A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction
Abstract
:1. Introduction
- Outlining the background of the palm oil breeding programmes.
- Introducing the factor that affects the palm oil growth and the fruit quality.
- Comprehensive critical assessment of ML-based palm oil prediction algorithms, critical evaluation of feature sets used, and comparison of relevant research.
- A thorough examination of the advantages and drawbacks of ML algorithms in predicting palm oil yield.
2. The PRISMA Strategy Article Selection
3. Palm Oil Background
3.1. Breeding Programmes
- Deli: The thick-shelled dura is a descendant of the original Bogor palms from Java. The subsequent progeny and local selection distribution to other countries resulted in the development of subpopulations in Malaysia. The regions include Elmina, Serdang, Avenue, and Ulu Remis Deli Dura, followed by the Ivory Coast of Dabou and Le Mé Dura. This idea led to speculation that all four Bogor palms were descended from the same ancestor. All major commercial hybrid seed production programmes utilise the mother Deli (dura) palm. The Dumpy and Gunung Melayu palms are short variants of the longer Deli palms.
- AVROS: AVROS seeds were collected from the Eala Botanical Garden (Jardin Botanique d’Eala) in Zaire (now the Democratic Republic of Congo) in 1923. SP540 is a common name for this pisifera, known for its vigorous growth, precocious bearing, thin shell, thick mesocarp, and high-yielding traits. Notably, the Deli (dura) AVROS (pisifera) is the basis for effective seed production programmes in Indonesia, Malaysia, Colombia, Papua New Guinea, and Costa Rica.
- Yangambi: The seeds are acquired from the INEAC in Yangambi, Democratic Republic of the Congo. The population of the Dejongo palm and Yawenda tenera was developed using open-pollinated seeds, distinguished from their large fruits and high oil content.
- La Mé: Twenty-one tenera palm seeds were collected from the wild groves of the Ivory Coast by IRHO, creating the La Mé populations. The tenera palms are used in the seed production industry in West Africa and Indonesia. The La Mé progenies (pisifera) are smaller and bear fewer fruits per bunch but are resilient in less-ideal growing conditions.
- Binga: The pisifera subpopulation was derived from Yangambi progenies from F2 and F3 generations. They are planted in the Binga plantation in Yangambi, Democratic Republic of Congo. The Bg 312/3 and Bg 312/3 are two-parent palm varieties of interest for breeding purposes.
- Ekona: Wild palms were used from the Ekona region to create the Ekona population. The regions include Unilever’s Crown Estate, Ndian Estate, and Lobe Estate plantations in Cameroon. Its high bunch yield, excellent oil content, and wilt resistance make it a sought-after crop.
- Calabar: Aba, Calabar, Ufuma, and Umuabi are all represented in Nigeria Institute for Oil Palm Research’s (NIFOR) breeders, which are more diverse than their predecessors. Hence, many seed-production programmes make use of this pisifera.
3.2. Factors Affecting Palm Oil Growth and Quality
4. Data-Driven Prediction Model
4.1. Prediction of Palm Oil Using Unsupervised ML
4.2. Palm Oil Prediction Using Supervised ML
4.2.1. Types of Regression
4.2.2. Support Vector Machine (SVM)
4.2.3. Random Forest (RF)
4.3. Deep Learning
4.3.1. Artificial Neural Network (ANN)
4.3.2. Time-Series
4.4. Other Approaches in Palm Oil Prediction
5. Analysis and Discussion
6. Identifying Palm Oil Prediction Framework
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cosiaux, A.; Gardiner, L.M.; Stauffer, F.W.; Bachman, S.P.; Sonké, B.; Baker, W.J.; Couvreur, T.L.P. Low extinction risk for an important plant resource: Conservation assessments of continental African palms (Arecaceae/Palmae). Biol. Conserv. 2018, 221, 323–333. [Google Scholar] [CrossRef]
- Corley, R.H.V.; Tinker, P.B. Selection and Breeding. In The Oil Palm; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 138–207. [Google Scholar] [CrossRef]
- Reddy, M.T.; Kalpana, M.; Sivaraj, N.; Kamala, V.; Pandravada, S.R.; Sunil, N. Indigenous Traditional Knowledge on Health and Equitable Benefits of Oil Palm (Elaeis spp.). OALib 2019, 6, 90022. [Google Scholar] [CrossRef]
- Okolo, C.C.; Okolo, E.C.; Nnadi, A.L.; Obikwelu, F.E.; Obalum, S.E.; Igwe, C.A. The oil palm (Elaeis guineensis Jacq): Nature’s ecological endowment to eastern Nigeria. Agro-Sci. 2019, 18, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Ferdous Alam, A.S.A.; Er, A.C.; Begum, H. Malaysian oil palm industry: Prospect and problem. J. Food Agric. Environ. 2015, 13, 143–148. [Google Scholar]
- Razak, M.Y. Bin A. In Selected Agricultural Indicators, Malaysia, 2021; Department of Statistics Malaysia: Kuala Lumpur, Malaysia, 2021. [Google Scholar]
- Mark, B.; Steve, J.; Will, S.; Richard, S.; Sam, R.; James, F.; Yu, L.K.; Julian, M. Study on the Environmental Impact of Palm Oil Consumption and on Existing Sustainability Standards; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-927-980-226-3. [Google Scholar]
- Zabid, M.F.M.; Abidin, N.Z.; Applanaidu, S.D. MYPOBDEX: An interactive decision support system for palm-based biodiesel investors. Int. J. Econ. Perspect. 2017, 11, 260–272. [Google Scholar]
- Mohamad Fauzi, N.S.; Abd Rahim, M.F.; Hj Mohamad, M.N. Implementation of information system in oil palm breeding research: FGV’s experiences. SSRG Int. J. Eng. Trends Technol. 2020, 104–108. [Google Scholar] [CrossRef]
- Rawi, R.; Hasnan, M.S.I.; Sajak, A.A.B. Palm Oil Soil Monitoring System for Smart Agriculture. Int. J. Integr. Eng. 2020, 12, 189–199. [Google Scholar] [CrossRef]
- Ang, K.L.M.; Seng, J.K.P. Big data and machine learning with hyperspectral information in agriculture. IEEE Access 2021, 9, 36699–36718. [Google Scholar] [CrossRef]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big Data for Remote Sensing: Challenges and Opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Dakir, A.; Barramou, F.; Alami, O.B. Opportunities for Artificial Intelligence in Precision Agriculture Using Satellite Remote Sensing. In Advances in Science, Technology and Innovation; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Zhang, X.; Zhou, Y.; Luo, J. Deep learning for processing and analysis of remote sensing big data: A technical review. Big Earth Data 2021, 5, 1964879. [Google Scholar] [CrossRef]
- Balasubramanian, V.N.; Guo, W.; Chandra, A.L.; Desai, S.V. Computer Vision with Deep Learning for Plant Phenotyping in Agriculture: A Survey. Adv. Comput. Commun. 2020. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Morota, G.; Ventura, R.V.; Silva, F.F.; Koyama, M.; Fernando, S.C. Big data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. J. Anim. Sci. 2018, 96, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Antle, J.M.; Jones, J.W.; Rosenzweig, C.E. Next generation agricultural system data, models and knowledge products: Introduction. Agric. Syst. 2017, 155, 186–190. [Google Scholar] [CrossRef]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big data in agriculture: A challenge for the future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Gopal, M.P.S.; Chintala, B.R. Big data challenges and opportunities in agriculture. Int. J. Agric. Environ. Inf. Syst. 2020, 11, 48–66. [Google Scholar] [CrossRef]
- Du, Z.; Yang, L.; Zhang, D.; Cui, T.; He, X.; Xiao, T.; Xie, C.; Li, H. Corn variable-rate seeding decision based on gradient boosting decision tree model. Comput. Electron. Agric. 2022, 198, 107025. [Google Scholar] [CrossRef]
- Vong, C.N.; Conway, L.S.; Feng, A.; Zhou, J.; Kitchen, N.R.; Sudduth, K.A. Corn emergence uniformity estimation and mapping using UAV imagery and deep learning. Comput. Electron. Agric. 2022, 198, 107008. [Google Scholar] [CrossRef]
- Kasimati, A.; Espejo-García, B.; Darra, N.; Fountas, S. Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning. Sensors 2022, 22, 3249. [Google Scholar] [CrossRef]
