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Abstract: Despite the increasing digitalization of equipment diagnostic/condition monitoring sys-
tems, it remains a challenge to accurately harness discriminant information from multiple sensors
with unique spectral (and transient) behaviors. High-precision systems such as the automatic re-
grinding in-line equipment provide intelligent regrinding of micro drill bits; however, immediate
monitoring of the grinder during the grinding process has become necessary because ignoring it
directly affects the drill bit’s life and the equipment’s overall utility. Vibration signals from the frame
and the high-speed grinding wheels reflect the different health stages of the grinding wheel and can
be exploited for intelligent condition monitoring. The spectral isolation technique as a preprocessing
tool ensures that only the critical spectral segments of the inputs are retained for improved diagnostic
accuracy at reduced computational costs. This study explores artificial intelligence-based models
for learning the discriminant spectral information stored in the vibration signals and considers the
accuracy and cost implications of spectral isolation of the critical spectral segments of the signals
for accurate equipment monitoring. Results from one-dimensional convolutional neural networks
(1D-CNN) and multi-layer perceptron (MLP) neural networks, respectively, reveal that spectral
isolation offers a higher condition monitoring accuracy at reduced computational costs. Experimental
results using different 1D-CNN and MLP architectures reveal 4.6% and 7.5% improved diagnostic
accuracy by the 1D-CNNs and MLPs, respectively, at about 1.3% and 5.71% reduced computational
costs, respectively.

Keywords: intelligent monitoring; spectral isolation; deep learning; grinding wheel wear; vibration
signals

1. Introduction

Maintenance costs have been shown in recent studies [1–3] to contribute a significant
portion of total operating costs. This has motivated industries towards integrating cost-
efficient technologies (and practices) into their daily operations. In addition to this perspec-
tive, safety and reliability are often prioritized for ensuring maximum profit, maintaining
ethical obligations, minimizing downtime, and achieving optimal utility of equipment [2–4].
As a consequence, intelligent equipment and tool monitoring, fault diagnosis, and prog-
nostics are currently being integrated into maintenance management modules, and thanks
to artificial intelligence (AI), intelligent monitoring has gradually attracted attention from
industries since they require little or no domain knowledge, are user-friendly, and offer
minimal false alarm rates [4,5].

In the modern manufacturing industry, high-density packaging technologies have
become an unavoidable requirement. The design of printed circuit boards (PCB) demands
high-precision cutting and drilling of small holes (as small as 0.1 mm or less), which requires
the use of micro drill bits [6]. Due to prolonged usage, the micro scale, hole-location errors,
reaming, and their brittle and delicate nature, drill fractures/breakage often occur during
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the drilling process. More often than not, these drill bit failures can be traced to the high-
frequency vibrations generated during the drilling process; therefore, the demand regular
tool monitoring and maintenance—regularly sharpening [7]. Most investigations on the
vibration of micro drilling are focused on only drill self-structure. However, it is also
important to monitor the maintenance efficiency of the drill bit regrinding machine to
ensure that at all times, the drill bits produce the desired surface finish and geometrical
accuracy of the finished workpiece—PCB.

Several direct, indirect, and/or hybrid tool monitoring techniques/technologies have
been studied [8,9]. Direct methods such as optical devices and cameras, although more
reliable for accurate monitoring, are faced with certain limitations. Their real-time usability
may be affected since ARIS wheels rotate at high speeds and may produce unclear images in
real-time, which often require interrupting the machine. Further, finding an optimal camera
localization point is another major challenge. Against these limitations, indirect methods—
cutting force, acoustic emission, spindle motor, temperature, vibration, machining sound,
etc.—offer real-time efficiencies and the integration of multiple sensing opportunities for
fully extracting deep and shallow machine behavior for optimal condition monitoring [7].
In addition, recent technological advancements have ushered in intelligent algorithms
and the super computational resources for harnessing them—for intelligent tool monitor-
ing [4]. These intelligent algorithms, such as convolutional neural networks (CNN) [5],
recurrent neural networks (RNN), auto encoders (AE) [10], and MLPs [11], are quite robust
for diverse predictive maintenance and equipment monitoring purposes and have been
reported in many studies, including but not limited to hydraulic equipment monitoring [5],
remaining useful life estimation, wear detection [7], and machinery fault diagnostics and
prognostics [12,13]. Unlike the traditional Bayesian methods that require a significant level
of hand-crafted discriminative and/or non-discriminative feature extraction as the case
study demands, these intelligent algorithms—deep learning (DL) models—are designed
to accept raw sensor inputs and follow a series of advanced mathematical processes for
automatic feature extraction and predictive modeling in a comprehensive framework with
less dependence on domain knowledge. Nonetheless, finding a balance between compu-
tational costs and accuracy remains a challenge, especially for real-time cases where both
factors play major roles in the decision-making, selection, and deployment.

Although highly efficient, the accuracy of these intelligent algorithms for discrim-
inative tasks are sometimes threatened by a high similarity in the sensor signals across
different tool health conditions [5,14]. Unfortunately, this is often the case of micro drill
bit regrinding machines because the grinding wheel wear conditions are usually mixed
with the high-frequency components with low amplitudes, and that makes it hard to iden-
tify/isolate. This opens up the need for spectral isolation—extraction of signals within a
finite frequency band from a mixed signal. Interestingly, different signal processing tools
abound for frequency-domain and/or time-frequency-domain analyses; however, the fast
Fourier transform (FFT) retains its traditional advantages—computational cost advantage,
user-friendly visualization for inferences, minimal modeling assumptions for spectral iso-
lation, and support for power spectral density (PSD) computation for improved signal
analyses/processing [7,15,16]. This has motivated us to explore its efficiencies alongside
intelligent classifiers for vibration-based wear monitoring of high-frequency automatic
regrinding in-line equipment. The following highlights are the major contributions of
this study:

• A multi-sensor vibration monitoring system is proposed for the automatic micro drill
bit regrinding of in-line equipment. The proposed framework adopts spectral isolation
by integrating the low-frequency vibration responses from the regrinding frame and
the high-frequency vibration responses from the gas bearing-powered regrinding
spindle in a comprehensive manner. These provide highly discriminate information
from the regrinding frame and the regrinding spindle, respectively, for improved
condition monitoring.
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• A multi-option diagnostic framework that exploits the multiple sensor data’s vulner-
abilities is proposed. The framework offers the options of choosing different data
sources—stand-alone and/or integrated sensor data and exploits different 1D-CNN
and MLP model architectures. This presents an avenue for evaluating the efficiencies
of spectral isolation for improved tool wear monitoring and for assessing the computa-
tional cost implications of employing the proposed intelligent monitoring technology.

• For the proposed study, we leverage experimental data from an ultra-precision mi-
cro drill bit automatic regrinding in-line system (ARIS), which regrinds micro drill
bits (φ0.15–φ0.075 mm) used in the PCB manufacturing process. Empirical and de-
scriptive conclusions are drawn following extensive investigations and evaluations.
Our research offers a reliable framework for future research and practice in real-time
industrial monitoring/diagnostic applications.

The remainder of this paper is structured as follows: Section 2 discusses motivation
for the proposed study and related Works, while Section 3 provides the the background of
study. Section 4 presents the experimental assessment, while Section 5 concludes the paper.

2. Motivation for Proposed Study and Related Works

Precision drilling, which requires an accurate drilling process, ensures a high-quality
product; however, it is essential to understand the condition and dynamic performance
of a drill bit in a drilling process, especially for high-speed micro drilling, to reduce the
risk of hole-location errors, reaming fractures, and drill fractures [6]. Although only a
few studies have examined the dynamics of drilling processes that result in undesirable
effects, such as chatter and drill breaks, most studies have shown that breakage is the most
common cause of drill failure, and this is most often traced to excessive drilling forces in the
drilling process, as well as drill bit bluntness [17,18]. Cutting chip geometry and symmetry
can significantly affect the cutting and dynamic properties of a drill bit. Even the tiniest
variation in the complex geometry or symmetry of a cutting chip can significantly affect
the cutting and dynamic properties of a drill bit.

As the recent industry 4.0 revolution becomes more apparent, which interestingly
features micro (nano) technological advancement (amongst many other technologies),
PCB production requirements are prioritizing higher cost efficiency, which invariably
implies that PCBs are becoming smaller in size. This also implies a reduction in hole sizes
on these PCBs to accommodate for the numerous micro chips and electronic units [19].
Unlike the past PCB holes that featured a minimum diameter of φ0.2 mm, recent PCBs
feature more miniature holes that are (φ0.15–φ0.075 mm) in diameter and are in higher
demand. Unfortunately, these micro drill bits are difficult to regrind and are often scrapped
after use. Therefore, it becomes imperative to devise reliable regrinding solutions that
would minimize drill breakage, hole-location errors, reaming fractures, and drill fractures.
Interestingly, the micro drill bit ARIS developed by Instern Co. Ltd., Seoul, Korea, offers
a highly reliable (intelligent) solution for regrinding micro drill bits with high efficiency
and durability [19]; however, amidst its efficiencies, due to the micro scale of these drill
bits, the regrinding wheel surface of these high-precision regrinding systems should be
monitored for wear. This is because there is a high positive correlation between the grinding
wheel surface wear and poor cutting chip geometry and symmetry.

On the one hand, vibration monitoring has, by far, been proven across diverse appli-
cations to be effective for condition monitoring applications [5,12]. This is because most
industrial equipment produces different ranges of mechanical vibrations during operation,
which change as the equipment operating/health condition changes. On the other hand,
the abundance of signal processing techniques provide conventional paradigms for un-
derstanding the spectral changes in the vibration signals using advanced computational
methods, such as FFT, mel frequency cepstral coefficients, and wavelet transform [20]. In-
terestingly, the regrinding system’s vulnerabilities to mechanical vibration offer an avenue
for critically isolating unique (discriminative) frequency bands in the signals for accurate
condition monitoring to ensure drill bit safety and retain acceptable drill bit efficiencies
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while achieving desired cost benefits. For instance, Lee et al. [7] explored the efficiencies of
the FFT algorithm for isolating (denoising) auditory signals from the grinding wheel of a
G50150 Automatic Surface Grinder machine to enhance the accuracies of a deep learning-
based diagnostic model for wear monitoring. By isolating the discriminative frequency
bands between 300 and 500 Hz, they were able to provide intelligent diagnostic support to
assist operators in determining whether the grinding wheel was worn or not. Moreover,
the authors of [15] proposed a comprehensive high-frequency vibration monitoring system
for incipient fault detection and the isolation of gears, bearings and shafts/couplings in
turbine engines and accessories, which feature a time synchronous averaging (TSA)-based
denoising technique for noise reduction from events unrelated to the component of interest.
These and many other studies reflect not just the efficiencies of spectral isolation as a denois-
ing technique, but they also provide a verifiable rationale for developing computationally
cost-effective and intelligent modeling, on the one hand, and improved discriminative
modeling, on the other hand. In this domain, it may become an uphill task to determine
which denoising technique is the most effective (considering all evaluation perspectives).
However, the FFT offers a reliable solution for identifying critical frequency components in
a signal [15,16].

