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Abstract: The simultaneous optimization of aircraft shape and internal structural size for transonic
flight is excessively costly. The analysis of the governing physics is expensive, in particular for
highly flexible aircraft, and the search for optima using analysis samples can scale poorly with design
space size. This paper has a two-fold purpose targeting the scalable reduction of analysis sampling.
First, a new algorithm is explored for computing design derivatives by analytically linking objective
definition, geometry differentiation, mesh construction, and analysis. The analytic computation of
design derivatives enables the accurate use of more efficient gradient-based optimization methods.
Second, the scalability of a multi-fidelity algorithm is assessed for optimization in high dimensions.
This method leverages a multi-fidelity model during the optimization line search for further reduction
of sampling costs. The multi-fidelity optimization is demonstrated for cases of aerodynamic and
aeroelastic design considering both shape and structural sizing separately and in combination with
design spaces ranging from 17 to 321 variables, which would be infeasible using typical, surrogate-
based methods. The multi-fidelity optimization consistently led to a reduction in high-fidelity
evaluations compared to single-fidelity optimization for the aerodynamic shape problems, but
frequently resulted in a cost penalty for cases involving structural sizing. While the multi-fidelity
optimizer was successfully applied to problems with hundreds of variables, the results underscore
the importance of accurately computing gradients and motivate the extension of the approach to
constrained optimization methods.

Keywords: Multidisciplinary Design Optimization (MDO); multi-fidelity; aeroelasticity; aero-structural
design

1. Introduction

The simultaneous optimization of aircraft shape and internal structural size for tran-
sonic flight is excessively costly and a barrier to the design of efficient and effective aircraft.
Optimization cost scales poorly with the number of design parameters for many kinds
of algorithms, rendering design impractical when many parameters are needed, e.g., to
finely tailor wings aerodynamically and structurally for improved performance. Practical
design optimization of high-fidelity, physics-based models in such high-dimensional spaces
generally involves three ingredients: (1) the use of local, gradient-based optimization to
avoid excessive function evaluations, (2) the use of analytic differentiation and adjoint
variables to mitigate cost growth in the derivative calculation, and (3) the avoidance of
cheaper-to-analyze surrogate models owing to the high cost of constructing such surrogates
in high-dimensional spaces. This paper addresses methodological contributions impacting
each of these ingredients.

The first contribution relates to the analytic calculation of design derivatives with
adjoints, as parameterized by an analytical geometry description. The use of adjoint
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variables to compute derivatives of aerodynamic problems, and aeroelastic problems to
a lesser extent, has been well studied [1,2]. The cost of computing derivatives with these
variables has been seen to grow only very slowly with design space dimensionality. Martins
and coworkers [3–5] developed aeroelastic design optimization frameworks for inviscid and
viscous aerodynamics built on a custom analytic geometry, a vision that is extended here
with a general-purpose, design model (CAPS) [6] and geometry engine (ESP) [7] framework
supportive of multi-fidelity modeling [8]. This framework leverages two modern, fluid–
structure-coupling procedures, FUNtoFEM [9,10] and MPHYS [11]. This paper verifies the
design sensitivities produced by this framework for linear and nonlinear aerodynamics
and assesses the scalability of their calculation with respect to design complexity. With
ESP and CAPS being built on a true CAD kernel (OpenCASCADE [12]) and CAPS having
automatic aerodynamic and structural meshing capabilities, the choice of software tools
was motivated by the ability to compute sensitivities with respect to geometric parameters
that are meaningful to designers (e.g., twist or airfoil thickness), as opposed to mesh-based
shape parameterizations in the literature. At the same time, however, the approach also
introduces challenges such as those associated with rebuilding geometries or regenerating
unstructured grids throughout an optimization.

The second contribution is the quantification of the scalability of the multi-fidelity
Broyden–Fletcher–Goldfarb–Shannon (MF-BFGS) algorithm developed by Bryson and
Rumpfkeil [13,14]. As opposed to typical multi-fidelity optimization approaches optimiz-
ing over a sequence of surrogate models (of potentially high dimension), this algorithm
leverages high-fidelity gradient information to determine an objective-reducing search
direction and then utilizes a less expensive multi-fidelity model to reduce analysis costs
in the line search. In a study of several analytical functions with up to 25 design vari-
ables [14], Bryson and Rumpfkeil found MF-BFGS to scale better than multi-fidelity trust
region model management (TRMM) [15–17]. Bryson confirmed that the MF-BFGS method
generally out-performed BFGS for an aeroelastic model of a tailless lambda-wing vehicle
[13], but noted that the lack of analytic derivatives in that work made some optimization
results difficult to interpret. As this model was also limited in complexity to seven design
variables [13] (four aerodynamic and three structural), the authors in this paper sought a
more richly parameterized and representative model, as well as analytical derivatives with
which to assess MF-BFGS scalability.

To assess the scalability of analysis and optimization algorithms, the authors developed
parametric aerodynamic and aeroelastic benchmark models constructed from the high-
aspect-ratio, undeflected, Common Research Model configuration (uCRM-13.5) published
by the University of Michigan MDO Lab [5]. The development of the parametric model
supports an international effort chartered by the NATO Applied Vehicle Technology (AVT)
Panel, which is investigating the application of multi-fidelity methods to military vehicle
design [18]. This model, as well as the analysis methods applied by the AVT technical team
are available for broad distribution.

The remaining portion of this paper is decomposed into three sections. Section 2
describes the multidisciplinary analysis and optimization methods of relevance to this
paper, provides details regarding the construction of the aeroelastic uCRM model, and
links the work to the literature. Section 3 summarizes analysis and optimization results,
with an emphasis on scalability. The paper concludes in Section 4 with a results’ discussion
along with some recommendations for future research.

2. Modeling and Analysis

To serve as a benchmark aircraft design problem, the present work considers the unde-
flected high-aspect-ratio variant [5] (developed by the University of Michigan’s MDO lab)
of NASA’s Common Research Model (CRM). Beginning with an IGES CAD file (Available
at https://mdolab.engin.umich.edu/wiki/ucrm, accessed on 17 January 2020), the fuselage
was modeled in Engineering Sketch Pad (ESP) [7] as a series of ellipses along with several
rows of spline coordinates for the wing hump region (which are normalized based on

https://mdolab.engin.umich.edu/wiki/ucrm
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fuselage width and height and wing root chord and position). The tail is formed by lofting
through NACA airfoil sections. To generate the wing’s planform shape, six high-level
parameters (area, Yehudi break location, aspect ratio, leading edge sweep angle, inboard
trailing edge angle, and taper ratio) are used to compute lower-level parameters such as
chord lengths at the centerline, Yehudi break, and tip sections. Readers are referred to [18]
for baseline values of the high-level wing parameters and the equations used to compute
lower-level parameters.

Wing sectional shapes are parameterized using either NACA four-series airfoils or
Kulfan [19,20] airfoils. Kulfan airfoil parameterizations, also known as Class-Shape Trans-
formations (CSTs), unify shape and class functions so that critical parameters of an existing
airfoil class (e.g., leading edge radius or trailing edge angle) can be controlled, while Bern-
stein polynomial shape functions provide more general geometric variations. To obtain the
baseline geometry, each of the Kulfan parameterizations were fit to airfoil points from UM’s
surface geometry via the Parametric Legacy Unstructured Geometry System (PLUGS) [21],
a parametric geometry fitting capability in ESP. While any number of shape functions
can be used, this work uses either 7 or 17 design variables per spanwise section, which
produced maximum distances of the reference airfoil points to the generated geometry on
the order of 0.5% and 0.1% of chord, respectively. Meanwhile, the inner mold line geometry
is formed based on fractional spar locations at the wing–fuselage junction, Yehudi break,
and wing tip, as well as the numbers of ribs in the wing and fuselage (5 from the centerline
to wing–fuselage junction and 52 in the inboard and outboard sections). These inner and
outer mold line ESP geometries, illustrated in Figure 1, are built within a pyCAPS [22]
script, which can configure various analyses of rigid and aeroelastic physics at different
levels of fidelity.

Figure 1. Baseline ESP representation of the uCRM geometry, with grey and red showing outer mold
line (OML) and inner mold line (IML) geometries, respectively.

To assess a particular ESP geometry, pyCAPS provides an assortment of Analysis
Interface Modules (AIMs), which prepare various aerodynamic or aeroelastic analyses
based on the attributed geometry. This includes triangular, quadrilateral, or mixed mesh
generation for shell structures, unstructured surface and volume meshing for nonlinear
aerodynamic analyses (including surface grid sensitivities), and other input file generation
for analyses that utilize linear aerodynamics (e.g., Nastran [23]). Through the use of
several AIMs, basic analysis meshes and input files are generated for the parameterized
ESP geometry. Pre- and post-processing external to pyCAPS are used for additional
functionality. Details on particular aerodynamic or aeroelastic analyses are provided in
Section 2.2.

2.1. Design Parameterizations

In the present work, a particular uCRM design can be described by several sets of de-
sign variables, including shape (xs), structural (xt, i.e., shell thicknesses), and aerodynamic
(xa, e.g., cruise angle of attack). Different combinations of these parameter sets, which are
all normalized by bounds to range from 0 and 1, were considered so that optimization cost
trends can be assessed.
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Two optional sets of shape design variables may be optimized in this work. Each set
controls the sectional twist angles and airfoil shapes at the wing Yehudi and tip (where
Yehudi refers to where the trailing edge sweep angle changes near mid-span), with one
having 7 airfoil parameters per section, while the other has 17. The sets of initial parameters
were both fit to UM’s reference geometry, with the higher-dimensional parameterization
(and lower-dimensional one to a lesser extent) matching the reference geometry well at the
two sections. Figure 2a illustrates these sections on the low-fidelity ESP geometry (which
excludes the fuselage), with the inner mold line (IML) geometry shown for reference. In
this figure, the two outboard wing cross-sections may be varied, while the two wing root
sections and tail geometries remain fixed. Intermediate sectional shapes elsewhere in the
wing are formed based on linear interpolation of the centerline, wing–fuselage junction,
Yehudi, and tip airfoil sections. While an ESP model with many more airfoil sections has
been developed and tested (containing ten additional cross-sections with around 200 design
variables), it is not demonstrated in the present work. Furthermore, while the high-level
planform parameters described in [18] may also be varied, they were held fixed in the
present work.

(a) (b)

Figure 2. ESP parameterization of the uCRM. (a) ESP geometry used for LF analyses showing
designable airfoil shapes at the wing Yehudi and tip. (b) Faces of IML geometry components with
varying thickness (color variations only used to denote different components).