- Landau, C.A.; Hager, A.G.; Williams, M.M. Deteriorating weed control and variable weather portends greater soybean yield losses in the future. Sci. Total Environ. 2022, 830, 154764. [Google Scholar] [CrossRef]
- Ali, M.; Deo, R.C.; Xiang, Y.; Prasad, R.; Li, J.; Farooque, A.; Mundher Yaseen, Z.; Mara, T.; Al-Khawarizmi, K.; Alam, S. Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction. Sci. Rep. 2022, 12, 5488. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Safaei, N.; Khaki, S.; Lopez, G.; Zeng, W.; Ewert, F.; Gaiser, T.; Rahimi, J. Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Sci. Rep. 2022, 12, 3215. [Google Scholar] [CrossRef] [PubMed]
- Naik, B.N.; Malmathanraj, R.; Palanisamy, P. Detection and classification of chilli leaf disease using a squeeze-and-excitation-based CNN model. Ecol. Inform. 2022, 69, 101663. [Google Scholar] [CrossRef]
- Yan, J.; Tian, H.; Wang, S.; Wang, Z.; Xu, H. Paddy moisture on-line detection based on ensemble preprocessing and modeling for combine harvester. Comput. Electron. Agric. 2022, 198, 107050. [Google Scholar] [CrossRef]
- Santoso, H.; Tani, H.; Wang, X. Random Forest classification model of basal stem rot disease caused by Ganoderma boninense in oil palm plantations. Int. J. Remote Sens. 2017, 38, 4683–4699. [Google Scholar] [CrossRef]
- Zheng, J.; Li, W.; Xia, M.; Dong, R.; Fu, H.; Yuan, S. Large-Scale Oil Palm Tree Detection from High-Resolution Remote Sensing Images Using Faster-RCNN. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep learning based oil palm tree detection and counting for high-resolution remote sensing images. Remote Sens. 2017, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, M.; Morley, T.; Jongeneel, R.; van Ittersum, M.; Reidsma, P.; Ruben, R. Disentangling agronomic and economic yield gaps: An integrated framework and application. Agric. Syst. 2017, 154, 90–99. [Google Scholar] [CrossRef]
- Khalili, E.; Kouchaki, S.; Ramazi, S.; Ghanati, F. Machine Learning Techniques for Soybean Charcoal Rot Disease Prediction. Front. Plant Sci. 2020, 11, 2009. [Google Scholar] [CrossRef]
- Whetton, R.; Zhao, Y.; Shaddad, S.; Mouazen, A.M. Nonlinear parametric modelling to study how soil properties affect crop yields and NDVI. Comput. Electron. Agric. 2017, 138, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Dash, Y.; Mishra, S.K.; Panigrahi, B.K. Rainfall prediction for the Kerala state of India using artificial intelligence approaches. Comput. Electr. Eng. 2018, 70, 66–73. [Google Scholar] [CrossRef]
- Cardona, C.C.C.; Coronado, Y.M.; Coronado, A.C.M.; Ochoa, I. Genetic diversity in oil palm (Elaeis guineensis jacq) using RAM (random amplified microsatellites). Bragantia 2018, 77, 546–556. [Google Scholar] [CrossRef]
- Paul, J.; Criado, A.R. The art of writing literature review: What do we know and what do we need to know? Int. Bus. Rev. 2020, 29, 101717. [Google Scholar] [CrossRef]
- Chong, K.L.; Kanniah, K.D.; Pohl, C.; Tan, K.P. A review of remote sensing applications for oil palm studies. Geo-Spatial Inf. Sci. 2017, 20, 184–200. [Google Scholar] [CrossRef] [Green Version]
- Soh, A.C. Applications and challenges of biotechnology in oil palm breeding. IOP Conf. Ser. Earth Environ. Sci. 2018, 183, 012002. [Google Scholar] [CrossRef] [Green Version]
- Kurnia, J.C.; Jangam, S.V.; Akhtar, S.; Sasmito, A.P.; Mujumdar, A.S. Advances in biofuel production from oil palm and palm oil processing wastes: A review. Biofuel Res. J. 2016, 3, 332–346. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. Detection of nutrition deficiencies in plants using proximal images and machine learning: A review. Comput. Electron. Agric. 2019, 162, 482–492. [Google Scholar] [CrossRef]
- Khosrokhani, M.; Khairunniza-Bejo, S.; Pradhan, B. Geospatial technologies for detection and monitoring of Ganoderma basal stem rot infection in oil palm plantations: A review on sensors and techniques. Geocarto Int. 2018, 33, 260–276. [Google Scholar] [CrossRef]
- Pandey, R.; Naik, S.; Marfatia, R. Image Processing and Machine Learning for Automated Fruit Grading System: A Technical Review. Int. J. Comput. Appl. 2013, 81, 29–39. [Google Scholar] [CrossRef]
- Rashid, M.; Bari, B.S.; Yusup, Y.; Kamaruddin, M.A.; Khan, N. A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction. IEEE Access 2021, 9, 63406–63439. [Google Scholar] [CrossRef]
- Khan, N.; Kamaruddin, M.A.; Sheikh, U.U.; Yusup, Y.; Bakht, M.P. Oil Palm and Machine Learning: Reviewing One Decade of Ideas, Innovations, Applications, and Gaps. Agriculture 2021, 11, 832. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 88, 105906. [Google Scholar] [CrossRef]
- Youmbi, E.; Tabi, K.; Ebongue, N.; Frank, G.; Tonfack, L.B.; Ntsomboh, G. Oil palm (elaeis guineensis jacq.) improvement: Pollen assessment for better conservation and germination. J. Oil Palm Res. 2015, 27, 212–219. [Google Scholar]
- Tandon, R.; Manohara, T.N.; Nijalingappa, B.H.M.; Shivanna, K.R. Pollination and pollen-pistil interaction in oil palm, Elaeis guineensis. Ann. Bot. 2001, 87, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Soh, A.C.; Mayes, S.; Roberts, J. Introduction to the oil palm crop. In Oil Palm Breeding: Genetics and Genomics; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Malike, F.A.; Amiruddin, M.D.; Yaakub, Z.; Marjuni, M.; Abdullah, N.; Abu Bakar, N.A.; Mustaffa, S.; Mohamad, M.M.; Hassan, M.Y.; Abdullah, M.O.; et al. Oil Palm (Elaeis spp.) Breeding in Malaysia. In Advances in Plant Breeding Strategies: Industrial and Food Crops; Springer International Publishing: Cham, Switzerland, 2019; Volume 6, pp. 489–535. ISBN 978-303-023-265-8. [Google Scholar]
- Soh, A.C. Breeding and Genetics of the Oil Palm; AOCS Press: Cambridge, MA, USA, 2012; ISBN 9780128043462. [Google Scholar]
- Wahid, M.B.; Abdullah, S.N.A.; Henson, I.E. Oil palm—Achievements and potential. Plant Prod. Sci. 2005, 8, 288–297. [Google Scholar] [CrossRef]
- Soh, A.C.; Mayes, S.; Roberts, J.; Barcelos, E.; Amblard, P.; Alvarado, A.; Alvarado, J.H.; Escobar, R.; Sritharan, K.; Subramaniam, M.; et al. Breeding Plans and Selection Methods. In Oil Palm Breeding: Genetics and Genomics; CRC Press: Boca Raton, FL, USA, 2017; pp. 143–164. ISBN 978-149-871-544-7. [Google Scholar]
- Rival, A. Breeding the oil palm (Elaeis guineensis Jacq.) for climate change. OCL—Oilseeds Fats Crop. Lipids 2017, 24, D107. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.H.; Ye, B.Q.; Lee, M. Molecular approaches for improving oil palm for oil. Mol. Breed. 2021, 41, 22. [Google Scholar] [CrossRef]
- Kartika, N.D.; Astika, I.W.; Santosa, E. Oil palm yield forecasting based on weather variables using artificial neural network. Indones. J. Electr. Eng. Comput. Sci. 2016, 3, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Siang, C.S.; Sung, C.T.B.; Ismail, M.R.; Yusop, M.R. Modelling hourly AIR temperature, relative humidity and solar irradiance over several major oil palm growing areas in Malaysia. J. Oil Palm Res. 2020, 32, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Keong, Y.K.; Keng, W.M. Statistical Modeling of Weather-based Yield Forecasting for Young Mature Oil Palm. APCBEE Procedia 2012, 4, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Kanchymalay, K.; Salim, N.; Krishnan, R. Time series based crude palm oil price forecasting model with weather elements using LSTM network. Int. J. Eng. Adv. Technol. 2019, 9, 3188–3192. [Google Scholar] [CrossRef]
- Oktarina, S.D.; Nurkhoiry, R.; Pradiko, I. The effect of climate change to palm oil price dynamics: A supply and demand model. IOP Conf. Ser. Earth Environ. Sci. 2021, 782, 032062. [Google Scholar] [CrossRef]
- Wardhani, R.; Rahadian, Y. Sustainability strategy of Indonesian and Malaysian palm oil industry: A qualitative analysis. Sustain. Account. Manag. Policy J. 2021, 12, 1077–1107. [Google Scholar] [CrossRef]
- USDA Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Soil Sci. 1977, 123, 270. [CrossRef]
- Nachtergaele, F. Soil taxonomy—A basic system of soil classification for making and interpreting soil surveys. Geoderma 2001, 99, 336–337. [Google Scholar] [CrossRef]