In contrast to traditional Bayesian methods, DL models offer superior intelligent
modeling efficiencies and are skewing reliability studies (and applications) on industrial
cyber-physical systems (ICPSs) as a consequence of the increasing complexity of processes
and systems and the inherent necessity to model them [5]. Process efficiencies, equipment
condition monitoring, spatiotemporal forecasting, and many other solutions have been
recently improved as a result of this shift to DL-based support [21–25]; however, some
issues remain, including over-fitting and interpretability issues, optimal hyperparameter
selection/optimization, standardized weight initialization paradigm, and discovering the
optimal decision criteria between power consumption and performance [4,26]. In spite of
this, given the necessity of providing accurate real-time solutions for ICPS components,
and especially considering the growing need for uncertainty modeling, sensor data discrep-
ancies, and dynamic operating conditions, DL techniques remain preferable even at the
expense of computational power. In this light, numerous DL-based algorithms have been
developed over the years, including, but not limited to the RNNs and echo state networks
for time-series forecasting [21–23], CNNs for discriminative modeling/diagnostics [5,24],
and the multi-purpose DNNs [5,11]. Most of these algorithms are stand-alone models
that obviously come with their shortcomings and may be component-specific and/or
application-specific. Moreso, the task presented herein clearly points at the CNNs and
MLPs as possible solutions considering that their architecture are fundamentally designed
for discriminative modeling and/or classification purposes (even though MLPs can also
model regression/forecasting problems accurately). In this quest, our study explores dif-
ferent architectures of these algorithms for the proposed case study. This is particularly
necessary considering that different model architectures (number of layers and hyper-
parameters) invariably produce different results at different computational costs [5,11].
Actually, the deeper the model architecture, the higher the probability of over-fitting and
computational cost (and vice versa). By exploring different architectures of the models,
we may provide an empirically strong rationale for validating the impact of spectral isola-
tion for improved condition monitoring/diagnostics on the one hand and the choice of,
and recommendation for, the appropriate DL model(s) on the other hand, while considering
ease-of-use, real-time applicability, and other necessary factors.

3. Background of Study

In detail, this section discusses the core components that constitute our study—the
working principle of the micro drill bit ARIS, the proposed monitoring framework, and an
overview of its sub-components.
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3.1. Working Principle of the G50150 Micro Drill Bit ARIS

The working process of the micro drill bit ARIS is fundamentally robotic—it repeats
the tasks for a single micro drill bit at a time: loading, grinding, optical inspection/scanning,
and unloading [19]. Figure 1 shows the functional plan view of the G50150 micro drill bit
ARIS and the key components of interest—the collet and regrinding unit.

Figure 1. CAD plan view of the G50150 micro drill bit ARIS highlighting the collet and regrind-
ing unit.

As shown in Figure 1, the G50150 micro drill bit ARIS has many components—each
serving high-precision functions for an accurate (and well-timed) regrinding process.
From the bit transfer unit, the drill bits (stacked in crates) are loaded onto the conveyor,
where the index robot intelligently picks the drill bits (one at a time) with the help of the
collet (highlighted in a red dotted square). Once a drill bit is picked, the index robot rotates
90 degrees in an anti-clockwise direction such that the drill bit faces the grinding unit (high-
lighted in a yellow dotted square). The grinding unit houses the two regrinding wheels
spinning in opposite directions and are powered by high-speed gas bearings. With the help
of its mobile base, it moves closer to the collet such that the spinning grinding wheels make
contact with the drill bit’s heel alternatively. By so doing, some of the drill bit’s heel wears
off, thereby sharpening its cutting edges, lips, and chisel.

Next, the index robot rotates again by 90 degrees in an anti-clockwise direction such
that the sharpened drill bit faces the inspection unit—a high-resolution camera-based
inspection system that captures the drill bit’s cutting surface for the operator’s visual
inspection via a PC’s display unit. After yet another 90-degree rotation in the anti-clockwise
direction, the reground (and visually inspected) drill bit is collected by the transfer unit
to the unloader, which is carefully collected on the dispensing tray in crates. The cycle
continues for all the drill bits in the crate. As the grinding operation continues and the drill
bit comes in contact with the grinding wheels, the regrinding surface gradually wears to a
point—end-of-life (EoL)—where it is no longer recommended for use. Meanwhile, high-
frequency responses are generated and can be captured via high-sensitivity accelerometers.
If the grinding process is repeatedly performed for a long time and the grinding wheels
approach EoL, their respective cutting power is greatly reduced, and this results in poor
grinding operations, which may even cause the drill bits to break.

3.2. Proposed Intelligent Monitoring Framework

As an alternative to the use of raw vibration signals from the grinding unit, the pro-
posed framework offers a computationally cost-efficient approach—spectral isolation by
integrating the low-frequency vibration responses from the regrinding frame and the high-
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frequency vibration responses from the gas bearing regrinding spindle in a comprehensive
manner. These provide highly discriminate information from the regrinding frame and
the regrinding spindle, respectively, for improved diagnostics/wear detection efficiencies
in addition to improved computational costs. Figure 2 illustrates the proposed intelligent
monitoring framework.

Figure 2. Proposed monitoring framework.

As shown, the framework accepts vibration signals from seven accelerometers—three
(3) affixed to the regrinding unit’s frame in the X-, Y-, and Z-axes, while the remaining
four (4) are affixed under the two regrinding spindles in their front and rear positions,
respectively. This provides a comprehensive source of vibration measurements for moni-
toring. A key module of the proposed model is the input source decision module, which
provides the user with the option of choosing the source sensors for use. One may choose
only the raw spindle signals, only the raw frame signals, a combination of both raw signals,
or employ the spectral isolation technique as a preprocessing step before inputting the
signals. The following subsections provide insights into the framework’s key modules—
spectral isolation and DL-based diagnostic models.