In each airfoil section, the design variables comprise a chordwise row of control point
z-coordinates above the airfoil, distances to a corresponding row of points below the airfoil,
and one variable that influences the trailing edge angle (all of which are normalized by
chord length). The lower bounds for the distance variables were set to −0.5, while the
upper bounds were set to their initial values, thus avoiding designs that are thinner than
the baseline design (approximately). When planform remains fixed, this approximately
ensures that the wing volume does not decrease, allowing the same amount of room for
fuel and other components (as well as the structure for rigid cases). Lower bounds for
the upper set of points were set to 0.05. The upper bound for the top leading edge point
was set to −0.05 minus the lower leading edge point’s initial value. This ensures that the
lower leading edge point cannot go above −0.05, thus avoiding designs with sharp leading
edges (which would presumably yield poor performance in off-design conditions). All
other upper bounds for the top points were set to 0.5. Bounds for the trailing edge variable
were −0.005 and 0.005. The sectional twist design variables at these two sections were
allowed to vary from −3 to 6 degrees (initial values being 0.837972 and 4.612053 degrees,
respectively).

The optional set of structural design variables includes the shell thickness of each rib,
skin, and spar face, each comprising aluminum with a Young’s modulus of 6.9× 1010 Pa
a Poisson’s ratio of 0.32, a density of 2700 kg/m3, and a yield stress of 2.76 × 108 Pa.
Figure 2b illustrates these different faces in the IML geometry. Nodes at the centerline are
assumed to be clamped (Neumann with zero displacement and rotation), while those at the
wing–fuselage junction are pinned (Dirichlet with zero displacement). Consisting of 114
top and bottom skins, 58 ribs, and 111 spars, with arbitrary initial thicknesses of 0.02, 0.03,
and 0.04 m, this set of design variables adds 283 design variables in total. When optimized,
upper and lower bounds were set to 0.2 and 0.005 m, respectively. Note that inclusion of
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high-level planform parameters would lead to a slightly varying number of IML faces (and
with it, structural design variables), as the IML’s rib faces always remain perpendicular
to the wingbox’s leading edge. While not an issue in the present work (because planform
variables were held fixed), it represents a challenge for this geometry parameterization
approach when compared to the more standard use of Free-Form Definition (FFD) design
variables. While the work of Brooks et al. [5] modeled stiffeners through a smeared stiffness
approach, the present work currently neglects the presence of stiffeners. Masses of the
engine, fuel, and other components were also neglected in the structural representation
(although they appear in the objective and constraint functions).

Finally, the aerodynamic design variables consist of only flow angle of attack at
cruise and, when considered, a pull-up maneuver. As discussed later in Section 2.4, flight
altitude assumptions were held fixed, with angle of attack providing an additional means of
satisfying constraints in the absence of control surfaces. Bounds were set to 0 and 6 degrees
for cruise angle of attack, while the optional maneuver angle of attack was allowed to vary
between 0 and 12 degrees.

2.2. Rigid and Aeroelastic Analysis with Design Sensitivities

Design optimization was carried out using analysis samples collected at two different
levels of aerodynamic modeling fidelity: “low-fidelity” linear modeling via the Vortex
Lattice Method (VLM) and “high-fidelity” nonlinear modeling via the Euler equations.
Designs were carried out for a transonic cruise condition where VLM is informative, but not
sufficiently accurate for preliminary design. At the target flight condition, steady responses
were sought about either the rigid uCRM configuration (aerodynamic responses) or the
flexible uCRM configuration (aeroelastic responses). For aeroelastic modeling, structural
analysis was carried out using an open-source finite-element analysis capability common
to both fidelity levels. The sensitivities of responses with respect to design parameters were
computed in all cases through an adjoint formulation, with the exception of the low-fidelity
(LF) rigid analysis model. Note that while Euler equations are more capable of modeling
compressibility effects than VLM (with VLM unable to predict shocks), they still neglect
viscous effects, which can lead to higher drag and phenomena such as flow separation. In
order to predict these effects, Reynolds-Averaged Navier–Stokes (RANS) equations could
be used, or the Euler-based loads could potentially be augmented with empirical drag
relations. In this work, the former was not done because the simulation cost was estimated
to be an order of magnitude higher than that of Euler; the latter was not done because
of the lack of analytic sensitivities. Whether analytic sensitivities are available of course
depends on the empirical drag’s formulation; however, methodologies such as that of
Mason’s flat-plate-based FRICTION code [24] compute friction drag based on wetted area
alone, yielding only a constant drag when the planform remains fixed. If the empirical
relation depends on other parameters such as sectional lift, then analytic derivatives would
likely require residual augmentation at the solver level of the CFD forward and reverse
analyses.

Figure 3 illustrates the general process flow for assessing a particular design.
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Figure 3. Extended Design Structure Matrix (XDSM) [25] depicting couplings of meshing and
analysis for multi-fidelity, multidisciplinary analysis. Multidisciplinary elements are shown in
green, structures in yellow, and aerodynamics in blue. Low-fidelity aerodynamics’ pre-processing is
distinguished from high-fidelity using dark blue with faded inputs and outputs.

Initially, a design variable vector and fidelity level are fed into a Python-based function
handle within a case recorder (which may evaluate the selected objective, inequality con-
straints, penalty-constrained objective, or any of their gradients). This is achieved through
the use of a pyCAPS-based script, which loads the ESP geometry and adjusts the shape
variables as needed, then rebuilds the OML geometry. Analysis pre-processing depending
on geometry is handled via pyCAPS Analysis Interface Modules (AIMs), responsible for
meshing and input generation. For optimization cases that only consider aerodynamics
over a rigid wing, linear (low-fidelity) and nonlinear (high-fidelity) analyses were consid-
ered. For linear aerodynamic analyses, the AVL [26] pyCAPS AIM is used to generate a
VLM representation of the wing and tail (with fuselage geometry excluded). When instead
evaluating the design with nonlinear, CFD-based aerodynamics, the AFLR4 and AFLR3 [27]
AIMs are used to generate unstructured meshes for the surface and volume, respectively,
with pyCAPS also providing geometric sensitivities on the surface mesh through the use of
the FUN3D [28] AIM.

For aeroelastic cases, the IML geometry is also rebuilt, with EGADS subsequently
providing a structural mesh. The Nastran AIM then generates a Nastran input deck based
on the specified structural boundary conditions and properties (including shell thicknesses,
if varied by the optimizer). PyNastran [29] is used to edit the input deck before being
loaded by the TACS [30] Bulk Data File (BDF) reader. For aeroelastic cases with linear
aerodynamics, a mesh for a different VLM solver is also generated based on the sectional
shapes given in the AVL input file. This separate VLM solver, a NASA-developed code
made alongside the MPHYS effort, is analytically differentiated by hand, so when gradients
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are needed, the VLM mesh generation process is finite differenced before running the
coupled adjoint analysis.

At this point, aerodynamic and structural meshes (if aeroelasticity is considered) are
available. For rigid analyses, the fluid solver is then run. For aeroelastic cases with VLM-
based aerodynamics, an MPHYS driver is used to obtain the static aeroelastic solution using
the two grids and various inputs such as atmospheric conditions and geometric sensitivities
(when evaluating gradients). For CFD-based aeroelastic cases, the same approach is taken
with a FUNtoFEM driver. In the end, the rigid or aeroelastic analyses provide low-level
quantities of interest such as force and moment coefficients, which will later be used in
higher-level objective and constraint functions (with chain-rule derivatives computed
as needed).

A summary of the analysis levels and associated software tools is given in Table 1. Further
details regarding the tools implementing these analyses are provided in Sections 2.2.1 and 2.2.2.

Table 1. Modeling fidelity by response type. (“*” denotes gradient computation through forward
differencing of tool chain.)

Response
Fidelities and Solvers

Low-Fidelity (LF) High-Fidelity (HF)

Rigid AVL [26] + Korn wave drag * FUN3D [28] Euler

Aeroelastic VLM + TACS [30] FUN3D [28] Euler + TACS [30]
via MPHYS [11] via FUNtoFEM [9,10]

2.2.1. Rigid Aerodynamic Analysis

Aerodynamic solutions of the rigid uCRM configuration in steady, transonic flight are
computed at two fidelity levels, as outlined in Table 1. The LF solution is computed with
a widely distributed, linear, VLM methodology known as Athena Vortex Lattice (AVL),
developed by Drela and Youngren [26]. Drag estimates produced by AVL are corrected for
wave drag using the Korn equation, applied in stripwise fashion using an aerodynamic
technology factor of 0.87 [31]. Since AVL is not analytically differentiated, the sensitivities of
the computed aerodynamic quantities with respect to the design parameters are computed
with one-sided finite differences using an appropriately chosen step size (a relatively large
normalized step size of 0.1, on account of AVL’s low decimal precision). While the cost
of computing these sensitivities grows linearly with the number of design variables, the
overall cost is small owing to the speed of LF analysis and is not considered a bottleneck
for the configuration studied herein. Furthermore, for aeroelastic analysis, a different VLM
formulation is used that is analytically differentiated.

Higher-fidelity aerodynamic solutions are computed with FUN3D [28], which can
solve the steady or unsteady Euler or Navier–Stokes equations on unstructured meshes.
The benefit of FUN3D over other available solvers is that flow equations are analytically
differentiated internally using the discrete adjoint approach, which permits the scalable
and accurate computation of design derivatives in a manner consistent with the discretized
governing equations.

An arbitrary design objective (or constraint function) f ≡ f (D, Qa, Xg) is assumed to
depend on the set of design variables, D ≡ (xs, xa)

T , the aerodynamic state variables, Qa,
and the computational mesh, Xg. For gradient-based optimization, the variation of J with
D is required, where Qa and Xg are dependent on D. Following the adjoint approach of
Nielsen and Park [32], the total derivative of f at a known rigid solution is expressed as

dJ
dD

=
∂ f
∂D

+ Λa
T ∂Ra

∂D
−Λg

T
(

∂Xg

∂D

)
surface

, (1)
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where J ≡ J (D, Qa, Xg, Λa, Λg) = f (D, Qa, Xg) + Λa
TRa + Λg

TRg is a Lagrangian
function, Ra(D, Qa, Xg) is the residual array of the discretized aerodynamic equations,
Rg(Xg, Xgsurface) is the residual array of the discretized mesh deformation equations, and
Λa and Λg are arrays of adjoint variables satisfying:(

∂Ra

∂Qa

)T
Λa = − ∂ f

∂Qa
(2)

and

KTΛg = − ∂ f
∂Xg
−
(

∂Ra

∂Xg

)T
Λa. (3)

Equations (1) and (3) assume FUN3D’s internal linear mesh deformation equation,
Rg ≡ KXg − Xgsurface = 0, where K is a linear matrix. By computing Λa and Λg for a
fixed number of design objectives (or constraint functions), design derivatives at known
rigid solutions can be computed from Equation (1) in a manner whose cost remains small
compared to the cost of computing a steady solution, even when the number of design
parameters becomes large.