- Wong, M.K.; Selliah, P.; Ng, T.F.; Amir Hassan, M.H.; Van Ranst, E.; Inubushi, K. Impact of agricultural land use on physicochemical properties of soils derived from sedimentary rocks in Malaysia. Soil Sci. Plant Nutr. 2020, 66, 214–224. [Google Scholar] [CrossRef]
- Anaba, B.D.; Yemefack, M.; Abossolo-Angue, M.; Ntsomboh-Ntsefong, G.; Bilong, E.G.; Ngando Ebongue, G.F.; Bell, J.M. Soil texture and watering impact on pot recovery of soil-stripped oil palm (Elaeis guineensis Jacq.) seedlings. Heliyon 2020, 6, e05310. [Google Scholar] [CrossRef]
- Arias, D.; González, M.; Prada, F.; Ayala-Diaz, I.; Montoya, C.; Daza, E.; Romero, H.M. Genetic and phenotypic diversity of natural American oil palm (Elaeis oleifera (H.B.K.) Cortés) accessions. Tree Genet. Genomes 2015, 11, 122. [Google Scholar] [CrossRef]
- Low, E.T.L.; Jayanthi, N.; Chan, K.L.; Sanusi, N.S.N.M.; Halim, M.A.A.; Rosli, R.; Azizi, N.; Amiruddin, N.; Angel, L.P.L.; Ong-Abdullah, M.; et al. The oil palm genome revolution. J. Oil Palm Res. 2017, 29, 456–468. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.L.; Tatarinova, T.V.; Rosli, R.; Amiruddin, N.; Azizi, N.; Halim, M.A.A.; Sanusi, N.S.N.M.; Jayanthi, N.; Ponomarenko, P.; Triska, M.; et al. Evidence-based gene models for structural and functional annotations of the oil palm genome. Biol. Direct 2017, 12, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ajeng, A.A.; Abdullah, R.; Malek, M.A.; Chew, K.W.; Ho, Y.C.; Ling, T.C.; Lau, B.F.; Show, P.L. The effects of biofertilizers on growth, soil fertility, and nutrients uptake of oil palm (Elaeis guineensis) under greenhouse conditions. Processes 2020, 8, 1681. [Google Scholar] [CrossRef]
- Carolita, I.; Sitorus, J.; Manalu, J.; Wiratmoko, D. GROWTH PROFILE ANALYSIS OF OIL PALM BY USING SPOT 6 THE CASE OF NORTH SUMATRA. Int. J. Remote Sens. Earth Sci. 2017, 12, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Kwong, Q.B.; Teh, C.K.; Ong, A.L.; Heng, H.Y.; Lee, H.L.; Mohamed, M.; Low, J.Z.-B.; Apparow, S.; Chew, F.T.; Mayes, S.; et al. Development and Validation of a High-Density SNP Genotyping Array for African Oil Palm. Mol. Plant 2016, 9, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, A.L.; Teh, C.K.; Kwong, Q.B.; Tangaya, P.; Appleton, D.R.; Massawe, F.; Mayes, S. Linkage-based genome assembly improvement of oil palm (Elaeis guineensis). Sci. Rep. 2019, 9, 6619. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Luo, T.; Dou, Y.; Zhang, W.; Mason, A.S.; Huang, D.; Huang, X.; Tang, W.; Wang, J.; Zhang, C.; et al. Identification and Validation of Candidate Genes Involved in Fatty Acid Content in Oil Palm by Genome-Wide Association Analysis. Front. Plant Sci. 2019, 10, 1263. [Google Scholar] [CrossRef] [Green Version]
- Díaz, B.G.; Zucchi, M.I.; Alves-Pereira, A.; de Almeida, C.P.; Moraes, A.C.L.; Vianna, S.A.; Azevedo-Filho, J.; Colombo, C.A. Genome-wide SNP analysis to assess the genetic population structure and diversity of Acrocomia species. PLoS ONE 2021, 16, e0241025. [Google Scholar] [CrossRef]
- Leaché, A.D.; Oaks, J.R. The Utility of Single Nucleotide Polymorphism (SNP) Data in Phylogenetics. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 69–84. [Google Scholar] [CrossRef]
- Pereira, V.M.; Filho, J.A.F.; Leão, A.P.; Vargas, L.H.G.; de Farias, M.P.; de Rios, S.A.; da Cunha, R.N.V.; Formighieri, E.F.; Alves, A.A.; Souza, M.T. American oil palm from Brazil: Genetic diversity, population structure, and core collection. Crop Sci. 2020, 60, 3212–3227. [Google Scholar] [CrossRef]
- Danylo, O.; Pirker, J.; Lemoine, G.; Ceccherini, G.; See, L.; McCallum, I.; Hadi; Kraxner, F.; Achard, F.; Fritz, S. A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Sci. Data 2021, 8, 96. [Google Scholar] [CrossRef]
- Sokal, R.R. A statistical Method for Evaluating Systematic Relationships; University of Kansas Science Bulletin; University of Kansas: Lawrence, KS, USA, 1958; Volume 38. [Google Scholar]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Hollingsworth, P.M.; Ennos, R.A. Neighbour joining trees, dominant markers and population genetic structure. Heredity (Edinb). 2004, 92, 490–498. [Google Scholar] [CrossRef]
- Sarimana, U.; Herrero, J.; Erika, P.; Indarto, N.; Wendra, F.; Santika, B.; Ritter, E.; Sembiring, Z.; Asmono, D. Analysis of genetic diversity and discrimination of Oil Palm DxP populations based on the origins of pisifera elite parents. Breed. Sci. 2021, 71, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Okoye, M.N.; Bakoumé, C.; Uguru, M.I.; Singh, R.; Okwuagwu, C.O. Genetic Relationships between Elite Oil Palms from Nigeria and Selected Breeding and Germplasm Materials from Malaysia via Simple Sequence Repeat (SSR) Markers. J. Agric. Sci. 2016, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Kalyana Babu, B.; Mathur, R.K.; Naveen Kumar, P.; Ramajayam, D.; Ravichandran, G.; Venu, M.V.B.; SparjanBabu, S. Development, identification & validation of CAPS marker for SHELL trait which governs dura, pisifera & tenera fruit forms in oil palm (Elaeis guineensis Jacq.). PLoS ONE 2017, 12, e0171933. [Google Scholar] [CrossRef] [Green Version]
- Chun, T.C.; Ling, C.K.; Hee, L.C.; Choo, C.S.; Barin, J.; Fong, A.W.; Abdullah, M.P.; Guan, T.S. Genetic diversity and inbreeding level in deli dura and avros advanced breeding materials in oil palm (Elaeis guineensis jacq.) using microsatellite markers. J. Oil Palm Res. 2018, 30, 366–379. [Google Scholar] [CrossRef]
- Basyuni, M.; Wati, R.; Deni, I.; Tia, A.R.; Slamet, B.; Siregar, E.S.; Syahputra, I. Cluster analysis of polyisoprenoid in oil palm (Elaeis guineensis) leaves in different land-uses to find the possible cause of yield gap from planting materials. Biodiversitas 2018, 19, 1492–1501. [Google Scholar] [CrossRef]
- Chapman, R.; Cook, S.; Donough, C.; Lim, Y.L.; Vun Vui Ho, P.; Lo, K.W.; Oberthür, T. Using Bayesian networks to predict future yield functions with data from commercial oil palm plantations: A proof of concept analysis. Comput. Electron. Agric. 2018, 151, 338–348. [Google Scholar] [CrossRef]
- Nugroho, Y.A.; Tanjung, Z.A.; Yono, D.; Mulyana, A.S.; Simbolon, H.M.; Ardi, A.S.; Yong, Y.Y.; Utomo, C.; Liwang, T. Genome-wide SNP-discovery and analysis of genetic diversity in oil palm using double digest restriction site associated DNA sequencing. IOP Conf. Ser. Earth Environ. Sci. 2019, 293, 012041. [Google Scholar] [CrossRef]
- Aziz, M.H.A.; Bejo, S.K.; Hashim, F.; Ramli, N.H.; Ahmad, D. Evaluations of soil resistivity in relation to basal stem rot incidences using soil moisture sensor. Pertanika J. Sci. Technol. 2019, 27, 225. [Google Scholar]
- Ishak, H.; Shiddiq, M.; Fitra, R.H.; Yasmin, N.Z. Ripeness Level Classification of Oil Palm Fresh Fruit Bunch Using Laser Induced Fluorescence Imaging. J. Aceh Phys. Soc. 2019, 8, 84–89. [Google Scholar] [CrossRef]
- Alaw, F.A.; Sulaiman, N.S. Development of risk assessment model for biomass plant boiler using bayesian network. IOP Conf. Ser. Earth Environ. Sci. 2020, 991, 012136. [Google Scholar] [CrossRef]
- Abbas, F.; Afzaal, H.; Farooque, A.A.; Tang, S. Crop yield prediction through proximal sensing and machine learning algorithms. Agronomy 2020, 10, 1046. [Google Scholar] [CrossRef]
- Sousa, S.I.V.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Pereira, M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw. 2007, 22, 97–103. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Robin Bryant, C.; Senthilnath, J. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Sim, S.F.; Chai, M.X.L.; Jeffrey Kimura, A.L. Prediction of lard in palm olein oil using simple linear regression (SLR), multiple linear regression (MLR), and partial least squares regression (PLSR) based on fourier-transform infrared (FTIR). J. Chem. 2018, 2018, 7182801. [Google Scholar] [CrossRef]