3.2.1. FFT-Based Spectral Isolation

In addition to providing more reliable paradigms for both stationary and non-stationary
signals, the invention of various frequency-domain (and time-frequency-domain) tech-
niques provides a solution to the limitations of time-domain methods of digital signal
processing (DSP). Named after Joseph Fourier (21 March 1768–16 May 1830), the Fourier
transform (and its variants) forms the basis for most frequency-domain signal processing
techniques [7,15]. As DSP tools, the FFT and PSD provide a reliable avenue for analyzing
the spectral behavior of signals. While FFTs can flourish reliably under relaxed assumptions
because most signals are comprised of a complex synthesis of Sine and Cosine functions,
the PSD offers an even more reliable alternative to the FFT due to its comparatively higher
sensitivity to spectral changes in a signal. This is because the FFT has high sensitivity and
outputs a wide range of frequencies (including insignificant ones) that constitute a signal,
and due to this high sensitivity, it is sometimes inefficient in monitoring conditions accu-
rately. In addition, the PSD computes the energy densities of the constituent frequencies,
thereby exaggerating the relevance of high-energy signal components while suppressing
the effects of the lower-energy constituents.

Given a time-record (one-dimensional sensor signal) f (x) = {x1, x2, . . . , xm}, the
Fourier transform of a function f (x) is traditionally denoted F(k) and is computed using
Equation (1) below:

F(ω) =
∫ ∞

−∞
f (x)e−iωxdx (1)
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where f (x) is the input signal, w is the length of the transform, and F(w)s is the corre-
sponding frequency-domain output of the signal.

The idea behind spectral isolation is to emphasize the critical frequency bands while
moderately reducing the interference of noise and other irrelevant frequency sources.
This requires knowledge of the target system’s spectral behaviors and identifying the
critical frequency bands peculiar to the equipment’s operating conditions. Isolating these
critical frequencies entails that the interfering frequency bands are muted (reduced to
zero magnitudes).

Suppose one wants to retain the critical frequency segment ranging from ωa to ωb
(where 0 ≤ ωa ≤ ωb ≤ |ω|) by creating a filter that eliminates a range of frequency
bands—ωc ∈ |ω| /∈ {ωa → ωb}, we will specify a box-shaped frequency response with
cutoff frequency {ωa → ωb} such that:

Fa→b(ω) =

{
1 {ωa → ωb}
0 ωc

(2)

Subsequently, the inverse FFT (iFFT) will be applied to transform the frequency
segment (critical frequencies) back to a time domain. The iFFT of Fa→b(ω) is then computed
using Equation (3) below:

f (xa→b) =
1

2π

∫ ∞

−∞
Fa→b(ω)eiωxdω (3)

where ω ranges between ωa to ωb.
Finally, the iFFT-transformed signals in the time domain, which only preserves the

critical frequency segment, will be used as the most discriminating signals (inputs) for
diagnostic modeling.

3.2.2. Standard DL-Based Diagnostic/Classification Models

Traditional classification algorithms (e.g., support vector machine, decision trees)
require preprocessing in order to extract discriminative features. This often creates too
much room for expensive statistical assumptions peculiar to the feature extraction method;
amidst the limitations of the traditional classification algorithms. On the bright side, DL-
based algorithms offer better classification accuracies, ease-of-use, and automatic feature
extraction capabilities.

Amongst the many standard DL algorithms, CNNs and MLPs are the most popular
for accurate discriminative modeling efficiencies. While CNNs are unique for their working
principle—mimicking the human visual cortex for discriminative feature extraction and
identification of labels (objects, conditions, etc.), MLPs comprise nodes/neurons that
perform tasks via a feedforward activation learning process [5]. CNNs are quite popular
for many diagnostic/detection problems, including, but not limited to wear detection
and pattern recognition [27]. This efficiency emanates from the convolving (Conv) and
pooling layers, which function as filters for high-level (automatic) feature extraction; and
with the fully connected layer(s), its architecture can be modified for better diagnostic
accuracies. On the other hand, MLPs comprise two or more multi-layer perceptrons—a
class of feedforward artificial neural network that consists of at least three layers of nodes:
an input layer, a hidden layer, and an output layer, whereby the supervised training process
is achieved via a backpropagation learning process with the aid of nonlinear activation
functions [5].

Given a set of one-dimensional vibration measurements as inputs— X
′m
n = {(x′1, y1),

(x′2, y2), ..., (x′n, yn)}, where x′n ∈ Rm and yn ∈ {0, 1, ..., n}, the convolution layer performs a
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convolution operation on the data through a convolution kernel, and then adds a bias and
activation function to finally form a corresponding convolution feature map:

h2,j = f (
r

∑
i=1

X
′m
ni ∗Wj + bj) (4)

where X
′m
ni represents the i-th channel of the input data (a total of r channels), Wj is a weight

matrix, bj is the bias, * indicates convolution operation, and f is an activation function
that ranges across popular functions, such as the Sigmoid, Tanh, and rectified linear unit
(ReLU) [28].

On the other hand, consider an MLP with l hidden layers with a varying real integer
number of nodes in each layer such that the nodes al−1

1 , al−1
2 , . . . , al−1

r } are in the l − 1th
hidden layer. They first receive activated outputs from the nodes in the preceding layer—
l − 2th layer via a forward propagation process and compute yet another activated output
to the nodes in the final hidden layer—the lth hidden layer. The forward propagation
continues from the input layer nodes to the nodes in the output layer Oiout , which is then
followed by a backpropagation process (by updating the weights and biases) to minimize
the cost function by either a stochastic gradient descent algorithm, Adam [29] optimizer,
and/or any of the quasi-Newton algorithms [30].