2.2.2. Aeroelastic Analysis

To obtain aeroelastic responses and adjoint derivatives, the TACS [30] structural solver
is coupled to either FUN3D or a linear Vortex Lattice Method (VLM) augmented with an
empirical drag build-up. Currently, VLM-based coupling is performed through the use
of MPHYS [11], a collection of helper Python classes, which seeks to standardize, create,
and verify aerostructure couplings and derivatives in OpenMDAO [33] and is developed
by NASA, the University of Michigan, and Georgia Tech. Higher-fidelity coupling is
performed using FUNtoFEM [9,10], an effort led by NASA, AFRL, and Georgia Tech.

For comparison, aeroelastic solutions of the baseline uCRM configuration (using the
7-DoF airfoil parameterization) are computed with the LF and HF methodologies for steady,
transonic cruise (conditions are listed later in Section 2.2.2). Residuals of both analyses
dropped by roughly 8 orders of magnitude in 15 and 400 solver iterations for the LF and
HF methods, respectively (where the HF solver solves one flow iteration per coupling
iteration). The resulting lift and drag coefficients were 0.48836 and 0.022951 for LF analysis,
respectively, compared to 0.49733 and 0.020454 for HF, yielding differences of −1.8037%
and +12.2086%. Sample pressure and stress contours of the Euler- and VLM-based analyses
are shown in Figure 4. For clarity, the Euler- and VLM-based deflections are overlaid on
one another in Figure 5. It is evident that the Euler analysis generates a slightly larger lift
and generates somewhat larger aeroelastic deformations.

To avoid repetition, the description of aeroelastic analysis herein is limited to a review
of the HF methodology composed of FUN3D, TACS, FUNtoFEM, and CAPS/ESP. The
methodology of computing aeroelastic solutions and design derivatives with these methods
was developed by Kiviaho et al. [9] and Jacobson et al. [10,34]. Steady aeroelastic solutions
(the so-called primal problem) are iteratively computed with an under-relaxed nonlin-
ear block Gauss–Seidel (BGS) method until residual convergence, treating aerodynamic,
structural dynamic, mesh, and load/deformation residual equation sets as separate blocks;
see Algorithm 1 in [9]. FUN3D is used to step the solution of the aerodynamic and mesh
blocks (residuals Ra and Rg, respectively); TACS is used to step the structural dynamic
block (residual Rs); FUNtoFEM is used to drive the BGS method and execute the load
and displacement transfers using the MELD transfer scheme (residuals Rf, Rl, Rd, with
subscripts “l” and “f” denoting distributed and integrated loads, respectively). Finally,
CAPS/ESP is used to create the meshed geometry shared by these software components.
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(a) (b)

(c) (d)

Figure 4. Pressure coefficient and stress (normalized by yield stress) at the same statically deflected de-
sign. The aluminum skin, rib, and spar faces have arbitrary thicknesses of 2, 3, and 4 cm, respectively.
(a) Pressure coefficient, Euler. (b) Normalized von Mises stress, Euler. (c) Differential pressure
coefficient, VLM. (d) Normalized von Mises stress, VLM.

Figure 5. Outlines of the deflected geometries, showing the Euler model’s slightly larger deflection
(black: undeflected, blue: deflected Euler, red: deflected VLM).

To analytically obtain design derivatives, an adjoint problem corresponding to the BGS
scheme is solved for each cost function f (which, as in the rigid analysis described above,
may include lift, drag, pitching moment, or an aggregated stress response; the gradients
of the structural mass and center of gravity were assumed to be uncoupled). Following
Jacobson et al. [9,10,34], specific coupled adjoint equations are formed by the introduction
of a Lagrangian, with the notation consistent with that of rigid analysis:

J = f + Λa
TRa + Λg

TRg + Λs
TRs + Λf

TRf + Λl
TRl + Λd

TRd. (4)

Adjoint variables are computed by FUNtoFEM using a linear BGS scheme involving
a blocked system matrix composed of transposed matrices (as suggested by Equation (3),
which features the transpose of the linearized aerodynamic equations); see Algorithm 2
in [9]. One set of adjoint variables is computed at each point of the design space, and with
this set, the design derivatives are computed from [9]:

dJ
dD

=
∂ f
∂D

+ Λa
T ∂Ra

∂D
+ Λg

T ∂Rg

∂D
+ Λs

T ∂Rs

∂D
+ Λf

T ∂Rf
∂D

+ Λl
T ∂Rl

∂D
+ Λd

T ∂Rd
∂D

. (5)
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For the shape variables (differentiation with respect to Yehudi twist is examined below),
the derivatives are computed through a chaining of physical and geometric sensitivities
(i.e., the functional of interest with respect to mesh and the mesh with respect to the design
variables). Mesh quantities are broken into two sets, aerodynamic (Xga) and structural (Xgs)
(with Xga being aerodynamic surface nodes and Xgs being all structural nodes), leading to
the general expression for the design derivatives [9]:

dJ
dD

=

[
∂ f

∂Xga
+ Λa

T ∂Ra

∂Xga
+ Λg

T ∂Rg

∂Xga
+ Λs

T ∂Rs

∂Xga

+Λf
T ∂Rf

∂Xga
+ Λl

T ∂Rl
∂Xga

+ Λd
T ∂Rd

∂Xga
]
∂Xga

∂D

+ [
∂ f

∂Xgs
+ Λa

T ∂Ra

∂Xgs
+ Λg

T ∂Rg

∂Xgs
+ Λs

T ∂Rs

∂Xgs

+Λf
T ∂Rf

∂Xgs
+ Λl

T ∂Rl
∂Xgs

+ Λd
T ∂Rd

∂Xgs
]
∂Xgs

∂D
.

(6)

The dot product of the adjoint-computed surface vector with geometric sensitivities
(i.e., the sensitivities of the aerodynamic surface and structural grid coordinates with respect
to a shape design variable, otherwise referred to here as design velocities) then provides the
gradient of f with respect to a particular design variable. Here, structural design velocities
were neglected for both LF and HF analysis due to current limitations with ESP and with
the assumption that they are small compared to aerodynamic design velocities (see the
verification for the baseline analysis case presented in Section 2.3), thus providing:

dJ
dD

=

[
∂ f

∂Xga
+ Λa

T ∂Ra

∂Xga
+ Λg

T ∂Rg

∂Xga
+ Λs

T ∂Rs

∂Xga

+Λf
T ∂Rf

∂Xga
+ Λl

T ∂Rl
∂Xga

+ Λd
T ∂Rd

∂Xga
]
∂Xga

∂D

(7)

It should also be noted that for aeroelastic analyses in cruise, one primal and three
adjoint solutions are computed; when also considering a maneuver scenario, two primal
and five adjoint solutions are computed.

To illustrate how shape derivatives are computed with FUNtoFEM and ESP, compo-
nents of the HF sensitivity analysis are displayed in Figure 6 for the objective of the lift
coefficient and the Yehudi twist parameter. Figure 6a shows the chained, composite adjoint
array (the expression in brackets in Equation (7)) for wing lower (left) and upper (right)
surfaces, while the top three parts of Figure 6b show the aerodynamic design velocity
components

(
∂Xga/∂D

)
surface. The elements of the resulting dot product between adjoint

variables and design velocity components are shown at the bottom of Figure 6b.

2.3. Accuracy and Cost of Derivative Calculations

The adjoint-based process for computing design derivatives was verified by compari-
son of analytically computed derivatives to first-order-accurate, forward finite differences
for the baseline cruise case. The lift coefficient was selected as the objective, and derivatives
with respect to the Yehudi twist angle and the thickness of an arbitrarily selected structural
element, t42 (the 4th trailing edge spar outboard from the wing–fuselage junction), were
compared. Step sizes of 0.01 and 0.0001 were selected for the shape and sizing variables; to
settle on these values, increasingly small step sizes were tested until the gradients roughly
matched. Table 2 shows the resulting lift coefficient derivatives (an analytic derivative is
not available for the low-fidelity rigid case). While optimizations regenerate the aerody-
namic grids for each new design, the aerodynamic grids here were modified by smoothly
mapping the initial mesh onto the perturbed geometry. For aeroelastic cases, the perturbed
structural grids were generated by rebuilding and remeshing the IML geometry.
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(a) (b)

Figure 6. HF adjoint, geometric sensitivities, and their dot product around the baseline aeroelastic
solution. (a) Log-scale lift coefficient sensitivity. (b) Log-scale Yehudi twist sensitivity.

Table 2. Derivatives of the lift coefficient with respect to shape and thickness design variables. Finite
difference results are forward differenced with a relative step size of 0.01 for the shape variable and
0.0001 for the structural variable.

Variable Model Adjoint Finite
Difference Difference (%)

Yehudi twist

Low-fidelity
aeroelastic 0.04026 0.03796 6.06

High-fidelity
aeroelastic 0.05405 0.05394 0.203

High-fidelity
rigid 0.07958 0.07954 0.052

t42

Low-fidelity
aeroelastic 0.06436 0.06431 0.088

High-fidelity
aeroelastic 0.07160 0.07149 0.157

For both models, gradients with respect to structural thicknesses (as well as angles
of attack) were observed to be more precise when compared to shape derivatives for
the flexible vehicle. Because the shape derivative was found to be more accurate for the
rigid case, the increased error for the flexible case may in part be due to the neglect of
structural design velocities. To help estimate how large this source of error may be, the
HF aeroelastic model was also perturbed while fixing the IML’s geometry and mesh. This
resulted in a finite-difference gradient of 0.05409046, yielding an adjoint error of −0.0768%,
thus suggesting the structural shape gradient term in Equation (6) changes the gradient by
around −0.2796%. However, note that a mainly structural response such as an aggregated
stress constraint may have a larger discrepancy when compared to an aerodynamic load
such as the lift coefficient. For the LF model, imprecise geometric sensitivities are likely a
larger contributing factor. Nonetheless, the analytic derivatives compared reasonably well
to finite differences.

The computational efficiency of computing derivatives is next assessed for LF and HF
analyses using parameterizations of differing dimensionality. It was observed for the most
computationally demanding analysis case, HF aeroelastic analysis, that computational
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time scales slowly with the size of the design space. Results were measured in terms of
wall-clock time. Each HF run utilized 32 CPUs and involved 600 steps (or reaching a
consistent residual of 1× 10−10 for rigid runs); parallelism was exploited where possible.
The LF analysis typically involved 15 steps, but in some cases required 30 steps to achieve
convergence. Although the LF aeroelastic model is capable of parallel execution, 1 CPU
was used. With 41 chordwise nodes throughout (clustered near leading and trailing edges),
the LF aerodynamic meshes contained 2378 nodes and 2240 elements on the wing and
902 nodes and 800 elements on the tail. The (somewhat coarse) HF aerodynamic mesh
averaged roughly 350 K nodes and 2 M cells, respectively. Structural meshes for both
fidelities consisted of around 25 K nodes and 27 K CQUAD4 elements.