- Kim, N.; Ha, K.J.; Park, N.W.; Cho, J.; Hong, S.; Lee, Y.W. A comparison between major artificial intelligence models for crop yield prediction: Case study of the midwestern United States, 2006–2015. ISPRS Int. J. Geo-Inf. 2019, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Ostfeld, R.; Howarth, D.; Reiner, D.; Krasny, P. Peeling back the label—Exploring sustainable palm oil ecolabelling and consumption in the United Kingdom. Environ. Res. Lett. 2019, 14, 014001. [Google Scholar] [CrossRef]
- Solichin, A.; Hasanah, U. Jayanta Development of Prediction System for Crude Palm Oil (CPO) Production with Time Series Data Mining Approach. In Proceedings of the 2nd International Conference on Informatics, Multimedia, Cyber, and Information System, ICIMCIS 2020, Jakarta, Indonesia, 19–20 November 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2020; pp. 147–152. [Google Scholar]
- Paudel, D.; Boogaard, H.; de Wit, A.; van der Velde, M.; Claverie, M.; Nisini, L.; Janssen, S.; Osinga, S.; Athanasiadis, I.N. Machine learning for regional crop yield forecasting in Europe. F. Crop. Res. 2022, 276, 108377. [Google Scholar] [CrossRef]
- Shevade, V.S.; Loboda, T.V. Oil palm plantations in Peninsular Malaysia: Determinants and constraints on expansion. PLoS ONE 2019, 14, e0210628. [Google Scholar] [CrossRef] [Green Version]
- Ruslan, S.A.; Muharam, F.M.; Zulkafli, Z.; Omar, D.; Zambri, M.P. Using satellite-measured relative humidity for prediction of Metisa plana’s population in oil palm plantations: A comparative assessment of regression and artificial neural network models. PLoS ONE 2019, 14, e0223968. [Google Scholar] [CrossRef]
- Santoso, H.; Tani, H.; Wang, X.; Segah, H. Predicting oil palm leaf nutrient contents in kalimantan, indonesia by measuring reflectance with a spectroradiometer. Int. J. Remote Sens. 2019, 40, 7581–7602. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Koo, C.H.; Mirzaei, M. Improved svr machine learning models for agricultural drought prediction at downstream of langat river basin, Malaysia. J. Water Clim. Chang. 2020, 11, 1383–1398. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Pratama, B.A.; Safira, D.P. Optimization of Bio-oil Production from Empty Palm Fruit Bunches by Pyrolysis using Response Surface Methodology. Reaktor 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Pasaribu, U.S.; Nurhayati, N.; Ilmi, N.F.F.; Sari, K.N. Determining soil fertility using principal componen regression analysis of oil palm plantation in West Sulawesi, Indonesia. J. Phys. Conf.Ser. 2020, 1494, 012013. [Google Scholar] [CrossRef]
- Makky, M.; Cherie, D. Pre-harvest oil palm FFB nondestructive evaluation technique using thermal-imaging device. IOP Conf. Ser. Earth Environ. Sci. 2021, 757, 12003. [Google Scholar] [CrossRef]
- Ahmad Jani, H.F.; Meder, R.; Hamid, H.A.; Razali, S.M.; Yusoff, K.H.M. Near infrared spectroscopy of plantation forest soil nutrients in Sabah, Malaysia, and the potential for microsite assessment. J. Near Infrared Spectrosc. 2021, 29, 148–157. [Google Scholar] [CrossRef]
- Parashar, N.; Khan, J.; Aslfattahi, N.; Saidur, R.; Yahya, S.M. Prediction of the Dynamic Viscosity of MXene/palm Oil Nanofluid Using Support Vector Regression. Recent Trends in Thermal Engineering. In Lecture Notes in Mechanical Engineering; Das, L.M., Sharma, A., Hagos, F.Y., Tiwari, S., Eds.; Springer: Singapore, 2022; pp. 49–55. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Curtin, R.R.; Cline, J.R.; Slagle, N.P.; March, W.B.; Ram, P.; Mehta, N.A.; Gray, A.G. MLPACK: A scalable C++ machine learning library. J. Mach. Learn. Res. 2013, 14, 801–805. [Google Scholar]
- Toh, C.M.; Tey, S.H.; Ewe, H.T.; Vetharatnam, G. Classification of oil palm growth status with L band microwave satellite imagery. In Proceedings of the 2019 Photonics and Electromagnetics Research Symposium—Fall, PIERS—Fall 2019, Xiamen, China, 17–20 December 2019. [Google Scholar]
- Chen, Z.Y.; Liao, I.Y. Evaluation of feature extraction methods for classification of palm trees in UAV images. In Proceedings of the 2019 International Conference on Computer and Drone Applications, IConDA 2019, Kuching, Malaysia, 19–21 December 2019. [Google Scholar]
- Son, N.T.; Chen, C.F.; Cheng, Y.S.; Toscano, P.; Chen, C.R.; Chen, S.L.; Tseng, K.H.; Syu, C.H.; Guo, H.Y.; Zhang, Y.T. Field-scale rice yield prediction from Sentinel-2 monthly image composites using machine learning algorithms. Ecol. Inform. 2022, 69, 101618. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Muhammad Asraf, H.; Tahir, N.M.; Nur Dalila, K.A.; Hussain, A. An agricultural tele-monitoring method in detecting nutrient deficiencies of oil palm leaf. Int. J. Eng. Technol. 2018, 7, 227–230. [Google Scholar] [CrossRef]
- Amirruddin, A.D.; Muharam, F.M. Evaluation of linear discriminant and support vector machine classifiers for classification of nitrogen status in mature oil palm from SPOT-6 satellite images: Analysis of raw spectral bands and spectral indices. Geocarto Int. 2019, 34, 735–749. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Wu, B. Automatic detection of individual oil palm trees from UAV images using HOG features and an SVM classifier. Int. J. Remote Sens. 2019, 40, 7356–7370. [Google Scholar] [CrossRef]
- Teye, E.; Elliott, C.; Sam-Amoah, L.K.; Mingle, C. Rapid and nondestructive fraud detection of palm oil adulteration with Sudan dyes using portable NIR spectroscopic techniques. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, D.B.M.; Mohd Rafie, A.S.S.; Abd Aziz, S.; Azrad, S.; Mazmira Mohd Masri, M.; Shahi, A.; Marzuki, O.F.F. Classification of oil palm female inflorescences anthesis stages using machine learning approaches. Inf. Process. Agric. 2020, 8, 537–549. [Google Scholar] [CrossRef]
- Shaharum, N.S.N.; Shafri, H.Z.M.; Ghani, W.A.W.A.K.; Samsatli, S.; Al-Habshi, M.M.A.; Yusuf, B. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sens. Appl. Soc. Environ. 2020, 17, 100287. [Google Scholar] [CrossRef]
- Montero, D.; Arenas, W.; Salinas, S.; Rueda, C. Development of a system based on aerial images for the morphological patterns classification using support vector machine. J. Phys. Conf. Ser. 2020, 1702, 012010. [Google Scholar] [CrossRef]
- Sega, M.; Xiao, Y. Multivariate random forests. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 80–87. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Kappas, M. Estimating the aboveground biomass of an evergreen broadleaf forest in Xuan Lien Nature Reserve, Thanh Hoa, Vietnam, using SPOT-6 data and the random forest algorithm. Int. J. For. Res. 2020, 2020, 4216160. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Xu, K.; Qian, J.; Hu, Z.; Duan, Z.; Chen, C.; Liu, J.; Sun, J.; Wei, S.; Xing, X. A new machine learning approach in detecting the oil palm plantations using remote sensing data. Remote Sens. 2021, 13, 236. [Google Scholar] [CrossRef]
- Shaharum, N.S.N.; Shafri, H.Z.M.; Ghani, W.A.W.A.K.; Samsatli, S.; Prince, H.M.; Yusuf, B.; Hamud, A.M. Mapping the spatial distribution and changes of oil palm land cover using an open source cloud-based mapping platform. Int. J. Remote Sens. 2019, 40, 7459–7476. [Google Scholar] [CrossRef]
- Condro, A.A.; Setiawan, Y.; Prasetyo, L.B.; Pramulya, R.; Siahaan, L. Retrieving the national main commodity maps in indonesia based on high-resolution remotely sensed data using cloud computing platform. Land 2020, 9, 377. [Google Scholar] [CrossRef]
- Hashim, I.C.; Shariff, A.R.M.; Bejo, S.K.; Muharam, F.M.; Ahmad, K. Machine-Learning Approach Using SAR Data for the Classification of Oil Palm Trees That Are Non-Infected and Infected with the Basal Stem Rot Disease. Agronomy 2021, 11, 532. [Google Scholar] [CrossRef]
- Zaied, B.K.; Rashid, M.; Nasrullah, M.; Bari, B.S.; Zularisam, A.W.; Singh, L.; Kumar, D.; Krishnan, S. Prediction and optimization of biogas production from POME co-digestion in solar bioreactor using artificial neural network coupled with particle swarm optimization (ANN-PSO). Biomass Convers. Biorefinery 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Marr, B. Deep Learning vs. Neural Networks—What’s The Difference? Available online: https://bernardmarr.com/default.asp?contentID=1789 (accessed on 19 May 2021).