Empirically, the inputs Oiin provided by the node al
i are received by the nodes Oi are

given by the sum of the activated outputs of al
i multiplied by the corresponding connection

weight matrix wl using Equation (5).

Oiin =
r

∑
i=1

wl ∗ A[i] (5)

where A[i] is the activated outputs of the nodes in the lth.
The output Oiout from each of the output nodes Oi is obtained by passing the inner

product Oiin through a nonlinear activation function f using Equation (6):

Oiout = f
(
Oiin

)
(6)

The automatic (supervised) learning process of the CNN and MLP enables the min-
imizing of the squared error in the predicted outputs and the actual target labels using
Equation (7):

E = (y−Oiout)
2 (7)

where E is the prediction error (cost function), and y is the desired output label.
More often, the ReLU activation function is preferred because of its faster learning

advantages on DNNs. Further, because it returns the corresponding output value for
positive values whereas, for negative input values, it returns a zero value [28]; and ide-
ally, most input variables—extracted features are usually greater than zero—the ReLU is
often preferred.

4. Experimental Assessment

For the proposed investigation, we leverage experimental data from a micro drill
bit ARIS (model TGM-1011) manufactured by Instern Co. Ltd., Korea. The equipment
automatically regrinds micro drill bits (φ0.15–φ0.075 mm) used for PCB manufacturing
process via a series of ultra-precision control mechanisms.

4.1. Data Acquisition and Spectral Isolation

For the proposed study, seven (7) high-sensitivity accelerometers were mounted on
the grinding unit at different locations—four (4) under the two high-speed spindles and
three (3) on the X-, Y-, and Z-axes of the top frame. Figure 3 shows the actual equipment
and the sensor positions.
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Figure 3. A picture of the micro drill bit ARIS (model TGM-1011) with the sensor locations and data
acquisition system.

The accelerometers were connected to two NI 9228 modules affixed to a NI cDAQ 9178,
and with the help of a LabView software, the digital vibration signals were collected at a
sampling rate of 1 KHz. Three different pairs of grinding wheels corresponding to the three
major health stages of the wheels are labeled—healthy (new pair of grinding wheels), fairly
used (about 40–50% life remaining useful life left for the wheel pair), and faulty (about 0 -
10% remaining useful life left for the wheel pair). Figure 4 shows a picture of the wheels at
the different health stages.

(a) (b) (c)

Figure 4. Pictures of the grinding wheel at (a) healthy/normal state, (b) fairly used state—about
40–50% life remaining useful, and (c) faulty state—about 0–10% life remaining useful.

It can be observed from Figure 4a–c that the grinding surface of the wheels wears
down due to prolonged usage. This obviously affects their grinding performance and
may damage the micro drill bits as the wheel surface wear intensifies. For each of the
wheel conditions, vibration signals were collected and stored in their respective folders
and employed on the proposed intelligent wear monitoring framework. Figure 5 presents
a view of the raw vibration signals, while Figure 6 shows the spectra comparison of the
signals from the different wheel health stages.
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Figure 5. Raw vibration signals for (a) spindle at healthy/normal state, (b) spindle at fairly used
state, (c) spindle at faulty state, (d) frame at healthy/normal state, (e) frame at fairly used state, and
(f) frame at faulty state.

Figure 6. Spectral comparison of different grinder health states. (a) Spindle, (b) frame.

It is observed from Figure 5a–d that the regrinding spindles/wheels’ responses are
concentrated in the higher frequency bands (between 0 and 1000 Hz) while the frame’s
responses are concentrated in the lower frequency bands (between 1500 and 2000 Hz). This
presents the opportunity for isolating the critical segments to minimize computational costs,
improve diagnostic accuracy, and minimize classifier confusion. Our study proposes the
FFT-based spectral isolation technique, and was deployed on the signals. Figure 7 shows
the critical segments of the respective components (spindle and frame), while Figure 8
shows their corresponding time-domain signal outputs after the spectral isolation process.
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Figure 7. Spectral comparison of different grinder health states. (a) Spindle (critical segment),
(b) frame (critical segment).

Figure 8. Raw vibration signals (in blue) and their corresponding spectral isolation outputs (in red)
for (a) spindle at healthy/normal state, (b) spindle at fairly used state, (c) spindle at faulty state,
(d) frame at healthy/normal state, (e) frame at fairly used state, and (f) frame at faulty state.

As shown in Figure 7, it can be observed that the discriminance in the magnitudes for
the different grinder health states is obvious. Moreover, it can be observed in Figure 8 that
the signals’ amplitudes are reduced while preserving the important periodic components
of the signals. By harnessing the discriminative information in these critical segments,
the diagnostic efficiencies of a classifier can be further improved. More often than not,
in cases where the discriminance is poor in the inputs (such as in the case when the raw
signals are used), a classifier with basic/simple architecture may produce false predictions,
and this often motivates the deepening of the architecture of classifiers in the hopes that it
might extract higher-level features. Unfortunately, issues such as over-fitting and increased
computational costs may arise. Beyond the advantages of isolating the critical segments
for improved diagnostic performance (even for classifiers with basic/simple architecture),
the computational costs of the diagnostic process would be significantly reduced.
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4.2. DL-Based Diagnostic Assessments

Apart from the spectral isolation module, the proposed intelligent monitoring frame-
work features state-of-the-art stand-alone DL-based classifiers—1D-CNN and MLP. Al-
though different custom and hybrid models have been reported in numerous works,
generality remains a major concern for their global adoption [31]; therefore, it is often
recommended to use established stand-alone DL-based models for practical cases. Al-
though highly reliable, stand-alone DL algorithms have their limitations, which has moti-
vated different methods for closing these limiting gaps. For example, CNNs are strongly
affected by inputs with dynamic transient behavior, while MLPs are easily fooled by inputs
due to their high dependence on a priori knowledge [32]. This is yet another valid rationale
for adopting the spectral isolation technique as a preprocessing tool to ensure that only the
critical spectral segments are retained.