Figure 7 shows the mean wall-clock times required to prepare and run the models
versus the number of shape design variables for several parameterizations.

(a) (b)

(c) (d)

Figure 7. Mean case preparation and run times (wall-clock) as a function of shape design variables.
The adjoint-based analyses (Subplots (b–d)) include one forward and three adjoint solves. (a) Low-
fidelity rigid; (b) High-fidelity rigid; (c) Low-fidelity aeroelastic; (d) High-fidelity aeroelastic.

For the LF rigid model, both the preparation and run times scaled linearly with the
number of design variables, since the derivatives were computed with finite differences.
Note, however, that the VLM used for the aeroelastic analysis, which is analytically differ-
entiated, could be used instead; this has not yet been implemented and is a topic of future
work. Because the other models obtain gradients through adjoint solvers, run times only
depend weakly on the number of design variables. Note that for the sizing-only cases in
Figure 7d (i.e., cases with fewer than 300 design variables), model preparation must only
be performed once if the pyCAPS instance is retained in memory. Building the IML and
OML geometries and generating the aerodynamic and structural meshes made up almost
all of preparation time, while rewriting the TACS input deck with different property cards
was cheap in comparison.
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Case preparation times did, however, increase with dimensionality. While this was
most significant for the LF aeroelastic model, the finite differencing process to obtain
geometric sensitivities can be carried out in parallel. The case preparation time was also
significant for the rigid high-fidelity model. While other airfoil parameterizations in ESP
(e.g., PARSEC or NACA) are fully differentiated, Kulfan primitives still rely on internal
finite differencing to obtain aerodynamic design velocities, which slows down the process
marginally. A more significant increase in sensitivity calculation time was caused by the
union of the fuselage and wing, as well as how the fuselage hump is formed (through
splining with sketch primitives, which are also not differentiated). For instance, for the
highest-dimensional rigid model, the wing and tail alone required 1.7 min for building
the geometry, meshing, and computing surface mesh sensitivities. When done with the
fuselage included, this required 5.4 and 7.3 min when excluding and including the fuselage
hump, respectively. The structure’s wingbox also uses sketch primitives and a number of
intersections and unions, so further improvements in sensitivity speeds would likely be
required before including structural design velocities in the aeroelastic adjoint gradients.
Fortunately, the case preparation times were insignificant for the HF aeroelastic case (when
excluding structural design velocities) due to the much greater run times. A similar
situation would be expected for the RANS equations, which would require finer grids and
longer run times than for Euler.

2.4. Multi-Fidelity Design Benchmark Problems

Following the work of Brooks et al. [5], the present design problems focus on fuel burn
minimization with lift, moment, and stress constraints with the design specifications listed
in Table 3. The specifications are largely based on those of Brooks et al., with the exception
of takeoff and landing fuel burn percentages, which are based on the Transonic Truss-Braced
Wing (TTBW) work at Virginia Tech and NASA [31]. In addition, due to how the pitching
moment was constrained in this work, the engine diameter and mass, as well as center
of gravity locations of fixed and payload masses were also introduced. This was mainly
done due to how widely the planform may vary with certain shape parameterizations; for
instance, while the engine’s mass is not modeled in the structural analysis, it is at least
presumed to move with the planform geometry (wing Yehudi’s leading edge point), with
similar assumptions for fuel weight (inboard wing’s centroid).

Objective and Inequality Constraint Functions

The primary responses of interest (and their total derivatives) used in optimization
are fuel burn, load factor, and pitching moment at the beginning of cruise, as well as stress
and load factor constraints at an optional pull-up maneuver. Total fuel burn on a typical
mission, FBtotal, is computed as

FBtotal = FBtakeoff + FBcruise + FBlanding (8)

where takeoff and landing fuel burns are computed as percentages of the current weight,
while cruise fuel burn is computed using the Breguet range equation (with freestream
velocity V∞ in nmi/hr to match units of range and SFC):

FBlanding = LGW ×
(

100
100−%FB,landing

− 1

)
, (9)

FBcruise =
(

LGW + FBlanding

)
×
[

exp
(

Range× SFC× CD,cruise

V∞,cruise × CL,cruise

)
− 1
]

, (10)

and

FBtakeoff =
(

LGW + FBlanding + FBcruise

)
×
(

100
100−%FB,takeoff

− 1
)

, (11)
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where landing gross weight (LGW) is a factor of structural and fixed weights,

LGW = Wstruct + Wfixed + Wengine + Wpayload + Wfuel,reserve. (12)

Table 3. Fixed parameters used for the objective and constraints. Note that engine diameter and mass
(based on Boeing 777-200ER/GE90) are only used in the pitching moment constraints (by means of
thrust and mass).

Description Value Units

Design range 7725 nmi
Specific fuel consumption 0.53 lbm/(lbf*h)
Engine diameter 2.85 m
Takeoff fuel burn 2.5 % MTOW
Landing fuel burn 1.0 % Mass at end of cruise
Fixed mass 91,250 kg
Payload mass 34,000 kg
Reserve fuel mass 15,000 kg
Engine mass 16,564 kg
Structural mass for rigid cases 27,250 kg
Fixed mass center of gravity x-coordinate 0.569 Fraction of fuselage length
Payload mass center of gravity x-coordinate 0.569 Fraction of fuselage length
Maneuver load factor 2.5 g
KS stress factor of safety 1.5 -
Cruise Mach number 0.85 -
Cruise altitude 37,000 ft
Maneuver Mach number 0.64 -
Maneuver altitude Sea level -

This yields a maximum takeoff weight (MTOW) of

MTOW = LGW + FBtotal. (13)

The load factor at the beginning of cruise can then be computed as

ηcruise =
Li f tcruise

MTOW − FBtakeoff
(14)

whereas the load factor in the maneuver condition (when including structural sizing
variables) is computed as

ηmaneuver =
Li f tmaneuver

MTOW
(15)

The pitching moment at the start of cruise is computed as the sum of several compo-
nents about the nose,

Mtotal = Maero + Mthrust + Mfuel mass + Mstruct mass + Mengine mass + Mfixed mass (16)

where the aerodynamic moment is computed by the VLM or CFD aerodynamic models,

Maero =
1
2

ρ∞,cruiseV2
∞,cruisebrefSrefCMy ,cruise, (17)

and the pitching moment from thrust is computed using cruise drag force (thus, assuming
drag equals thrust) and presumed nacelle dimensions,

Mthrust = Dragcruise ×
(

znose − zCp ,engine

)
, (18)
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with the engine’s center of thrust (zCp ,engine) being positioned one-half the nacelle’s diameter
below the wing’s Yehudi leading edge point. The moment from fuel weight Mfuel mass is
computed as

Mfuel mass = ηcruise × (MTOW − FBtakeoff)×
(

xCg ,fuel − xnose

)
, (19)

with the fuel’s center of mass (xCg ,fuel) presumed to reside at the centroid of the wing’s
inboard section. The moment from structural weight is computed based on the cruise
load factor and the structure’s mass and center of gravity (which remain fixed for rigid
optimization cases and vary for aeroelastic cases). The moment from the engine’s mass is
computed using the cruise load factor and a presumed engine mass, with the engine’s center
of gravity assumed to reside at the wing Yehudi’s leading edge x-coordinate. The moment
from the remaining mass (Mfixed mass), including fixed and payload masses, is computed
based on the cruise load factor, presumed masses, and a somewhat arbitrarily chosen
center of gravity coordinate, which was chosen such that the rigid baseline geometry (with
arbitrary structural thicknesses) was trimmed. Finally, when designing structural gauges,
an aggregated stress constraint is computed by TACS using the discrete Kreisselmeier–
Steinhauser (KS) [35,36] formulation with a weighting of 50.

For design optimization, the objective function is total fuel burn normalized by
80,000 kg,

f =
FBtotal
80,000

(20)

so that it is roughly on the order of 1. Among the inequality constraints g ≤ 0, the first
constraint is the cruise load factor constraint,

g1 = 1− ηcruise, (21)

which ensures that lift is greater than or equal to weight at the beginning of cruise. To
ensure a total pitching moment of approximately zero at the start of cruise, two additional
constraints are enforced,

g2 =
Mtotal

Lengthfuselage
− 0.01 (22)

and

g3 = − Mtotal
Lengthfuselage

− 0.01, (23)

with the total moment being (somewhat arbitrarily) normalized by fuselage length to make
it on the order of 10 and a downward shift of 0.01 to help avoid optimization convergence
issues. When including the structural sizing variables, maneuver load factor, and KS stress
constraints,

g4 = 2.5− ηmaneuver (24)

and

g5 = KS− 1/1.5, (25)

are included so that the aggregated function (with a factor of safety of 1.5) is enforced at
a 2.5 g pull-up maneuver. Note that all responses and total derivatives can be computed
analytically using 2 forward solves (cruise, maneuver) and 5 adjoint solves (lift, drag, and
pitching moment at cruise and lift and stress at maneuver), in addition to structural mass
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and center of gravity sensitivities (computed without adjoint solves). When not including
structural sizing, this would require 1 forward solve and 3 adjoint solves.

It should be noted that, in reality, treating the load factor and moment constraints
(i.e., g2–g4) as equality constraints may be of greater interest. In the present work, this was
not done for several reasons. The primary reason is to avoid potential difficulties by an
optimizer. In addition, the optimum should, in theory, yield active load factor constraints
because of tradeoffs between aerodynamic performance and feasibility (for example, fuel
burn and load factor tend to trend in the same direction with increasing angle of attack).
Finally, if atmospheric conditions remain fixed, the load factor and moment will change
throughout a mission as fuel is expended, so enforcing equality constraints would still only
yield feasibility at one point in the mission.

Although the model tool chain was set up to handle inequality constraints directly, the
BFGS-based multi-fidelity optimizer in this work is inherently an unconstrained optimiza-
tion method. As such, when using that particular optimizer, quadratic penalty functions
are used to enforce the inequality constraints as

fpenalty = f + Pfactor ×max (g + Poffset, 0)2, (26)

where each constraint’s penalty factor and offset (to help avoid slightly violated constraints)
were somewhat arbitrarily set based on estimated values. The resulting values are given
in Table 4. Note that this incurs an additional offset for the moment constraint; serving
different purposes, this simply ensures that an optimizer with direct constraint handling
would enforce a similar constraint as a penalty-constrained one.

Table 4. Penalty factors and offsets for the different inequality constraints.