- Yildirim, T.; Moriasi, D.N.; Starks, P.J.; Chakraborty, D. Using Artificial Neural Network (ANN) for Short-Range Prediction of Cotton Yield in Data-Scarce Regions. Agronomy 2022, 12, 828. [Google Scholar] [CrossRef]
- Maya Gopal, P.S.; Bhargavi, R. A novel approach for efficient crop yield prediction. Comput. Electron. Agric. 2019, 165, 104968. [Google Scholar] [CrossRef]
- Jayaselan, H.A.J.; Nawi, N.M.; Ismail, W.I.W.; Mehdizadeh, S.A. Application of artificial neural network classification to determine nutrient content in oil palm leaves. Appl. Eng. Agric. 2018, 34, 497–504. [Google Scholar] [CrossRef]
- Alfatni, M.S.M.; Mohamed Shariff, A.R.; Bejo, S.K.; Ben Saaed, O.M.; Mustapha, A. Real-time oil palm FFB ripeness grading system based on ANN, KNN and SVM classifiers. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012067. [Google Scholar] [CrossRef]
- Ruslan, S.A.; Muharam, F.M.; Omar, D.; Zulkafli, Z.D.; Zambri, M.P. Development of geospatial model for predicting Metisa plana’s prevalence in Malaysian oil palm plantation. IOP Conf. Ser. Earth Environ. Sci. 2019, 230, 012110. [Google Scholar] [CrossRef]
- Adizue, U.L.; Nwanya, S.C.; Ozor, P.A. Artificial neural network application to a process time planning problem for palm oil production. Eng. Appl. Sci. Res. 2020, 47, 161–169. [Google Scholar] [CrossRef]
- Alfatni, M.S.M.; Mohamed Shariff, A.R.; Ben Saaed, O.M.; Albhbah, A.M.; Mustapha, A. Colour Feature Extraction Techniques for Real Time System of Oil Palm Fresh Fruit Bunch Maturity Grading. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012092. [Google Scholar] [CrossRef]
- Shook, J.; Wu, L.; Gangopadhyay, T.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A.K. Crop yield prediction integrating genotype and weather variables using deep learning. PLOS ONE 2021, 16, e0252402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Tao, F. Combining optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield in China using machine learning approaches. Remote Sens. 2020, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Sugiyarto, A.W.; Abadi, A.M. Prediction of Indonesian palm oil production using long short-term memory recurrent neural network (LSTM-RNN). In Proceedings of the 2019 1st International Conference on Artificial Intelligence and Data Sciences, AiDAS, Ipoh, Malaysia, 19 September 2019. [Google Scholar]
- Xie, Y. Combining CERES-Wheat model, Sentinel-2 data, and deep learning method for winter wheat yield estimation. Int. J. Remote Sens. 2022, 43, 630–648. [Google Scholar] [CrossRef]
- Mah, P.J.W.; Nanyan, N.N. A comparative study between univariate and bivariate time series models for crude palm oil industry in peninsular Malaysia. Malays. J. Comput. 2020, 5, 374. [Google Scholar] [CrossRef] [Green Version]
- Tschora, H.; Cherubini, F. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Glob. Ecol. Conserv. 2020, 22, e00919. [Google Scholar] [CrossRef]
- Hashemvand Khiabani, P.; Takeuchi, W. Assessment of oil palm yield and biophysical suitability in Indonesia and Malaysia. Int. J. Remote Sens. 2020, 41, 8520–8546. [Google Scholar] [CrossRef]
- Yang, X.-S. Genetic Algorithms. In Nature-Inspired Optimization Algorithms, 2nd ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 91–100. [Google Scholar] [CrossRef]
- Siregar, B.; Butar-Butar, I.A.; Rahmat, R.F.; Andayani, U.; Fahmi, F. Comparison of Exponential Smoothing Methods in Forecasting Palm Oil Real Production. J. Phys. Conf. Ser. 2017, 801, 12004. [Google Scholar] [CrossRef] [Green Version]
- Hilal, Y.Y.; Ishak, W.; Yahya, A.; Asha’ari, Z.H. Development of genetic algorithm for optimization of yield models in oil palm production. Chil. J. Agric. Res. 2018, 78, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Li, W.; Fu, H.; Gan, L.; Yu, L.; Zheng, J.; Xia, M. Oil palm plantation mapping from high-resolution remote sensing images using deep learning. Int. J. Remote Sens. 2020, 41, 2022–2046. [Google Scholar] [CrossRef]
- Tuerxun, A.; Mohamed Shariff, A.R.; Janius, R.; Abbas, Z.; Mahdiraji, G.A. Oil Palm Fresh Fruit Bunches Maturity Prediction by Using Optical Spectrometer. IOP Conf. Ser. Earth Environ. Sci. 2020, 540, 012085. [Google Scholar] [CrossRef]
- Rashid, N.A.; Hoong, K.W.; Shamsuddin, A.; Rosely, N.A.M.; Noor, M.A.M.; Jin, K.W.; Lee, M.H.; Hamid, M.K.A. Quality prediction and diagnosis of refined palm oil using partial correlation analysis. IOP Conf. Ser. Earth Environ. Sci. 2020, 884, 012018. [Google Scholar] [CrossRef]
- Suppalakpanya, K.; Nikhom, R.; Booranawong, T.; Booranawong, A. A comparison of mhw and ahw methods for forecasting crude palm oil productions in Thailand. Sci. Technol. Asia 2020, 25, 25–35. [Google Scholar] [CrossRef]
- Husin, N.A.; Khairunniza-Bejo, S.; Abdullah, A.F.; Kassim, M.S.M.; Ahmad, D.; Aziz, M.H.A. Classification of basal stem rot disease in oil palm plantations using terrestrial laser scanning data and machine learning. Agronomy 2020, 10, 1624. [Google Scholar] [CrossRef]
- Amirruddin, A.D.; Muharam, F.M.; Ismail, M.F.H.; Tan, N.P.; Ismail, M.F.H. Hyperspectral spectroscopy and imbalance data approaches for classification of oil palm’s macronutrients observed from frond 9 and 17. Comput. Electron. Agric. 2020, 178, 105768. [Google Scholar] [CrossRef]
- Alzaeemi, S.A.S.; Sathasivam, S. Examining the Forecasting Movement of Palm Oil Price Using RBFNN-2SATRA Metaheuristic Algorithms for Logic Mining. IEEE Access 2021, 9, 22542–22557. [Google Scholar] [CrossRef]
- Watson-Hernández, F.; Gómez-Calderón, N.; Silva, R.P. da Oil Palm Yield Estimation Based on Vegetation and Humidity Indices Generated from Satellite Images and Machine Learning Techniques. AgriEngineering 2022, 4, 279–291. [Google Scholar] [CrossRef]
- Yarak, K.; Witayangkurn, A.; Kritiyutanont, K.; Arunplod, C.; Shibasaki, R. Oil palm tree detection and health classification on high-resolution imagery using deep learning. Agriculture 2021, 11, 183. [Google Scholar] [CrossRef]
- Rifa’i, A. Optimasi Fuzzy Artificial Neural Network dengan Algoritma Genetika untuk Prediksi Harga Crude Palm Oil. J. Tek. Inform. Dan Sist. Inf. 2020, 6, 234–241. [Google Scholar] [CrossRef]
- Ibrahim, N.U.A.; Abd Aziz, S.; Hashim, N.; Jamaludin, D.; Khaled, A.Y. Dielectric Spectroscopy of Palm Olein During Batch Deep Frying and Their Relation with Degradation Parameters. J. Food Sci. 2019, 84, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Ishola, N.B.; Adeyemi, O.O.; Adesina, A.J.; Odude, V.O.; Oyetunde, O.O.; Okeleye, A.A.; Soji-Adekunle, A.R.; Betiku, E. Adaptive neuro-fuzzy inference system-genetic algorithm vs. response surface methodology: A case of optimization of ferric sulfate-catalyzed esterification of palm kernel oil. Process Saf. Environ. Prot. 2017, 111, 211–220. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Chen, D.; Gillani, Z.; Klukas, C.; Chen, M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 2015, 6, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman, N.; Lawi, A.; Syarif, S. Artificial Neural Network Backpropagation with Particle Swarm Optimization for Crude Palm Oil Price Prediction. J. Phys. Conf. Ser. 2018, 1114, 012088. [Google Scholar] [CrossRef]