Arguably, certain factors affect computational costs, transfer learning potentials of
DL models between domains, model stochasticity and over-fitting, and they often include:
the model’s structure—the number of layers, filters, and nodes in the mode—the right
initialization method, choice of the activation function(s), hyperparameter values, learning
rates and epoch sizes, the choice of regularization techniques employed, and the cost
function (and the befitting loss minimization algorithm) employed. On the other hand,
linear activation functions often flaw in comparison with nonlinear activation functions and
even among the nonlinear counterparts, some are more suitable for classification problems
(for example, ReLU and Softmax) while some are more suitable for regression problems (for
example, ReLU, Tanh, and LeakyReLU). Consequently, it becomes a challenge to achieve
a standard/global architecture for these models since, for instance, an excess of layers,
nodes, and/or filters adversely effect computational efficiency and may lead to over-fitting,
while the reverse may lead to under-fitting. However, users are motivated to try different
architectures, and for each architecture, a cross-validation training/testing process over
multiple trials is also encouraged to minimize the probability of accidental successes by the
model(s). In this light, we designed different 1D-CNN and MLP models for the diagnostic
process, and they are summarized in Table 1 below.

As shown in Table 1, each of the DL models has different architectures with hyper-
parameter values that were chosen from experience (trial on different tasks), apart from
the fully connected network (FCN) that was proposed in [33], and have been reported in
many classification tasks. Overall, the Dense_output has three (3) nodes—one each for
the different grinder wheel health stages, while the input shape is varied according to
the shape (channel) of the input/source data. Generally, the “categorical_crossentopy”
provides a reliable metric for evaluating the training loss for classification problems and
was employed in all the models. On the other hand, the Adam weigh optimizer—an
improved stochastic gradient descent-based optimizer—offers better efficiencies, faster
convergence, and improved validation scores on large datasets and was used throughout.

The proposed diagnostic case study exploits vibration signals from seven (7) accelerom-
eters with an optional module for employing the proposed spectral isolation technique;
however, it also offers different input/source data channels, which may include the use of
the raw signals (from all the accelerometers, the spindle only, or the frame only), the use
of the critical segments from the signals (from all the accelerometers, the spindle only,
or the frame only), and/or the use of alternating combinations of raw signals and critical
segments from the signals (from all the accelerometers, the spindle only, or the frame only).
For each of the models summarized in Table 1, each of the different input/source data
channels were deployed for a training-validation process over a 5-fold cross-validation over
50 epochs on the training data (with 20% validation set included). Overall, eight (8) differ-
ent input/source data channels were acquired, and they include raw spindle only (SPR),
critical spindle only (SPC), raw frame only (FRR), critical frame only (SPC), raw spindle and
raw frame (SP_FRR), critical spindle and raw frame (SP_FRC), raw spindle and critical
frame (SPRFRC), and critical spindle and raw frame (SPCFRR). Figure 9 shows each of the
models’ training history over the 50 epochs on the different input/source data channels.
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Table 1. The different DNN models employed and their architectures.

Model Architecture Hyperparameters/Description

CNN64
Conv1D,

GlobalAveragePooling1D,
Dense_output

Filter1 = 64, kernel1_size = 3,
activation_Conv1D = ReLU,

activation_Dense_output = Softmax,
optimizer = adam,

Loss = categorical_crossentropy

CNN64_64
Conv1D—Conv1D,

GlobalAveragePooling1D,
Dense_output

Filter1 = Filter2 = 64,
kernel1_size = 8, kernel2_size = 5,

activation_Conv1D = ReLU,
activation_Dense_output = Softmax,

optimizer = adam,
Loss = categorical_crossentropy

CNN64_Dense100
Conv1D,

GlobalAveragePooling1D,
Dense_100, Dense_output

Filter1 = 64, activation_Conv1D =
ReLU, kernel1_size = 3,

activation_Dense_100 = ReLU,
activation_Dense_output = Softmax,

optimizer = adam,
Loss = categorical_crossentropy

FCN [33]

Conv1D+Batch_Norm,
Conv1D+Batch_Norm,
Conv1D+Batch_Norm,

GlobalAveragePooling1D,
Dense_output

Filter1 = 128, Filter2 = 256,
Filter3 = 128, activation_Conv1D =

ReLU, kernel1_size = 8,
kernel2_size = 5, kernel3_size = 3,

activation_Dense_output = Softmax,
optimizer = adam,

Loss = categorical_crossentropy

DNN64 Dense_64—Dense_output

MLP: nodes in Dense_64 = 64,
activation_Dense_64 = ReLU,

activation_Dense_output = Softmax,
optimizer = adam,

Loss = categorical_crossentropy

DNN128_64 Dense_128—Dense_64—
Dense_output

MLP: nodes in Dense_128 = 128,
nodes in Dense_64 = 64,
activation_Dense_128 =

activation_Dense_64 = ReLU,
activation_Dense_output = Softmax,

optimizer = adam,
Loss = categorical_crossentropy

DNN100_150_50 Dense_100—Dense_150—
Dense_50—Dense_output

MLP: nodes in Dense_100 = 100,
nodes in Dense_150 = 150, nodes in

Dense_50 = 50,
activation_Dense_100 =
activation_Dense_150 =

activation_Dense_50 = ReLU,
activation_Dense_output = Softmax,

optimizer = adam,
Loss = categorical_crossentropy
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Figure 9. Training history for (a) CNN64, (b) CNN64_64, (c) CNN64_Dense100, (d) FCN, (e) DNN64,
(f) DNN128_64, and (g) DNN100_150_50. For each subfigure, the eight images respectively represent
the training histories for the eight different input/source data channels in the order: SPR, SPC, FRR,
SPC, SP_FRR, SP_FRC, SPRFRC, SPCFRR.

