDIA 2080Ti GPU. We chose CD, HD, P2F
and uniformity as evaluation metrics to perform a simple comparative analysis among
different algorithms. The smaller the evaluation metrics, the better. The quantitative
comparison results are shown in Table 3.

Table 3. Quantitative comparison of different network models. Bold denotes the best performance.

Methods
Uniformity for Different p

(
10−3) P2F(

10−3) CD(
10−3) HD(

10−3) Param.

0.4% 0.6% 0.8% 1.0% 1.2% Kb

EAR [1] 16.84 20.27 23.98 26.15 29.18 5.82 0.52 7.37 -

PU-Net [5] 29.74 31.33 33.86 36.94 40.43 6.84 0.72 8.94 814.3

MPU [16] 7.51 7.41 8.35 9.62 11.13 3.96 0.49 6.11 76.2

PU-GAN [13] 3.38 3.49 3.44 3.91 4.64 2.33 0.28 4.64 684.2

PU-GCN [14] - - - - - 2.94 0.25 1.82 76.0

Dis-PU [39] - - - - - 4.14 0.31 4.21 -

PU-EVA [31] 2.26 2.10 2.51 3.16 3.94 - 0.27 3.07 -

L2G-AE [46] 24.61 34.61 44.86 55.31 64.94 39.37 6.31 63.23 -

SPU-Net [47] 4.82 5.14 5.86 6.88 8.13 6.85 0.41 2.18 -

It can be seen that, in addition to the first deep learning-based network model, PU-Net,
at present all methods based on deep learning are better than the best EAR algorithm based
on optimization. The method based on deep learning has become the mainstream research
direction of point cloud upsampling.

For uniformity, the results of PU-Net are worse than those of EAR, which is due to
its simple structure. Although the PointNet-based feature extraction method can combine
global and local features, it does not perform well, and a simple multi-branch feature
extension component also causes the generated points to be too similar to the input. At the
same time, the point set generation component does not do much more than a set of MLPs.
These factors lead to the poor uniformity of point clouds generated by PU-Net. The MPU
introduces a multi-step progressive upsampling and uses dynamic graph convolution to
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extract point cloud features, which greatly improves the performance of the algorithm.
PU-GAN further improves the performance of the upsampling algorithm in generating
uniform point clouds by introducing uniform loss and adversarial loss. However, the
GAN network is difficult to train and the design of a suitable discriminator is challenging.
Currently, the best performer is PU-EVA, which interpolates new points by endowing
geometric information of the target objects, and obtains the best results on the uniformity
evaluation metric.

The three metrics P2F, CD, and HD were used to evaluate the difference between the
generated point cloud and the original point cloud. PU-GAN achieves the best performance
on P2F, whereas PU-GCN achieves the best performance on CD and HD. The excellent
performance of PU-GAN on P2F benefits from the up-and-down sampling structure and
the adversarial training strategy, which makes the generated points closer to the surface of
the object. NodeShuffle adopted by PU-GCN makes the generated point cloud closer to the
original point cloud. In particular, for Dis-PU, although the results are not outstanding, the
proposed disentangled refinement framework has great potential, and further research on
this basis may achieve better results.

Considering the computation, PU-Net uses the most parameters, but does not per-
form well in terms of various evaluation metrics. MPU achieves better performance by
introducing dynamic graph convolution and multi-step upsampling, and greatly reduces
parameter usage. PU-GAN introduces adversarial loss to improve performance, but also
uses more parameters. PU-GCN uses a feature extraction block, Inception DenseGCN,
and an upsampling module, NodeShuffle, based on graph convolution; this achieves ex-
cellent performance with the fewest parameters and the best results on CD and HD. This
demonstrates the superiority of graph convolution in point cloud upsampling tasks.

Although it is not as good as the models mentioned above in experimental results,
SPU-Net, which is an unsupervised learning algorithm, still has merits. SPU-Net is not
constrained by supervised information, does not need to obtain the label information of
the dataset, and can directly obtain the characteristics of the data from the data itself and
then complete the upsampling task.

6. Conclusions and Future Work

In this paper, we conduct an extensive survey of point cloud upsampling algorithms.
We mainly introduce the algorithms based on optimization and those based on deep
learning. Although some achievements have been made in point cloud upsampling, there
are still many unsolved problems. The point cloud upsampling algorithm needs further
research and improvement. Future research can focus on the following aspects:

(1) Network structure. (a) Feature extraction: This is a meaningful research direction to
provide different scales of information for the upsampling component by improving
the feature extraction component. (b) Upsampling component: At present, there
are different forms of upsampling methods, and determining how to perform effec-
tive and efficient upsampling remains to be studied. (c) Coordinate reconstruction:
The existing coordinate reconstruction method is relatively simple, and a significant
amount of research should focus on exploration to improve the coordinate reconstruc-
tion method. (d) Optimizing the model structure: People are currently pursuing the
model’s performance more than paying attention to the size and calculation time of
the model. Reducing the model size and speeding up the prediction while maintaining
performance remains a problem.

(2) Loss function. In addition to designing a good network structure, improving the
loss function can also improve the performance of the algorithm. The loss function
establishes constraints between the low-resolution point cloud and the high-resolution
point cloud, and optimizes the upsampling process according to these constraints.
Commonly used loss functions include CD, EMD, and Uniform, which are often
weighted and combined into a joint loss function in practical applications. For point
cloud upsampling, exploring the potential relationship between low-resolution and
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high-resolution point clouds and seeking a more accurate and effective loss func-
tion is a promising research direction. For example, current point cloud upsam-
pling algorithms have difficulties in filling large holes. Exploring suitable inpainting
loss functions to constrain the generated point clouds to fill holes is a promising
research direction.

(3) Dataset. At present, there is no universally recognized benchmark dataset. The
datasets used by researchers for training and testing are very different, which is not
conducive to the comparison between various models and subsequent improvement.
Although very difficult, it is important to propose a high-quality benchmark dataset.

(4) Evaluation metrics. Evaluation metrics are one of the most basic components of
machine learning. If performance cannot be accurately measured, it will be difficult
for researchers to verify improvements. Point cloud upsampling is currently facing
such a problem and requires more accurate metrics. At present, there is no unified
and applied evaluation metrics for point cloud upsampling. Thus, more accurate
metrics for evaluating upsampling quality are urgently needed.

(5) Unsupervised upsampling. As mentioned in Section 4.2, it is difficult to collect
point clouds of the same object at different resolutions, and the low-resolution point
clouds in the training set are often obtained by downsampling the real point clouds.
Supervised learning may learn the inverse process of downsampling. Therefore,
unsupervised upsampling of point clouds is a promising research direction.

(6) Applications. Point cloud upsampling can assist other point cloud deep learning
tasks. For example, SAUM [51] uses a point cloud upsampling module to achieve
point cloud completion, and HPCR [52] uses point cloud upsampling to improve the
point cloud reconstruction effect. GeoNet [53] learns geodesic-aware representations
and achieves better results by integration with PU-Net. PointPWC-Net [54] uses an
upsampling method to effectively process 3D point cloud data and estimate the scene
flow from the 3D point cloud DUP-Net [55] uses an upsampling network to add
points to reconstruct the surface smoothness to defend against adversarial attacks
from other point cloud datasets. Varriale et al. [56] applied point cloud upsampling to
cultural heritage analysis, which reduced hardware equipment costs and improved
data accuracy. Applying point cloud upsampling to more specific scenes, such as
target tracking, scene rendering, video surveillance, and 3D reconstruction, will attract
increasing research attention.
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