- Liu, Z.; Loo, C.K.; Pasupa, K. A novel error-output recurrent two-layer extreme learning machine for multi-step time series prediction. Sustain. Cities Soc. 2021, 66, 102613. [Google Scholar] [CrossRef]
- Crane-Droesch, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef] [Green Version]
Reference | Objectives of the Review | Lack of the Review |
---|---|---|
[38] | Applications of remote sensing technology for palm plantation monitoring. A list of the existing knowledge gaps is compiled. The findings are followed up withrecommendations for further investigation. | This review omits any mention related to the algorithm prediction of palm oil yield prediction. |
[39] | An overview of the biotechnology used in palm oil breeding. This paper only reviews the application of molecular methods. | It does not employ ML techniques. These methods are insufficient to forecast specific breeding. |
[41] | An overview of the techniques used for detecting palm oil nutrition deficiencies using proximal images and application examples. | This review does not mention algorithms for predicting palm oil yields and breeding. |
[44] | An overview of existing ML models for predicting crop yields. Various performance metrics are employed to assess the effectiveness of various strategies. | Excludes other factors such as breeding. It only uses ML models to predict crop yield and few predictions on palm oil. |
[45] | An overview of several existing ML models in forecasting palm oil yields. Multiple performance metrics were used to determine the effectiveness of various strategies. | Excludes other factors such as breeding and only uses ML models to predict palm oil yield. |
Type of Components | Features Data | Factor Category |
---|---|---|
Soil and Fertilisation | Levels of potassium (K), nitrogen (N), phosphorus (P), magnesium (Mg), calcium (Ca), nutrient supplements of groundwater, topography and slope, consumption of chemical fertilisers, consumption of agricultural pesticide, type and texture of the soil, and planting density. | Environment (E) |
Climatic | Precipitation, humidity, maximum temperature, minimum temperature, mean temperature, rainfall, irrigation carbon dioxide concentration, solar radiation, water measurements, and waterlogging. | |
UAV for Canopy Surveillance | Tree crown, stems length, tree colours, crown size, bare land, and water. | Phenotype (P) |
Yield | Low lipase, high stearic and high oleic, low free fatty acids content and high iodine value, oil quality, quality, yield, oil to-dry mesocarp (O/DM), total oil yield per palm (O/P), oil content in mesocarp, oil-to-wet mesocarp (O/WM), palm oil yield (PO), FFB, yield, height, and high carotene. | |
Fruit | Mesocarp-to-Fruit (M/F), Shell-to-Fruit (S/F), Kernel-to-Fruit (K/F), oil-bearing mesocarp, shell thickness, reasonable stalk length, good fruit set, and low parthenocarpy, fruit form, fruit quality, fruit colour virescent (VIR), and fruit ripeness. | |
Bunch | Annual cumulative bunch number (BN), annual average bunch weight (ABW), annual cumulative bunch production (FFB), bunch production, bunch index, pulp-to-fruit ratio (PF), fruit-to-bunch (F/B), oil to bunch (O/B) oil extraction rate (OER), and oil-to-pulp ratio (OP), average bunch number per hectare (BUNCH_HA), and bunch weight (BW). | |
Crop Samples | Flavonoid, anthocyanin content, fruit colour, fruit size, hue, saturation, intensity, contour lines, and blue-to-red fluorescence ratio (BRR_FRF). | |
Tree Detection | Positive/negative histogram of oriented gradients (HOG), crown size, images of palm oil, built-up, bare land, water, and forest. | |
Vegetative | Total dry matter, plant architecture, leaf length, number of leaves per plant, plant height, height increment (HT), and frond length (FL). | |
Estimation | Nutrient content and plant height, shell thickness, mantled somaclonal variation together with gene networks for oil biosynthesis, drought and cold tolerance, in vitro regeneration potential, lipase activity, carotene and vitamin E contents, FA composition and iodine value, fruit shell thickness, fatty acid (FA) profile, fruit age, plant life, age factor, average value, daily CPO prices, monthly closing prices of oils, benefits, plant scale index, sex determination, inflorescence abortion, foliar nutrient composition, FFB yield, growth, and respiration. | |
Disease detection | Bud and spear rot, sudden wilt, red ring disease and basal stem rot disease spectral reflectance, leaves and stem colours, freckle (Cercospora elaeidis), blast (Pythium splendens and Rhizoctonia lamellifera), vascular wilt (Fusarium oxysporum f. sp. elaeidis), and ganoderma trunk rot (Ganoderma spp.). | |
Others | Tree crowns and categorical features, thermal images, quantitative features, oil per palm, chlorophyll-sensitive wavelengths, and electrical properties of leaves. | |
Breeding | DNA and tissues of the dura, pisifera, tenera; breeding-Deli, AVROS, Yangambi, Calabar, Ekona, Binga, and La Mé. | Genotype |
Author(s) | Objective | Dataset | Feature | Methods | Relevant Findings/Performances | Factor Category * | ||
---|---|---|---|---|---|---|---|---|
E | P | G | ||||||
[71] | Breeding prediction | Three hundred twelve tenera palms, three palm oil breeding | S/F | NJ, chi-square, SNPs | Genomic Estimated Breeding Value (GEBV) S/F = 0.65%, 4425 SNP loci | / | ||
[82] | Breeding prediction | Twenty-six leaves of E. guineensis palms | O/B, M/F | UPGMA, SSRs | Average polymorphic information content (PIC) = 0.7325, per centage of polymorphic loci = 83.3% | / | ||
[83] | Breeding prediction | DxP cross produced 300 dura, 25 pisifera, 80 tenera, and 100 T×T progeny lines | BW, F/B, M/F; K/F, O/DM S/F, O/WM, O/B | Bayesian, SSRs | QTLs on seven linkage groups affecting F/B and O/B | / | ||
[84] | Breeding prediction | Deli Dura and AVROS | F/B | NJ, PCA, AMOVA (Analysis of molecular variance) | 230 alleles in 17 palm progenies | / | ||
[85] | Breeding prediction | Eighty-one palm oil leaves | O/B, polyprenols. and dolichols | UPGMA | 27 E. guineensis sites were grouped into the dura, pisifera, and tenera types | / | ||
[86] | Yield prediction | Four hundred forty-seven blocks with a planted area of 19,809 ha | FFB, BUNCH_HA, ABW | Bayesian networks—ANN | FFB accuracy = 5%, BUNCH_HA accuracy = 85%, and ABW accuracy = 90% | / | ||
[87] | Breeding prediction | Two hundred and thirty-six oil palm leaf tissues | - | NJ Bayesian, SNPs | 9% of SNP loci, 8 189 SNPs | / | ||
[88] | Disease prediction | Thirty-nine oil palm trees | Soil moisture | k-Means-ANOVA (Analysis of variance) | Accuracy = 82% | / | ||