As shown, the respective models have zero training and validation losses over the
first few iterations (as shown in the red-dotted and yellow lines, respectively). These are
also accompanied by a 100% training and validation accuracy from each of the models (as
shown in the black-dotted and blue lines, respectively). These only validate that the models
are quite efficient for learning the discriminative information stored in the training data
and cannot form generalization criteria for assessing the models. Similarly, a test set was
deployed for the models in an unsupervised manner, and their respective test scores were
recorded. Table 2 provides the dimensions of the different input/source data channels and
the test scores of the different models, respectively.
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Table 2. Test accuracy of DL models on different input/source data channels.

Spindle Only Frame Only Spindle + Frame

Parameter SPR SPC FRR FRC SP_FRR SP_FRC SPRFRC SPC FRR

Dimension (m× n)
× 4

(m× n)
× 4

(m× n)
× 3

(m× n)
× 3

(m× n)
× 7

(m× n)
× 7

(m× n)
× 7

(m× n)
× 7

CNN64 90.2% 97.8% 85.4% 88.9% 92.1% 98.0% 84.2% 88.3%
CNN64_64 92.1% 97.6% 88.1% 90.0% 92.5% 98.7% 88.9% 94.7%

CNN64_Dense100 93.6% 98.2% 88.6% 91.2% 92.2% 97.8% 90.1% 95.1%
FCN 96.0% 99.3% 91.1% 95.5% 95.7% 98.8% 92.3% 97.6%

DNN64 73.8% 85.6% 56.2% 75.8% 65.8% 87.2% 74.7% 83.7%
DNN128_64 88.7% 91.6% 82.6% 88.7% 90.3% 93.1% 90.6% 94.2%

DNN100_150_50 89.1% 92.1% 84.0% 90.1% 91.2% 94.0% 92.4% 93.0%

Overall, the respective test accuracies of the models on the different input/source
data channels are quite high; especially for the FCN whose architecture is the deepest of
them all. A deeper analysis of the findings in Table 2 reveals a 4.6% and 7.5% improved
diagnostic accuracy by the 1D-CNN and MLP models, respectively, between the use of the
raw vibration signals and their critical segments. On the downside, the poor predictive
accuracy of the more shallow models is shown by the DNN64’s low test accuracies (less
than 88%) on all the input/source data channels. Amidst the predictive accuracies of the
models across the rows, the positive impact of the proposed spectral isolation technique
can be observed in the higher test accuracy between the use of raw signals and their critical
segment counterparts; for instance, between SPR and SPC, FRR and FRC, and SP_FRR
and SP_FRC. Combining vibration measurements from the spindle can occur in four
possible ways, which include: SP_FRR, SP_FRC, SPR_FRC, and SPC_FRR. These different
combinations produce different diagnostic accuracies, as shown in Table 2. However,
a significant observation is that for the respective DL models, using the critical segments
from both vibration sources (frame and spindle—SP_FRR) produces better diagnostic
accuracies in comparison with the other spindle-frame combinations—SP_FRR, SPR_FRC,
and SPC_FRR. Nonetheless, the test accuracies from each Of the DL models were highest
when only spindle vibrations were used (raw and critical segments).

Interestingly, between the 1D-CNN and MLP variants presented, it can be observed
that the 1D-CNN has superior classification efficiencies even with a shallow architecture,
such as the CNN64. This is attributed to the filters that scan through the signals for dis-
criminative features, and with the GlobalAveragePooling1D integrated in their architecture,
the 1D-CNN models are better able to prioritize the maximum value for feature values of a
feature matrix and uses it to create a down-sampled (pooled) feature matrix. This strongly
provides valid support for choosing the 1D-CNN models over the MLP models.

Although the test accuracy provides a global perspective for performance evaluation
of the models, it may be more important to assess their class-specific (the different health
stages of the wheels) performance to better ascertain their probability for false/positive
predictions. Generally, the confusion matrix provides a reliable avenue for such assessments
and was employed. For each of the input/source data channels, the confusion matrix of
the models was computed, and, overall, there were 56 different outputs, most of which
returned a perfect prediction for the different classes, while a few imperfect predictions
were also returned. Because it would be futile to present all the 56 matrices in this study
(in addition to the numerous similarities in the models’ outputs), we have provided, in
Figure 10, each model’s best and worst confusion matrix outputs and their corresponding
inferences that can be drawn from them.
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Figure 10. Worst and best Confusion matrices produced by the DL models (a) CNN64, (b) CNN64_64,
(c) CNN64_Dense100, (d) FCN, (e) DNN64, (f) DNN128_64, and (g) DNN100_150_50.

As shown in the maximum true positives in Figure 10d, it can be observed that the
FCN is the most accurate of all the models, followed by the CNN64_Dense100 in Figure 10c,
whose worst prediction was recorded for the FRR data source. As the CNN models become
more shallow (CNN64 and CNN64_64), the false alarm rate of predictions becomes higher,
as observed in the false positives and false negatives in Figure 10a,b. Although the best
outputs for the CNN64 and CNN64_64 models are perfect, such as the FCN, the reduced
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true positives in their worst outputs, as shown in Figure 10a,b, only reflect on the inherent
deficiencies of shallow CNN models, especially for inputs with very small discriminance
in the inputs, such as the FRR. In contrast, the SPC, FRC, SP_FRC, which, respectively,
are critical segments from the raw signals, offer inputs that are more discriminative for
improved diagnostic results. Overall, most of the best outputs presented in Figure 10 were
produced for the inputs SPC, FRC, SP_FRC, while the worst outputs were produced for
FRR, which generally hints not only at the importance of the spectral isolation but also
the limited efficiencies of monitoring the component via the frame only. While the sensors
under the spindle provide more resourceful information for monitoring, the sensors on the
frame provide supplementary information for a more comprehensive monitoring process
and are recommended (even though the overall accuracy of using the spindle only is
marginally higher).