Description Equations Factor Offset

Cruise load factor (21) 25 −0.001
Cruise moment (22) and (23) 100 −0.0005

Maneuver load factor (24) 25 −0.001
KS stress at maneuver (25) 25 −0.001

2.5. Multi-Fidelity, Gradient-Based Design Optimization

While global, derivative-free optimization methods such as surrogate-based or genetic
algorithms are well-suited for multimodal, noisy, or non-differentiable design problems,
gradient-based methods are ultimately needed when optimizing an expensive function
with tens of design variables or more. For such cases, methods based on BFGS or Sequential
Quadratic Programming (SQP) tend to be some of the most efficient [37], with SQP having
the advantage of direct constraint handling. Such methods scale reasonably well with the
number of design variables, but may still require upwards of 100 high-fidelity evaluations
to reach an optimum. The use of multi-fidelity methods therefore becomes attractive if they
have the potential to reduce the total number of high-fidelity evaluations required.

The multi-fidelity BFGS (MF-BFGS) method presented in [13,14] (previously termed
the unified multi-fidelity or multi-fidelity quasi-Newton) is used to demonstrate gradient-
based, multi-fidelity, aero-structural design optimization. The approach is an unconstrained
optimization method similar to the standard, single-fidelity BFGS quasi-Newton method,
necessitating the constraint penalty function. Extension of the multi-fidelity concepts to
constrained optimization is an area for future research. Figure 8 provides an XDSM diagram
outlining the multi-fidelity optimization process.
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1 : Approx.
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8, 11 : HF

Objective
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Figure 8. Extended design structure matrix diagram of the multi-fidelity BFGS process. Blue elements
represent iterative processes (i.e., optimization convergence or line searching); red represents the
fidelity switching decision; green represents the calculation of values involved in the optimization
process.

A goal of this approach is to improve the scalability of multi-fidelity optimization
with respect to the number of design variables. Popular methods such as Trust Region
Model Management (TRMM) [15–17] and efficient global optimization [38] rely on building
accurate surrogate models (or surrogate corrections to a lower-fidelity analysis) over as large
a region as possible. Consequently, these approaches suffer from the curse of dimensionality
inherent to the underlying surrogate methods. In contrast, the MF-BFGS method leverages
the concept of an expected point (the result of a bound-constrained quadratic sub-problem,
Step 2) to construct a localized, two-point correction (Step 4) focused along the search
direction. MF-BFGS leverages high-fidelity gradient information (Step 8) to construct
an approximate Hessian (Step 1) and find an objective-reducing search direction. While
the method uses high-fidelity gradients and search directions, the line search (Step 5)
implements corrected low-fidelity data (Step 6) with the goal of reducing overall cost.
Another advantage of approximating the Hessian with high-fidelity gradients is that if
multi-fidelity optimization fails to make progress, the process can revert to high-fidelity
optimization (Step 10) with no loss of data.

The numerical implementation of MF-BFGS is a Python wrapper around a slight
modification of Nocedal’s Limited-memory, Bound-constrained BFGS software (L-BFGS-
B) [39,40], compiled using the F2Py Fortran-to-Python compiler. The modifications were
required to break the iteration and manage the use of high- and multi-fidelity data within
the optimization, as well as to manipulate the design data in the case of rejected steps. For
a single fidelity of analysis, the method reduces to the original L-BFGS-B implementation.
The algorithm minimizes a quadratic approximate model at the kth iterate, m(k)(D) [39],

m(k)(D) = fh

(
D(k)

)
+∇ f (k)Th

(
D−D(k)

)
+

1
2

(
D−D(k)

)T
H(k)

(
D−D(k)

)
, (27)
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where the objective function and its gradient, fh and ∇ fh, are evaluated using the high-
fidelity analysis, and the positive definite approximate Hessian H is approximated via the
BFGS update over a series of steps, as described in [39,40] (omitted here for conciseness).
With the search direction defined by the the step minimizing this sub-problem, subject to
the side constraints on the design variables, a line search may be performed using either
the high-fidelity function or a multi-fidelity correction to the low-fidelity function. The
optimization begins with the multi-fidelity line search and reverts to high-fidelity once the
gradient norm is reduced to a user-selected level or the multi-fidelity trust region becomes
too small to make progress, also defined by the user. In this work, the transition criteria are
a gradient norm of 1× 10−3 or a trust region smaller than 0.001 (for normalized variables)
for three successive iterations, which is aggressive in attempting to find a small trust region
where the multi-fidelity model is sufficiently accurate rather than resorting to high-fidelity
optimization. The reader is reminded here that the gradient and approximate Hessian
always use the high-fidelity function; thus, the transition to single-fidelity optimization
occurs as if the high-fidelity function was used from the start.

While any method that enforces first-order consistency (i.e., function value and gra-
dients) at the current design point may be used to construct the low-fidelity correction
function, this and prior aero-structural design applications [41] implement the gradient-
enhanced, Multi-Fidelity Polynomial Chaos (MFPC) implementation presented in [13,42].
While polynomial chaos itself suffers from the curse of dimensionality, similar to other
surrogate modeling techniques, here, the polynomials are limited to first order to ameliorate
cost growth. Using both the high- and low-fidelity function and gradient information at
two points (the selection of points will be explained momentarily), first-order additive and
multiplicative corrective terms are computed in the form

fh(D)− fl(D) = α̂(D) fl(D) + δ̂(D). (28)

The linear polynomials α̂ and δ̂ are estimated, while fl is the true low-fidelity compu-
tation. In typical MFPC usage, the high-fidelity function itself would be approximated, f̂h,
but here, only the difference between the high- and low-fidelity functions is approximated.

To ensure convergence of the multi-fidelity optimizer [14], one endpoint of the model
is always the current design point. The other endpoint is the point nearest the expected
point (in Euclidean distance) selected from the data previously computed over the course
of optimization. It should be noted here that inside the optimization, the design variables
are normalized to 0 ≤ Di ≤ 1. Limiting the corrective functions to first-order polynomials,
the low-fidelity model can be made first-order, consistent with the high-fidelity model at
both points. During the first iteration, when there is no prior data, the high-fidelity function
is also computed at the expected point to form the multi-fidelity approximation. Hence,
the first iteration costs at least two high-fidelity function gradient evaluations (plus the
corrected low-fidelity line search), while the high-fidelity model is evaluated only once per
subsequent iteration.

Because inaccuracies in the multi-fidelity model may lead the optimizer to attempt
a step that increases the high-fidelity objective, an accept–reject decision is adopted from
TRMM (part of driver Step 9). If an attempted step increases the objective, the iteration is
repeated from the same design point. However, the additional data improve the situation
in two ways. First, the data from the failed step are added to the approximate Hessian
to improve future steps, as outlined in [14]. Second, the rejected point is likely near the
subsequent expected point and can improve the multi-fidelity correction.

The MF-BFGS also adopts the notion of a trust region from TRMM. This is applied
as box constraints on computing the expected point from the quadratic sub-problem. The
trust region is potentially adjusted each iteration using a heuristic based on the ratio ρ of
expected improvement to actual improvement,
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ρ(k) =
f̂h

(
D(k+1)

)
− fh

(
D(k)

)
fh
(
D(k+1)

)
− fh

(
D(k)

) . (29)

If the accuracy ratio is too small, the trust region size ∆ is halved. If it is near one, and
the new point lies on the trust region boundary; the size is doubled. Otherwise, the trust
region size remains the same.

∆(k+1) =


0.5∆(k) if ρ(k) ≤ 0.25
∆(k) if 0.25 < ρ(k) ≤ 0.75
γ∆(k) if 0.75 < ρ(k) ≤ 1.25
∆(k) if 1.25 < ρ(k)

(30)

γ =

{
2 if ‖D(k+1) −D(k)‖∞ = ∆(k)

1 if ‖D(k+1) −D(k)‖∞ < ∆(k).
(31)

The scaling term γ is based on whether or not the distance from the current point to
the next point is equal to the trust region size in any one dimension. These coefficients
are selected to be consistent with other examples in the literature (e.g., [16,17]). Many
implementations allow the trust region to grow in size for any ratio greater than one,
indicating the objective function reduced by more than anticipated. The contention here,
however, is that maintaining the trust region when the ratio is too large emphasizes finding
a size where the multi-fidelity correction will be accurate in subsequent iterations.

The MF-BFGS implementation was demonstrated on a collection of simple test func-
tions in [14]. Across 105 combinations of test functions, dimensionalities, and starting
points, the MF-BFGS required fewer high-fidelity function calls than single-fidelity BFGS
in 52% of cases and the same number of evaluations 7% of cases. Compared to TRMM also
using the multi-fidelity polynomial chaos, MF-BFGS required fewer or the same number
of high-fidelity evaluations in 66% of cases, though MF-BFGS performed more favorably
as dimensionality increased up to twenty-five dimensions. Similar performance was also
achieved using gradient-enhanced, multi-fidelity kriging rather than polynomial chaos in
MF-BFGS, though problems were limited to five dimensions.

MF-BFGS was also demonstrated on a simplified, seven-dimensional aero-structural
problem in [41]. While multi-fidelity performance relative to high-fidelity optimization
varied over the course of optimization, MF-BFGS achieved greater objective reductions
at lower cost in early iterations for three of four cases and found superior designs in
half of cases given a fixed budget. However, the lack of analytic gradients necessitated
finite differencing, and noisy gradients were believed to hinder the convergence of the
optimization in both high- and multi-fidelity.

3. Results

Design optimization results are provided in this section for rigid and aeroelastic
configurations comparing the single-fidelity BFGS and MF-BFGS algorithms. Section 3.1
summarizes the three primary design optimization cases. In Section 3.2, the impact of
using constraint penalty functions with the BFGS-based optimizers is evaluated relative to
the single-fidelity Sequential Least-Squares Quadratic-Programming (SLSQP)-constrained
optimization method. Then, single- and multi-fidelity BFGS optimization results are
compared for shape parameters in Section 3.3, for structural sizes in Section 3.4, and for
shape and sizing parameters in Section 3.5.

3.1. Summary of Optimization Cases

For reference, Table 5 lists the different sets of design variables described in Section 2.1.
Airfoil parameterizations may use either 7 or 17 DoF at two spanwise locations (wing
Yehudi and tip). Twist variables xst consider twist at the same spanwise stations. Aerody-
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namic design variables consist of angle of attack at cruise and maneuver (if considered).
Benchmark problems are labeled in Table 6 using the different parameter sets and inequality
constraints defined in the previous section, with all using Equation (20) as an objective
function. Note that the sizing-only cases, designated P2a and P2b, have the same number
of design variables and only vary based on the airfoil geometry.

Table 5. Design variable designations for the different parameterizations.

Shape
Structural Aerodynamic

Airfoil Twist

Vector name xsa xst xt xa

Dimensionality 14 (7 DoF) or 34 (17 DoF) 2 283 1 or 2

Table 6. Optimization problem labels. Problems 2 and 3 are only solved with aeroelastic models
rather than rigid as well, as they include structural sizing and stress constraints.