[89] | FFB ripeness prediction | Twenty-seven palm oils Tenera | FFB maturity levels | k-Means | Three ripeness centroidsof 0, 1, and 2 | / | ||
[76] | Breeding population prediction | Five hundred and fifty-three palm oil | - | UPGMA Bayesian network, DArTseq (Diversity Array Technology Sequencing), AMOVA | 245 SNPs on all 16 chromosomes | / | ||
[90] | Biomass palm oil boiler | Biopower boiler historical | Environment, deaerator, and economiser | Bayesian network | Probability of boiler = 54% | / | ||
[81] | Breeding prediction | Two hundred and fifty-one Dura cross Pisifera (DxP) | BN, BW, VIR, M/F, O/WM, O/B, S/F, PO, HT, and FL | NJUPGMA, SSRs, AMOVA | Shared alleles = 68.5% and specific alleles = 31.5% | / |
Author(s) | Objective | Dataset | Feature | Methods | Relevant Findings/Performances | Factor Category * | ||||
---|---|---|---|---|---|---|---|---|---|---|
E | P | G | ||||||||
[98] | Crops yield prediction | Historical data | WOFOST crop model outputs, weather, crop areas, remote sensing, irrigated area, elevation, slope, soil, field size yield | Ridge regression | Wilcoxon p-value of 0.9 | / | / | |||
kNN regression | ||||||||||
SVR | ||||||||||
GBDT regression | ||||||||||
[94] | Lard in palm olein oil prediction | Fourier-transform infrared (FTIR) data | Lard, pure palm olein oil, and the adulterated olein oil at 20% and 50% different temperatures | PLS | RMSE = 13.26 | / | ||||
SLR | RMSE = 174.86 | |||||||||
MLR | RMSE = 14.84 | |||||||||
[99] | Deforestation population prediction | Tree plantation in 2014 | Environment and historical | LR | Accuracy = 98.25% | / | ||||
[100] | Metisa plana population prediction | Twenty-five palm oils | Humidity, frond number | LR | / | |||||
PR | ||||||||||
ANN | ||||||||||
[101] | Leaf nutrient content prediction | Leaf reflectance data | K, N, and Mg | PCR | / | |||||
PLSR (Partial least squares regression) | ||||||||||
[102] | Drought prediction | Weather data Malaysian Meteorology Department and DID Malaysia (MMD) | Precipitation and temperature | SVR | SPEI-1 RMSE = 0.644 | SPEI-3 RMSE = 0.202 | SPEI-6 RMSE = 0.187 | / | ||
F-SVR | SPEI-1 RMSE = 0.372 | SPEI-3 RMSE = 0.159 | SPEI-6 RMSE = 0.137 | |||||||
BS-SVR | SPEI-1 RMSE = 0.626 | SPEI-3 RMSE = 0.172 | SPEI-6 RMSE = 0.146 | |||||||
[103] | Bio-oil Production FFB prediction | Palm oil empty fruit bunch (OPEFB) data | Temperature, BW | LR | Error = 0.3%. | / | ||||
[104] | Soil fertility prediction | Thirty-six samples of palm oil | Macronutrient soil | PCR | Accuracy = 91.67% | / | ||||
[105] | FFB ripeness prediction | FFB palm oil thermal imaging data | Moisture, temperature, humidity | MLR | R2 = 0.8122. | / | ||||
[106] | Soil nutrients prediction | Near-infrared spectroscopy data | Total organic carbon, total nitrogen, and soil pH | PLSR | / | |||||
[107] | Dynamic Viscosity of MXene/palm Oil Nanofluid prediction | MXene/palm oil nanofluid data | Concentration and temperature | SVR-Grid Search | MAE = 7.9 × 10−3 | / |
Author(s) | Objective | Dataset | Feature | Methods | Relevant Findings/Performances | Factor Category * | |||
---|---|---|---|---|---|---|---|---|---|
E | P | G | |||||||
[23] | Grape content estimation | UAV and Sentinel-2 image data | NDVI, pH | SVM | = 0.52 ± 0.12 | / | |||
Adaboost | = 0.44 ± 0.09 | ||||||||
RF | = 0.41 ± 0.09 | ||||||||
Decision Tree | = 0.45 ± 0.11 | ||||||||
Extra Trees | = 0.43 ± 0.08 | ||||||||
Huber Regression | = 0.52 ± 0.12 | ||||||||
OLS (Ordinary Least Square) | = 0.51 ± 0.09 | ||||||||
ARD (Automatic Relevance Determination) | = 0.53 ± 0.09 | ||||||||
Theil-Sen Regression | = 0.51 ± 0.12 | ||||||||
[112] | Rice yield prediction | Sentinel-2 monthly image | Vegetative | SVM | MAPE = 4.4% | / | |||
RF | MAPE = 4.5% | ||||||||
ANN | MAPE = 4.5% | ||||||||
[113] | Wheat yield prediction | Satellite image data | Cropland information, crop yield data, satellite-based SIF data, vegetation index, climatic information | SVM | = 0.75 | / | |||
LASSO | |||||||||
RF | |||||||||
NN | |||||||||
[114] | Nutrient deficiencies and leaf prediction | Three leaf images | Healthy, potassium deficiency, nitrogen deficiency, and magnesium deficiency | SVM-RBF | Accuracy = 100% | / | |||
RBF-ANN | Accuracy = 97.92% | ||||||||
[115] | Nitrogen status in mature palm oil prediction | Tenera from MPOB (Malaysian Palm Oil Board) data | Vegetative, NIR spectroscopy colours, soil | SVM | Accuracy = 81.82% | / | |||
[116] | Palm oil trees detection and enumeration | Images from palm oil tree data | Vegetative and nonvegetative | HOG (Histogram Of Oriented Gradient) − SVM | Accuracy = 99.21% | / | |||
[117] | Adulteration of palm oil fraud detection | Twenty samples of palm oil | NIR (Near-infrared) spectroscopy wavelength and different types of Sudan dyes | MSC-PCA (Principal Component Analysis) + SVM | Accuracy = 95.20% | / | |||
LDA (Linear Discriminant Analysis) | Accuracy = 91.70% | ||||||||
[118] | Female Inflorescences anthesis stages prediction | Anthesis thermal images | Temperature, humidity, rainfall | SVM | Exogenous + Endogenous | Accuracy = 40.45% | / | ||
kNN (k-Nearest Neighbor) | Accuracy = 81.85% | ||||||||
RF | Accuracy = 88.5% | ||||||||
[119] | Landsat Capability prediction | Geospatial Remote sensing data | SRTM (Vegetative and Shuttle Radar Topographic Mission), DEM (Digital Elevation Model) | SVM | Accuracy = 93.16% | / | |||
[120] | Bud root patterns | Aerial UAV (Unmanned Aerial Vehicle) images | Healthy and bud root presence | SVM | Accuracy = 93.53% | / |
Author(s) | Objective | Dataset | Feature | Methods | Relevant Findings/Performances | Factor Category * | ||
---|---|---|---|---|---|---|---|---|
E | P | G | ||||||
[25] | Wheat yield prediction | Landsat data | Different regions of Punjab and Pakistan | ACO (Ant colony optimisation)-RF | 201.27 < RMSE < 215.79 | / | ||
ACO-OSELM (Online-sequential extreme learning machine) | 353.55 < RMSE < 381.57 | |||||||
ACO-ELM | 352.46 < RMSE < 386.57 | |||||||
[24] | Soybean yield prediction | Historical data | Water, early-season weed control, late-season weed control, season-long weed control, temperature, and crop management | RF | Variability = 88% | / | ||
CART | Variability = 70% | |||||||
[126] | Cloud remote sensing tool | Satellite data | Spectral, environment, topographic | RF | Accuracy = 80.34% | / | ||
[127] | Commodity maps prediction across Indonesia | Landsat data | Vegetative, topographic, environment | RF | Accuracy = 95% | / | ||
[125] | Palm oil detection mapping | Landsat data | Spectral bands, SAR (Synthetic Aperture Radar) backscatter, vegetative, and texture | IGSO-RF (Improved Grid Search Optimisation) | Accuracy = 96.08%. | / | ||
[128] | BSR diseases detection | ALOS PALSAR-2 images | Backscatter, types of polarisation | MLP (Multilayer Perceptron) | Accuracy = 95.65% | / | ||
RF | Accuracy = 92.70% |
Author(s) | Objective | Dataset | Feature | Methods | Relevant Findings/Performances | Factor Category * | ||