Although the results in Table 2 and Figure 10 support the use of the FCN model for
accurate monitoring, it is also important to assess the computational cost implications of
using the models. This offers another avenue for a more informed decision-making criteria
for diagnostic modeling. In view of this, we conducted a computational cost assessment on
the models, and it is presented in Figure 11.

Figure 11. Computational cost assessment of the DL models on the different input/source data
channels. The green bars (Avg cost) are the mean value of the computational costs of the DL models
per input/source data channel.

The values shown in Figure 11 above are the times (in minutes) for the training-testing
process of each DL model on the respective input/source data channels. The hardware
specifications for the computer used in the analyses is: AMD Ryzen 7 (manufactured in
Taiwan), 2700 Eight-core 3.20 GHz processor, and 16 GB RAM, while the analyses were
performed using Keras—a Python-based DL library. As shown, the computational costs of
using the FCN are at least three to four times higher than using the other models. This may
be a major concern for cases where computational resources are a major decision-making
criteria; however, since most state-of-the-art computers often feature high-end processing
units, computational costs may not be a major concern. On the other hand, choosing a more
shallow DL model architecture offers better computational efficiencies, as shown in the low
computational costs associated with the DL models (except the FCN). From this perspective,
one may be inclined to find an optimal balance between computational accuracy and
computational costs, which realistically offers a better decision-making rationale. In that
case, the 1D-CNN models—CNN64, CNN64, and CNN64_64—offer realistic alternatives to
the FCN since they offer high test accuracies (as shown in Table 2), minimal false alarm rates
(as shown in Figures 10a–c), and comparatively lower computational cost than the FCN.
Moreover, the cost implications of combining both vibration sources are shown in Figure 11,
whereby using the raw signals from both sources (SP_FRR) is more computationally
expensive (13.71 min) than when the other combinations were employed—13.4 min for
SP_FRC, 13.13 min for SPR_FRC, and 12.58 min for SPC_FRR. Overall, the study reveals an
improved diagnostic accuracy by the 1D-CNN and DNN models of about 1.3% and 5.71%
reduced computational costs
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5. Conclusions and Future Works

In this study, a vibration-based multi-sensor intelligent wear monitoring framework is
proposed to solve the compound health diagnosis of high-frequency micro drill bit ARIS
using spectral isolation and deep learning models. Because DL models are popular for
disparaging the hectic (and less efficient) process of manual hand-crafted feature extraction
process with automated (and more reliable) efficiencies, we exploited the 1D-CNN and MLP
models on the vibration signals acquired from the frame and spindle of the regrinding unit
of a micro drill bit ARIS (model TGM-1011) for monitoring the wear severity of the grinding
wheel. A major contribution of the study is the spectral isolation module, which helps
prioritize only the critical spectral segments of the vibration signals via an FFT-based signal
processing technique for improved monitoring accuracies at reduced computational costs.

Results from deploying the DL models on the different input/source data channels—
raw and critical segments—of the signals reveal 4.6% and 7.5% improved diagnostic
accuracy by the 1D-CNNs and MLP s, respectively, at about 1.3% and 5.71% reduced
computational costs, respectively. Moreover, the study shows that as the models become
more shallow, the false alarm rate of predictions becomes higher; especially when using
the raw vibration signals. While the sensors under the spindle provide more resourceful
information for monitoring, the sensors on the frame provide supplementary information
for a more comprehensive monitoring process and are recommended (even though the
overall accuracy of using the spindle only is marginally higher). On the extreme side,
the study reveals that using very deep models, such as the FCN, comes with significant
computational costs regardless of the data sources employed and should be considered
for cases where computational resources are a major decision-making factor. While a more
shallow model (in comparison with the FCN) offers better computational efficiencies, its
optimal use may rely on the proposed spectral isolation module to minimize the probability
of false predictions.

While the findings validate the efficiencies of the proposed monitoring framework,
the inherent issues of optimal sensor selection still pose a significant concern because
accelerometers may not be the most appropriate for the equipment. No doubt, alterna-
tive sensors, such as acoustic emission sensors and cameras, may offer better monitoring
solutions, either as stand-alone or hybrid sensing mechanisms. Although our choice of
accelerometers was fundamentally motivated by their strong magnetic properties, cost
efficiency, sensor localization efficiencies, and the comprehensive monitoring opportunities
offered by combining the measurements from the spindle and frame (which, by the way,
are major advantages over the alternative sensing methods since the regrinding is always
in motion), we believe accelerometers only provide inferred knowledge of the regrind-
ing unit as mechanical responses (which may be compromised by other unrecognizable
sources). The authors agree that the use of indirect monitoring methods, such as vibration
sensors, may not be as efficient as direct monitoring methods. However, our research offers
significant success in the proposed case study, which unfortunately has not been studied
in the past. We believe our study provides a strong paradigm for bench-marking our
continued research in the case study as we continue to investigate other sensing methods
for improved health monitoring.

On the flip side, we believe cameras are more befitting since they can better provide di-
rect information on the grinding wheels’ health states for a more accurate wear monitoring.
However, its real-time usability may be affected since the wheels rotate at high speeds and
may produce unclear images in real-time. Further, finding an optimal camera localization
point is another major challenge. These lapses present opportunities for continued research
in the domain and have motivated our continued research.
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