Case DVs Airfoil DoF # DVs Constraint Equations

P1a {xsa , xst , xa} 7 17 (21)–(23)
P1b {xsa , xst , xa} 17 37 (21)–(23)
P2a {xt, xa} 7 285 (21)–(25)
P2b {xt, xa} 17 285 (21)–(25)
P3a {xsa , xst , xt, xa} 7 301 (21)–(25)
P3b {xsa , xst , xt, xa} 17 321 (21)–(25)

3.2. Sample Optimization and Consideration of Constraint Handling

To first demonstrate how a typical optimizer might perform for the particular model
and design problem, problem P1a was solved using the high- and low-fidelity aeroelastic
models. The SLSQP algorithm in OpenMDAO’s SciPy wrapper was used as an optimizer.
Figure 9 shows the convergence histories of the objective function and maximum constraint
value. The low-fidelity run required 8 gradient calls and 23 non-gradient calls. However,
the final load factor constraint was not active as expected, which could indicate issues with
gradient accuracy or possibly numerical noise (which, to some extent, would also appear
in the high-fidelity design space due to the regeneration of unstructured meshes). The
high-fidelity run used 23 gradient calls and 62 non-gradient calls. Interestingly, the low-
fidelity solution yielded a somewhat larger fuel burn (84,747 kg compared to 64,016), which
more closely matches the solution reported by Brooks et al. [5] (84,072 kg). Presumably, a
RANS solution would more closely match that of Brooks and the VLM method, due to the
presence of viscous drag.

Because the BFGS-based optimizer considered below does not handle inequality
constraints directly and thus relies on penalty constraints, the high-fidelity SLSQP case
was also run using the same penalty constraint formulation, taking 20 gradient calls and
53 non-gradient calls. Unsurprisingly, the case ultimately required more iterations to
converge, with the objective converging much more slowly, although the feasible design
space was located more quickly. Unfortunately, the final solution found did not match that
of the direct constraint handling case. This could be due to noise from remeshing or simply
indicate a complex design space with local minima or very flat regions.
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(a) (b)

Figure 9. Convergence histories of aeroelastic problem P1a using SLSQP. (a) Objective; (b) Feasibility.

For reference, Figure 10 shows the resulting airfoil shapes at the Yehudi and tip wing
sections. At the tip section, the baseline and directly constrained high-fidelity results
appear to be quite similar, while larger differences can be seen in the low-fidelity and
penalty-constrained high-fidelity results. While the low-fidelity result (which has higher
twist and less camber) could simply be due to the lower fidelity physics (in combination
with moment constraints, which would effectively influence chordwise and spanwise lift
distributions), the penalty-constrained high-fidelity result (which has significantly different
trailing edge camber) may be due more to numerical difficulties introduced by the penalty
formulation and weights. As seen in the convergence histories, it is evident that this result
followed a significantly different optimization trajectory than the directly constrained result,
with the optimizer being strongly led towards a feasible design space with less emphasis
on objective minimization. Traversing to the directly constrained optimum may then be
difficult depending on the design space curvature; while moment constraints likely play
a role in this, shock formations between the linearly interpolated Yehudi and tip sections
may also be influencing lift and drag. Nonetheless, baseline and high-fidelity optimized
results at the Yehudi section are fairly similar, with larger differences seen in the low-fidelity
result. Here, the VLM geometry appears to be much thicker with significant differences in
leading edge curvature. Unfortunately, it is unclear whether this is due more to physics
or inaccuracies in shape derivatives (which has primarily been attributed to imprecise
geometric sensitivities).

(a) (b)

Figure 10. Baseline and optimized geometries. For reference, the low- and high-fidelity angles of
attack are 1.339148 and 0.8001988 degrees, respectively. (a) Yehudi; (b) Tip.

3.3. Airfoil Design

Figure 11 shows the single- and multi-fidelity convergence histories of the BFGS-based
optimizers for the airfoil optimization cases (labeled problems P1a and P1b in Table 6)
using rigid and aeroelastic analyses.
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(a) (b)

(c) (d)

Figure 11. Optimization results for airfoil design cases. In (a–c), solid and dotted lines represent
single- and multi-fidelity results, respectively. (a) Penalty-constrained objective; (b) Feasibility;
(c) Percent reduction, all; (d) Percent reduction, difference.

(The penalty-constrained, single-fidelity BFGS was selected as an algorithmically
similar reference for MF-BFGS rather than SLSQP.) In particular, Figure 11a shows the
penalty-constrained objective function versus the number of high-fidelity evaluations, with
solid and dotted lines representing single- and multi-fidelity optimizers, respectively. This
is the quantity directly minimized by the unconstrained optimizers. To illustrate how well
the inequality constraints are satisfied through the penalty functions, Figure 11b shows the
maximum constraint value for each case, which generally drops by roughly two orders of
magnitude throughout the optimizations. Figure 11c shows the reduction in the penalty-
constrained objective as a percentage of each case’s initial value. As a way to quantify the
performance of using multiple fidelities, Figure 11d shows the difference of reductions
(multi-fidelity minus single-fidelity). At any given design evaluation, a positive value
of this metric indicates an advantage of using multiple fidelities over the single-fidelity
counterpart, since it means the high-fidelity design from the multi-fidelity optimizer is
better than that of the single-fidelity for the same computational cost (assuming negligible
low-fidelity model cost). Note that it will approach zero if the single- and multi-fidelity
optimizers both reach the same solution.

In general, all four cases (rigid and aeroelastic P1a and P1b) showed some benefits early
in the optimization process (i.e., for around 3–10 high-fidelity evaluations). For example, at
around five evaluations, three out of four cases were roughly 5–10% ahead of the single-
fidelity optimizer. By 20 evaluations, the metric for some of the cases dipped below zero
slightly, but generally approached zero (indicating both optimizers were approaching the
same solution), with the exception of the higher-dimensional rigid case. Unfortunately, for
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this particular case, the multi-fidelity optimizer stopped at an optimum that was roughly
1.8% worse than that of the single-fidelity. It is unclear if this was due to errors in gradients,
design space complexity (and constraint handling through penalty functions), or numerical
noise due to the regeneration of unstructured meshes. Although this stalling could be
algorithmic, it was presumed to be unlikely as the penalty-constrained SLSQP result in
the previous section also appeared to reach a worse solution than SLSQP with direct
constraint handling.

3.4. Structural Sizing

Figure 12 shows the same convergence metrics for the sizing-only cases (P2a and P2b
in Table 6). While both black and blue cases have the same number of design variables
(283 structural thicknesses with two angles of attack), they vary only by the airfoil parame-
terization numbers of DoF, with the 17-DoF one providing a slightly better match with the
original CAD geometry. Note that while all other parameterizations include shape variables
with remeshed OML and IML, this case uses the same meshes throughout, thus avoiding
any numerical noise in the design space caused by different spatial discretizations. The
IML meshes are also identical, with analyses varying only by the aerodynamics coupled
to the structure. In Figure 12a–c, there do not seem to be major differences in either the
convergence rates or final designs obtained. Figure 12d also shows mixed results, with
the 17-DoF multi-fidelity case initially overtaking single-fidelity quickly, but subsequently
oscillating near and approaching zero; meanwhile, the 7-DoF case hovers below zero in the
beginning, but ultimately converges to zero.

(a) (b)

(c) (d)

Figure 12. Optimization results for structural sizing cases, fixed airfoils. (a) Penalty-constrained
objective; (b) Feasibility; (c) Percent reduction, all; (d) Percent reduction, difference.
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3.5. Simultaneous Shape and Structural Design

Figure 13 shows the convergence metrics for problems P3a and P3b, which consider
both shape and sizing design variables.

In general, the optimization trajectories were similar to those of the sizing-only
cases, with both single- and multi-fidelity optimizers appearing to reach similar solu-
tions. Figure 13a,b, however, appear to have more flat regions. This may in part be due to
the added noise from remeshing the OML geometry rather than morphing the same mesh
throughout the design space. Another possibility is that the neglect of structural design
velocities caused larger inaccuracies in the stress constraint’s gradient when compared
to aerodynamic load gradients. In terms of multi-fidelity benefits, similar metrics are
observed in Figure 13d when compared to the sizing-only case. In particular, the 17-DoF
case initially does much better, but soon dips below zero before converging to roughly zero.
Meanwhile, the 7-DoF case initially drops below zero before converging to zero. This is
perhaps unsurprising, as 285 of the design variables are the same as the previous cases,
with only 16 or 36 shape variables being added. Thus, any difficulties the optimizers had in
the previous design spaces (P2a and P2b) are likely to be present in the current ones.

(a) (b)

(c) (d)

Figure 13. Optimization results for structural sizing cases, variable airfoils. (a) Penalty-constrained
objective; (b) Feasibility; (c) Percent reduction, all; (d) Percent reduction, difference.

3.6. Summary and Comparison

For reference, Table 7 lists the initial and final fuel burns and constraint values for
the rigid cases (best observed design from either BFGS-based optimizer), while Table 8
lists them for the aeroelastic cases. Note that the initial designs are not trimmed and
could therefore predict significantly different fuel burns when evaluated at level cruise. In
particular, the trimmed rigid baseline designs yield fuel burns of 134,318 and 95,035 kg
for the 7- and 17-DoF rigid cases, with the corresponding aeroelastic values being 159,717
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and 84,744 kg. Among the rigid cases, the higher-dimensional airfoil parameterization
yielded slightly lower initial and final fuel burn values when compared to the lower
dimensional one. This is to be expected, as the baseline 17-DoF geometry yielded slightly
better aerodynamic performance; among optimized geometries, it was able to more finely
tune the geometry to improve performance.

Table 7. Summary of rigid optimization cases (subscript “0” and superscript “*” denote initial and
final designs.)

Problem FB0 (kg) FB* (kg) Initial Constraints Final Constraints

P1a 84,166.8 51,899.3 (−38.34%)
5.0709× 10−1 8.4127× 10−3

−3.6960× 10−2 −3.2446× 10−2

1.6960× 10−2 1.2446× 10−2

P1b 79,272.0 48,874.9 (−38.35%)
2.5849× 10−1 2.5544× 10−3

−5.4214× 10−2 −3.6096× 10−2

3.4214× 10−2 1.6096× 10−2

Table 8. Summary of aeroelastic optimization cases.