---|---|---|---|---|---|---|---|---|
E | P | G | ||||||
[131] | Cotton yield prediction | Historical data | Drought index, precipitation, vegetative index | ANN | > 0.80 | / | ||
[132] | Paddy yield prediction | Historical data | Cropland information, climate information, soil properties, agricultural production data, irrigation information | MLR-ANN | RMSE = 0.051, MAE = 0.041, R = 0.99 | / | ||
[133] | Nutrient content prediction | Ninety leaf samples | Frond numbers and nutrients | ANN | Accuracy = 85.32% | / | ||
[134] | The ripeness of FFB prediction | Real-time FFB system data | Colour, texture, and thorn | ANN | Accuracy = 93% | / | ||
[135] | Metisa plana prediction | Twenty-five palms | LST (Land Surface Temperature), environment and NDVI (Normalised Difference Vegetation Index) | ANN | Accuracy = 95.42% | / | ||
[136] | Palm oil production planning | Historical data | FFB weight, harvesting time, yield | ANN | RMSE = 0.1290 | / | ||
[137] | FFB maturity prediction | MPOB FFB images data | Colour features of palm oil FFB image | ANN | Accuracy = 94% | / |
Author(s) | Objective | Dataset | Feature | Methods | Relevant Findings/Performances | Factor Category * | ||
---|---|---|---|---|---|---|---|---|
E | P | G | ||||||
[141] | Wheat yield prediction | Sentinel-2 image data | Minimum and maximum temperature, integrated solar radiation, cumulative precipitation, soil texture, soil chemical parameters, hydrological properties | LSTM | MRE (Mean relative error) = 9.70% | / | ||
[59] | CPO price prediction | One hundred thirty-six units of data of monthly prices | Temperature, rainfall, radiation | LSTM (Long short-term memory) | RMSE = 280.463 | / | ||
[142] | CPO price prediction | Eighty-one complete sets of monthly observations | Monthly prices, total imports, and exports | ARIMA (Autoregressive Integrated Moving Average) | RMSE = 293,016.94 | / | ||
ARAR (Autoregressive Autoregressive) | RMSE = 19,161.84 | |||||||
ARFIMA (Autoregressive Fractional Integral Moving Average) | RMSE = 43,333.98 | |||||||
[143] | Adverse side-effects of shaded agroforests prediction | GPS devise of plot data | Temperature, wind, drought, and soil erosion | Time series | 95% confidence interval | / | ||
[144] | Age and biophysical qualities of yield prediction | MODIS (Moderate Resolution Imaging Spectroradiometer) data | Vegetative and yield | Time-series-CART (Classification And Regression Tree) | RMSE = 4.7 | / |
Author(s) | Objective | Dataset | Feature | Methods | Relevant Findings/Performances | Factor Category * | |||
---|---|---|---|---|---|---|---|---|---|
E | P | G | |||||||
[27] | Chilli leaf disease | Images data | Types of chilli leaf diseases, up curl, down curl, Cer-cospora leaf spot, Geminivirus | SECNN (Squeeze-and-excitation-based convolutional neural network) | Accuracy = 99.54% | / | |||
[26] | Wheat yield prediction | Historical data | Weather | CNN | RMSE = 0.66 | / | |||
DNN | RMSE = 0.80 | ||||||||
SVR | RMSE = 0.86 | ||||||||
Regression tree | RMSE = 0.85 | ||||||||
Ridge | RMSE = 0.91 | ||||||||
Lasso | RMSE = 1.19 | ||||||||
XGBoost | RMSE = 0.73 | ||||||||
RF | RMSE = 0.79 | ||||||||
kNN | RMSE = 0.88 | ||||||||
[21] | Corn yield prediction | Historical data | Time, corn variety, SOM (Soil organic matter) content, NFAR (Nitrogen fertiliser application rate), PFAR (Phosphorus fertiliser application rate), KFAR (Potassium fertiliser application rate), seeding rate | GBDT (Gradient boosting decision tree) | = 0.799 | / | |||
RF | = 0.749 | ||||||||
[22] | Corn estimation | UAV image data | Different unique colors marked with different density | ResNet 18-CNN | 0.73 < Accuracy < 0.97 | / | |||
[146] | Palm oil FFB production | Historical data | FFB (Fresh Fruit Bunch) | Exponential smoothing method | RMSE = 0.1 | / | |||
[147] | Optimisation yield production | Historical data | Environment | GA (Genetic Algorithm) | MSE = 0.022 | / | |||
[148] | Mapping palm oil plantation | Level-18 Google Earth images | Vegetative and impervious | RCANet (Residual Channel Attention Network) | Accuracy = 96.88% | / | |||
[149] | FFB maturity prediction | 106 FFB palm oil | Mesocarp colours and bunch grading | Lazy KStar | Accuracy = 63% | / | |||
[150] | Predicting and diagnosing the quality of refined palm oil | Twenty-five samples of palm oil | FA (Fatty Acid), moisture content, and environment | PCorrA (Partial Correlation Analysis) | MSE < 0.01 | / | |||
[151] | CPO prediction | One hundred fifty-three months of CPO (Crude Palm Oil) production data | CPO | Exponential smoothing method | MAPE = 16.06 | / | |||
[152] | Classify BSR (Basal Stem Root) prediction | Eighty oil palm trees. | Frond number, frond angle, crown area, and crown significance | NB (Naïve Bayes) | Accuracy = 85% | / | |||
[153] | Classification of nutrient contents on the leaf | Types of fronds with different ages data | Ca, K, Mg, N, and P | LMT-SMOTE (Logistic Model Tree (LMT)-Synthetic Minority Over-sampling Technique (SMOTE)) + AdaBoost | Accuracy = 76.13 100.00% | / | |||
[154] | Movement CPO prediction | Data from the Malaysian palm oil industry in Malaysia | Monthly prices, total imports, and exports | RBFNN (Radial Basis Function Neural Network)-2SATRAAIS (Satisfiability Reverse Analysis with Artificial Immune System Algorithm) | Accuracy = 90.46% | / | |||
[155] | Palm oil detection mapping | Landsat data | Vegetation, humidity (water) | XGBoost | RMSE = 0.1512 | / | |||
LASSO (LASSO regression) | RMSE = 0.3487 | ||||||||
RPART (Recursive Partitioning and Regression Trees) | RMSE = 0.1894 | ||||||||
RF | RMSE = 0.1655 | ||||||||
NN (Neural Network) | RMSE = 0.3925 | ||||||||
[156] | Palm oil detection | Aerial UAV images | Crown size, crown colour, and crown density | Faster-RCNN | ResNet 50 | Precision = 96.34% | / | ||
VGG-16 | Precision = 95.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Nain, F.N.; Ahamed Hassain Malim, N.H.; Abdullah, R.; Abdul Rahim, M.F.; Ahmad Mokhtar, M.A.; Mohamad Fauzi, N.S. A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction. Algorithms 2022, 15, 218. https://doi.org/10.3390/a15060218
Mohd Nain FN, Ahamed Hassain Malim NH, Abdullah R, Abdul Rahim MF, Ahmad Mokhtar MA, Mohamad Fauzi NS. A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction. Algorithms. 2022; 15(6):218. https://doi.org/10.3390/a15060218
Chicago/Turabian StyleMohd Nain, Fatini Nadhirah, Nurul Hashimah Ahamed Hassain Malim, Rosni Abdullah, Muhamad Farid Abdul Rahim, Mohd Azinuddin Ahmad Mokhtar, and Nurul Syafika Mohamad Fauzi. 2022. "A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction" Algorithms 15, no. 6: 218. https://doi.org/10.3390/a15060218
APA StyleMohd Nain, F. N., Ahamed Hassain Malim, N. H., Abdullah, R., Abdul Rahim, M. F., Ahmad Mokhtar, M. A., & Mohamad Fauzi, N. S. (2022). A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction. Algorithms, 15(6), 218. https://doi.org/10.3390/a15060218