Problem FB0 (kg) FB* (kg) Initial Constraints Final Constraints

P1a 109,846.1 65,360.0 (−40.50%)
7.8224× 10−1 1.4390× 10−2

−1.8457× 10−2 −2.0931× 10−2

−1.5429× 10−3 9.3123× 10−4

P1b 77,726.8 60,008.4 (−22.80%)
6.4153× 10−1 9.9342× 10−3

−2.0298× 10−2 −2.9444× 10−2

2.9824× 10−4 9.4445× 10−3

P2a 109,846.1 93,845.3 (−14.57%)

7.8224× 10−1 6.8507× 10−2

−1.8457× 10−2 −1.7051× 10−2

−1.5429× 10−3 −2.9491× 10−3

1.3408× 100 6.7895× 10−3

2.6601× 10−1 1.6474× 10−2

P2b 77,726.8 67,303.7 (−13.41%)

6.4153× 10−1 2.0281× 10−2

−2.0298× 10−2 −1.7018× 10−2

2.9824× 10−4 −2.9823× 10−3

1.0383× 100 6.1785× 10−4

5.2509× 10−1 4.3878× 10−3

P3a 109,846.1 62,179.5 (−43.39%)

7.8224× 10−1 1.1984× 10−2

−1.8457× 10−2 −2.3495× 10−2

−1.5429× 10−3 3.4952× 10−3

1.3408× 100 −4.6511× 10−3

2.6601× 10−1 −4.1505× 10−3

P3b 77,726.8 72,152.8 (−7.17%)

6.4153× 10−1 4.5460× 10−2

−2.0298× 10−2 −3.8832× 10−2

2.9824× 10−4 1.8832× 10−2

1.0383× 100 2.6112× 10−3

5.2509× 10−1 5.9354× 10−2

The same trend was observed among aeroelastic shape-only cases. For comparison,
the SLSQP P1a solution shown in Section 3.2 (via direct constraint handling) yielded a
final fuel burn of 64,015.9 kg with the constraints being [3.6437× 10−4, −1.9921× 10−2,
−7.9465× 10−5]T, which equates to roughly 2% less than the BFGS optimizers. However,
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the penalty-constrained SLSQP, which is perhaps a fairer comparison to the BFGS-based
optimizers, yielded a fuel burn of 72,519.3 kg with final constraints of [2.4784 × 10−2,
−1.3242× 10−2, −6.7584× 10−3]T, an 11% difference. The same trend was observed to a
greater extent for the sizing-only cases, with the higher dimensional airfoil producing a
significantly lower fuel burn (although it is possible the P2a result stalled).

Among simultaneous shape and sizing cases (P3a and P3b), the same trend was
unfortunately not observed. While P3a yielded a large decrease in fuel burn from P2a,
the solution to P3b was in fact worse than P2b (same problem, but lacking shape design
variables), as well as P3a (same problem, but with lower-dimensional airfoils). This seems
to indicate either a local minimum or, perhaps more likely, simply a difficult problem for
the optimizers to solve. Potentially, numerical noise from remeshing, as well as neglecting
structural grid velocities (which may be important for the stress gradients) could be con-
tributing factors. Nonetheless, all cases were at least successful in approximately satisfying
the constraints and reducing fuel burn compared to the baseline geometry. Additionally,
the single- and multi-fidelity all yielded roughly the same solution, with the exception of
rigid P1b, where the multi-fidelity optimizer found a slightly worse solution.

For reference, Figure 14 illustrates the baseline and optimized airfoil shapes for all
cases including shape variables, where undeflected jig shapes are shown for the aeroelastic
cases. In particular, the top and bottom rows show undeflected airfoil shapes at the Yehudi
and tip sections, respectively. Columns from left to right show results for rigid, aeroelastic
shape-only, and aeroelastic with sizing cases.

(a) (b) (c)

(d) (e) (f)

Figure 14. Baseline and optimized airfoil shapes, where aeroelastic cases show the undeflected
jig shapes. (a) Yehudi, rigid; (b) Yehudi, aeroelastic; (c) Yehudi, aeroelastic with sizing; (d) Tip, rigid;
(e) Tip, aeroelastic; (f) Tip, aeroelastic with sizing.

The rigid Yehudi geometries were largely unchanged, although minor shape changes
were likely needed to reduce the shock strength. Rigid tip sections varied significantly
in twist angle, however. This is to be expected, as aeroelastic deflection tends to cause
downward wing twist, so with deflection, optimized rigid and aeroelastic geometries are
likely similar in the twist angle. Visually, the aeroelastic optima with and without sizing
are difficult to compare; however, both visually and in terms of final fuel burn, a higher-
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dimensional airfoil section (or an even higher one) appears to be necessary to obtain the
“true” optimized geometry.

For reference, Figures 15 and 16 show a sample solution to P3a, which yielded the
lowest fuel burn among the shape and sizing cases. In particular, Figure 15 shows the
undeflected geometry, as well as the deflected shapes during the cruise and maneuver
scenarios. Shown also for reference are the trimmed baseline geometries, which had
significantly larger deflections due to the lower aerodynamic efficiency, thus requiring a
larger fuel mass to achieve the prescribed cruise range (and more lift to meet load factor
constraints, thus leading to more induced and likely wave drag). Figure 16a shows the
thickness distributions of the structure, with the top, middle, and bottom showing top
skins, ribs and spars, and bottom skins, respectively. Figure 16b shows the corresponding
stress contours (von Mises stress normalized by yield stress) in the maneuver scenario. For
reference, the stress constraint used in the optimization enforces the normalized stress to
not exceed 2/3, which is the inverse of the factor of safety (1.5).

Figure 15. Baseline and optimized jig shapes and deflected geometries in 1g cruise and 2.5 g pull-up
conditions (7-DoF airfoil parameterization).

(a) (b)

Figure 16. Stress and thickness contours of the best shape+sizing optimization solution (P3a).
(a) Structural thicknesses; (b) von Mises over yield stress for a +2.5 g maneuver.

To achieve minimum structural mass while remaining feasible, the optimal stress
contours would yield a maximum value of 2/3 in each structural component. This appears
to be the main driver for much of the wing skins, although a handful of skins still appeared
thicker than they needed to be. Elsewhere in the wing, the aerodynamic performance and
trim constraints (as well as the KS aggregation) appeared to be influencing the thickness
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distributions as well. For instance, while the tip skin thicknesses seemed to be approaching
the lower bound of 0.005 m, the tip rib and spar thicknesses remained relatively thick
in spite of the low stresses in the faces. This could mean that more torsional or bending
stiffness was needed to ensure an adequate lift or moment.

In general, the stress and thickness contours compared reasonably well to those of
Brooks et al. [5], although the thicknesses were somewhat larger, leading to a somewhat
heavier structure. Aside from optimization performance, one potential cause is the lack
of stiffeners modeled in the structure, which may allow for thinner ribs and spars. The
skins that intersect the wingbox trailing edge and wing–fuselage junction ribs were also
quite thick and may also benefit from modeling stiffeners. There also appeared to be
a stress concentration at the Yehudi on the bottom surface. This is due to the shape
parameterization, as evidenced in the stress contours. Thus, more designable sections
across the wing (as well as variable dihedral) may potentially prevent this.

In order to quantify the benefits of the multi-fidelity optimizer compared to its single-
fidelity counterpart, Table 9 lists the optimization costs and savings for each shape-only
case. To achieve this, the best optimum from either optimizer is first identified to serve as
the “true” optimum. This yields a total percent reduction in penalty-constrained objective
when compared to the starting design. Specific percentages of this total reduction, ranging
from 50 to 99%, are then chosen. For each optimizer, the number of high-fidelity function
(and gradient) evaluations required to reach each reduction is then identified (for example,
for rigid P1a, each optimizer required three function calls to achieve 50% of the total
objective reduction). The cost savings associated with using the multi-fidelity optimizer
compared to single-fidelity can then be computed as a percentage of the single-fidelity
optimizer cost.

Table 9. Cost summary for airfoil optimization cases.

Case Model Threshold (%) Reduction (%) NF (SF) NF (MF) Savings (# Evals) Savings (% of SF)

P1a

Rigid

50.0000 45.5603 3 3 0 0.0000
75.0000 68.3404 7 5 2 28.5714
90.0000 82.0085 8 5 3 37.5000
95.0000 86.5645 14 9 5 35.7143
98.0000 89.2981 15 12 3 20.0000
99.0000 90.2093 16 16 0 0.0000

Aeroelastic

50.0000 47.5303 3 3 0 0.0000
75.0000 71.2954 4 4 0 0.0000
90.0000 85.5545 5 5 0 0.0000
95.0000 90.3075 7 6 1 14.2857
98.0000 93.1593 11 8 3 27.2727
99.0000 94.1099 15 14 1 6.6667

P1b

Rigid

50.0000 38.4992 5 4 1 20.0000
75.0000 57.7489 11 10 1 9.0909
90.0000 69.2986 13 12 1 7.6923
95.0000 73.1486 15 16 −1 −6.6667
98.0000 75.4585 19 n/a n/a n/a
99.0000 76.2285 24 n/a n/a n/a

Aeroelastic

50.0000 46.6153 3 3 0 0.0000
75.0000 69.9230 3 3 0 0.0000
90.0000 83.9076 6 4 2 33.3333
95.0000 88.5691 8 5 3 37.5000
98.0000 91.3660 11 6 5 45.4545
99.0000 92.2983 15 7 8 53.3333
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For the rigid P1a case, the multi-fidelity optimizer provided cost savings from 75
to 98% of total reduction, ranging from 20 to roughly 40%. However, by the end of the
optimization, roughly where a 99% reduction was met, there were no longer any cost
benefits. This is generally consistent with the metrics shown in Figures 11d–13d, which
suggest benefits early in the optimization process, but less as the optimization progresses.
Depending on the trust region size, it may also suggest that the minimum trust region size
could be increased so that the optimizer more quickly switches to high-fidelity only. The
other rigid case, P1b, also showed cost savings for smaller thresholds, but was ultimately
unable to achieve the 98 and 99% thresholds. Interestingly, the aeroelastic cases differed in
that the savings appeared for somewhat larger thresholds. Potentially, this could mean that
the different low-fidelity model is better correlated near the optimum, where shocks in the
flow would be weaker.

Figure 17 illustrates representative characteristics of the multi-fidelity optimization for
airfoil design. Considering the comparison to the single-fidelity optimization in Figure 11
and Table 9, the multi-fidelity approach provided a cost benefit. The multi-fidelity optimizer
was able to achieve most of the objective reduction within the first several high-fidelity
evaluations. In the rigid P1a case (7-DoF Kulfan), after accepting the first design step, the
multi-fidelity optimizer rejected the second step as the corrected low-fidelity model led
to a design that increased rather than decreased the high-fidelity objective. Consequently,
the trust region was halved. (The initial trust region covered the entire design domain.)
The optimizer accepted the majority of subsequent steps, though the trust region steadily
decreased to a size near 0.0625–0.125 (in the normalized design space Di ∈ {0, 1}). This
resulted from the expected improvement ratio between the multi-fidelity and high-fidelity
objectives being near enough to one to indicate that the corrected low-fidelity model was
sufficient to make progress, but not accurate enough to warrant trusting over a larger space.
However, after about 25 high-fidelity evaluations, the search entered a region of the design
space where the multi-fidelity model was not accurate, and the optimizer rejected a series
of design steps that increased the high-fidelity objective and decreased the trust region in
an attempt to find a step size where the multi-fidelity model was accurate.

(a) (b)

Figure 17. Performance of multi-fidelity model within airfoil design. (a) Rigid 7-DoF Kulfan;
(b) Aeroelastic 7-DoF Kulfan.

Of the airfoil design cases, the aeroelastic case P1a exhibited the least benefit from
the multi-fidelity approach. For the first ten evaluations, the optimizer once again found
the multi-fidelity model to be sufficiently accurate and maintained the trust region over
the entire design domain. After that point, the multi-fidelity model did not accurately
predict the high-fidelity objective, and the trust region was quickly reduced. Once the trust
region had fallen below 0.001 for three consecutive iterations (a selectable parameter), the
optimization reverted to single-fidelity after approximately 25 evaluations, making use of
the approximate Hessian already built using high-fidelity information. Despite reverting
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to high-fidelity optimization, there was no discernible reduction in the objective function,
suggesting that the multi-fidelity optimizer approximately found the minimum.

For reference, Table 10 lists the optimization costs for the cases with sizing. As
discussed previously, the results were generally mixed, with multi-fidelity at times pro-
viding some cost savings, but often times not. Interestingly, while the cases could likely
be converged more deeply, both optimizers appeared to reach a 99% reduction within
20 high-fidelity evaluations. This is likely dependent on the scale factors of the penalty
functions, as the objective is generally around 0.6–2.0, with the penalty functions increasing
the penalty-constrained objective by one to two orders of magnitude. Thus, much of the
penalty-constrained objective reduction was achieved simply by locating a feasible design
space, rather than simply reducing the fuel burn objective.

Table 10. Cost summary for optimization cases including structural sizing.

Case Threshold (%) Reduction (%) NF (SF) NF (MF) Savings (# Evals) Savings (% of SF)

P2a

50.0000 48.9775 3 3 0 0.0000
75.0000 73.4662 3 3 0 0.0000
90.0000 88.1594 3 3 0 0.0000
95.0000 93.0572 6 8 −2 −33.3333
98.0000 95.9958 10 14 −4 −40.0000
99.0000 96.9754 18 20 −2 −11.1111

P2b

50.0000 49.0545 4 4 0 0.0000
75.0000 73.5818 5 5 0 0.0000
90.0000 88.2981 7 8 −1 −14.2857
95.0000 93.2036 9 9 0 0.0000
98.0000 96.1468 12 10 2 16.6667
99.0000 97.1279 16 21 −5 −31.2500

P3a

50.0000 49.3826 3 3 0 0.0000
75.0000 74.0739 3 6 −3 −100.0000
90.0000 88.8887 6 7 −1 −16.6667
95.0000 93.8270 7 7 0 0.0000
98.0000 96.7899 11 12 −1 −9.0909
99.0000 97.7776 14 13 1 7.1429

P3b

50.0000 48.8109 4 3 1 25.0000
75.0000 73.2163 5 5 0 0.0000
90.0000 87.8596 6 8 −2 −33.3333
95.0000 92.7407 9 10 −1 −11.1111
98.0000 95.6693 10 12 −2 −20.0000
99.0000 96.6455 11 13 −2 −18.1818

Figure 18 shows the behavior of the multi-fidelity optimizer for combined structural
sizing and shape optimization. Compared to shape optimization alone (rigid and aeroelastic
without sizing), the multi-fidelity optimization provided an inconsistent benefit in the 17-
DoF airfoil case (P3b) and a cost penalty in the 7-DoF airfoil case (P3a). In case P3a, the
multi-fidelity model had acceptable quality to maintain the trust region around 1.0 for
approximately 15 evaluations, briefly reducing to 0.25. Then, the trust region was steadily
reduced, though a few points were rejected due to increasing the objective function. After
approximately 25 evaluations, most of the design steps were rejected and the multi-fidelity
optimizer made no significant progress. While case P3b rejected fewer design steps in
the first 15 evaluations, the trust region grew steadily smaller as the optimizer rejected
almost all subsequent steps. Again, this was due to the expected improvement ratio being
negative for both cases. With the poor agreement between high- and multi-fidelity models,
the multi-fidelity optimization convergence was slow compared to single-fidelity, leading
to the minimal cost benefit or penalty.
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(a) (b)

Figure 18. Performance of multi-fidelity model within simultaneous shape and structural design.
(a) 7 DoF Kulfan; (b) 17 DoF Kulfan.

4. Discussion

The definition and implementation of a multi-fidelity, aero-structural analysis capa-
bility were described, providing the foundation for a family of benchmark problems in
multi-fidelity design optimization. The models provide a rich set of selectable features,
including physics coupling, data sources, parameter sets (e.g., aerodynamic shape versus
structural sizing), and scalability of the design domain size. A key aspect of this work is the
efficient computation of derivatives with respect to the design variables. This is a critical
enabler of large-scale design optimization in both single- and multi-fidelity settings. These
sensitivities were used to demonstrate gradient-based, multi-fidelity optimization for de-
sign problems that are infeasible using typical, surrogate-based multi-fidelity methods. The
design domains spanned tens to hundreds of design variables, considering aerodynamic
shape and structural sizing separately and in combination.

While the MF-BFGS approach was capable of performing design optimization with
hundreds of variables, the scalability of the method was confounded with the consideration
of different problem types. The introduction of structural sizing with hundreds of design
variables required additional design constraints and gradient calculations for variables
not present in the shape optimization with tens of variables. Thus, impacts on optimizer
performance due to design domain dimension versus the character of the design problem
could not be separated. Considering shape variables alone, MF-BFGS provides a benefit
over single-fidelity BFGS in terms of objective-function reduction versus the number of
high-fidelity function evaluations, whether rigid or aeroelastic. However, cases with struc-
tural sizing variables (aeroelastic only) performed less consistently. Using Kulfan airfoils
with 17 degrees of freedom, the multi-fidelity optimizer produced a 45–55 percentage
points greater objective function reduction than single-fidelity optimization in the first
few evaluations. However, the gains were temporary, and both optimizers performed
similarly in later iterations. In contrast, the seven-degree-of-freedom Kulfan cases tended
to perform worse using the multi-fidelity approach in the first several iterations. This trend
of the 17-degree-of-freedom airfoil exhibiting better multi-fidelity performance than the
7-degree-of-freedom airfoil was also true of the aeroelastic shape design, but not of the
rigid shape design.

Several aspects could make the structural design problem more challenging than aero-
dynamic shape optimization. First, the sizing problem requires two additional constraints
for the maneuver load factor and aggregated stress constraint. Adding these constraints
to the objective as quadratic penalty terms could potentially make the design space more
difficult to navigate, and the constraint penalty and KS aggregation functions require
tunable parameters. The parameter selection dictates a compromise between design space
curvature and constraint conservatism, which could have a significant impact on optimizer
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performance. Second, the aggregation of stress constraints combined with structural mesh
regeneration may lead to a noisy response that slows convergence. The computation of
structural shape sensitivities and the development of smoothly mapping meshes to per-
turbed geometry are current areas of development. Third, the external finite-differencing
of the VLM mesh generation process for low-fidelity gradients and the neglect of structural
design velocities (i.e., sensitivity of the structural mesh to geometry changes) could lead
to inaccuracies that cause the multi-fidelity correction to suffer and produce sub-optimal
line search results. Regeneration (rather than morphing) of the high-fidelity aerodynamic
grids may also be a detriment due to discontinuous mesh topologies (thus causing noise
in responses), although this effect would be present in the single-fidelity optimizations
as well.

Finally, the variation of VLM- and Euler-CFD-based aerodynamic loads and stresses
with varying structural thicknesses may simply be poorly correlated because Euler takes
shocks in the flow under consideration while VLM simply uses an empirical wave drag
estimate. Potentially, only a subset of the objective and constraint functions may be poorly
correlated (such as the stress constraint, which was not included in the shape-only cases).
How well the responses are correlated may even vary spatially, for instance agreeing well
for structural groups near the tip compared to inboard (with VLM likely agreeing better
when shocks are weak or nonexistent). In addition, because the VLM does have a flat-plate-
based viscous drag estimate (with kinematic viscosity being set very small for the present
work) and RANS flow may have weaker shocks, VLM and RANS may potentially be better
correlated in spite of RANS being higher-fidelity than Euler. A subsonic cruise condition
may also see better correlation between VLM and Euler or RANS.

In general, the handling of constraints is an area for improvement in gradient-based,
multi-fidelity optimization. Handling constraints directly in SLSQP reduced the objective
function more quickly and ultimately led to better satisfaction of the constraints compared
to using a penalty function (again within SLSQP). The doubling of the objective function
with penalty constraints also highlights the sensitivity of the process to weighting factors
and the emphasis on constraint satisfaction versus objective improvement. The underlying
BFGS method is inherently an unconstrained optimizer, and the extension of the multi-
fidelity concepts to other approaches such as Sequential Quadratic Programming (SQP) is
an area for future investigation.

In addition to improving the smoothness and accuracy of aeroelastic gradients, the
quality of the multi-fidelity correction is an area for further investigation and future im-
provement. The current two-point correction is sensitive to noisy responses at either point.
While first-order consistency at the current design point is necessary to prove convergence,
other approaches admitting additional data could improve the correction of the low-fidelity
model and be more tolerant of numerical noise. Furthermore, data-driven approaches are
desired for sizing the trust region and determining when to revert to single-fidelity opti-
mization when convergence is slow. Alternatively, adjustment of the trust region heuristic
and minimum trust region size may produce improved performance.

Further expansion of the aerodynamic shape optimization may also help to demon-
strate the scalability of the MF-BFGS approach. The design problem size can be expanded
by increasing the airfoil degrees of freedom, as well as the number of airfoil sections. Op-
timization studies using Reynolds-averaged Navier–Stokes are also planned to explore
performance with different fidelity combinations.

5. Conclusions

This work presented several benchmark air vehicle design problems, spanning from
10’s to 100’s of design variables, on which to test gradient-based multi-fidelity optimization
algorithms. Of particular interest is the quantification of computational cost benefits associ-
ated with multi-fidelity optimizers (with this work showcasing a BFGS-based algorithm)
compared to their single-fidelity counterparts. For problems focused on airfoil shape,
the multi-fidelity approach consistently reduced the number of high-fidelity evaluations
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required relative to single-fidelity optimization, though this was not the case when consid-
ering structural sizing variables. Challenges encountered in the process, including both
modeling-related (e.g., geometry and mesh construction) and optimization-related (e.g.,
constraint handling) were also discussed. While the multi-fidelity, gradient-based approach
was successful in optimizing problems with hundreds of variables (infeasible with other
typical multi-fidelity methods), it was difficult to separate the scalability of the optimizer
from other process-related challenges in the optimization convergence.
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