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Abstract: Machine Learning (ML) offers new precision technologies with intelligent algorithms and
robust computation. This technology benefits various agricultural industries, such as the palm oil
sector, which possesses one of the most sustainable industries worldwide. Hence, an in-depth analysis
was conducted, which is derived from previous research on ML utilisation in the palm oil in-dustry.
The study provided a brief overview of widely used features and prediction algorithms and critically
analysed current the state of ML-based palm oil prediction. This analysis is extended to the ML
application in the palm oil industry and a comparison of related studies. The analysis was predicated
on thoroughly examining the advantages and disadvantages of ML-based palm oil prediction and
the proper identification of current and future agricultural industry challenges. Potential solutions
for palm oil prediction were added to this list. Artificial intelligence and ma-chine vision were used
to develop intelligent systems, revolutionising the palm oil industry. Overall, this article provided a
framework for future research in the palm oil agricultural industry by highlighting the importance
of ML.

Keywords: agriculture; deep learning; machine learning; palm oil; palm oil breeding

1. Introduction

Palm oil plantations cover millions of hectares worldwide, which encompass a signifi-
cant portion of global trade. Palm oil trees, or Arecaceae, are a genus of stemless, tree-like
monocot plants that thrive in the tropics and are extremely valuable to humans and the
ecosystem [1]. The African oil palm, or Elaeis guineensis, is the most prominent palm species
native to West Africa, cultivated for its oil-rich fruit as a semiwild food source for over
7000 years. The tree produces a profusion of fruit bunches yearly with each containing
between 1000 and 3000 fruits [2]. The processed oil palm fruits are a significant source of
oil for society and an integral industrial derivative, i.e., soaps, detergents, and cosmetics.
Hence, the industry significantly impacts locals and broader biodiversity in their native
regions [1,3,4].

Malaysia and Indonesia are the largest exporters of palm oil in Southeast Asia [5]. The
development rate of the palm oil industry is the primary contributor to the agriculture
sector’s value, thus indicating a 37.1% share. The agricultural industry accounted for 7.4%
of Malaysia’s GDP in 2020, though its growth rate fell to 2.2% from 2.0% in the previous
year. The commodity subsector has seen a diminished growth of 3.6% due to the palm
oil shortage (2019: 1.5 %) [6]. This issue is escalated with the rise in crude palm oil prices,
directly resulting from the market disequilibrium in India and China. Furthermore, palm oil
production is increasingly threatened by environmental, economic, and political factors [7].
Success in the industry is determined by the estate managers’ ability to strategically adapt
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to administrative changes in a process-oriented manner [8]. A plantation manager must
make rapid decisions on various issues, i.e., personnel, strategy, area, and input, which
are made under duress, thus resulting in a substandard outcome. The immediate and
long-term risks must be addressed after placing substantial faith in their intuition, which
leads to rash decisions and perfunctory efforts in testing the data.

Decision support systems can assist managers by summarising data-driven analysis
and providing objective and rational viewpoints on complex production systems. These
systems encompass models for palm oil computer simulation, i.e., FGV Integrated Breeding
System (FIBS) [9], Palm Oil Soil Monitoring System for Smart Agriculture [10], and others;
however, it is challenging to create a comprehensive palm oil computer model for several
reasons. Firstly, the predictions are based exclusively on the breeding genome, which
neglects the environmental or phenotype parameters. Moreover, parameter quantification is
an expensive and time-consuming process. Generalisations can also be tricky when applied
to geographical and environmental settings that are vastly different. Finally, the output is
commonly a single predicted yield based on environmental and breeding variables.

Notably, “Big data” has recently become a standard paradigm in agricultural re-
search [11], typically described based on the five Vs: Volume, Velocity, Variety, Veracity,
and Valorisation [12–14]. These acronyms illustrate the amount of data, how quickly it
can be accessed, how diverse it is, and how easily it can be used to generate new insights
and discoveries. Notably, there are approximately $20 billion in annual global benefits
from the efficient exploitation of agricultural resources, thus making it critical to utilise
agricultural data efficiently. However, the data analysis in this sector is underdeveloped
compared to other industries [15,16]. The raw data must first be transformed into high-
value knowledge to construct actionable management [17,18] and make better decisions.
Big data analysis in agriculture is incompatible with the conventional experimental and
statistical methods used in the past [19,20]. The foundation of Fishers’ feature selection
methods and associated experimental designs necessitates small samples drawn from large
populations. However, big data analysis frequently includes extensive samples and, in
some cases, the entire population. Thus, it Is commonly associated with excessive noise,
heterogeneity, spurious correlations, and unexpected endogenous data sources. Hence,
it can be improved using Machine Learning (ML) [19,20], where human-like intelligence
can be simulated using algorithms. Artificial intelligence learns to recognise patterns and
structures in datasets before predicting future events based on the model learned. Moreover,
ML algorithms can discover specific rules for the system under investigation as it does not
rely on user-specified models to analyse big data.

ML has been increasingly utilised to analyse big agricultural data, including crop type
prediction from satellite data, crop yields, irrigation needs, pest and disease attacks, and weed
identification [15,16]. This approach is adopted in crop yield in crops such as corn [21,22],
grape [23], soybean [24], wheat [25,26], chilli [27], and paddy [28], and especially in the palm oil
industry, which automates various tasks such as tree counting and plant health assessment due
to machine learning’s incredible learning and significant computational power [29–31]. Modern
agriculture is motivated by examining all factors contributing to crop yield gaps. Nevertheless,
various factors threaten agricultural productivity, including biotic and abiotic ones, amplified by
climate change, which affects its long-term viability.

The yield prediction of tree crops, such as oil palms, is a significantly challenging
task. Multilayered and large datasets are required to understand and mitigate these risk
factors. Conventional methods are inapplicable to map their connections which explicitly
deal with interdependent and erratic elements. Furthermore, advanced analytics must
be integrated with the highly heterogeneous datasets, generating insights into the critical
constraints of yields at the tree and field scales. Thus, ML serves as an efficient technique
to obtain accurate results and appropriate solutions for complex problems. This “divide
and conquer” ML strategy was used to study the overall yield gap using microcomponents
analysis [32,33]. The studies concluded that investigating individual yield-reducing factors
could shed light on the overall impact.
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Machine learning offers a quantitative perspective in assessing different variables
such as soil moisture, rainfall, yield, solar radiation, and plant growth. On the other hand,
breeding a bunch offers a qualitative angle on the matter [34–36]. The preceding statement
entails making such research accessible as scientifically structured reviews can help new
researchers with information based on accumulated data. The scientific community’s
strategic concerns can be illustrated, and data from cluster analyses can be assessed using
this method. Moreover, researchers can identify research gaps by referring to previously
described systems, concepts, and propositions. The review supports an effective research
strategy predicated on previous research and current techniques [37].

Multiple studies were conducted on practical tools and ML techniques related to the
palm oil industry. For instance, studies investigated remote sensing applications, followed
by breeding applications and technologies in monitoring palm oil plantations [38,39]. Other
studies assessed the biofuel-processing technologies in dealing with fruit and palm oil
waste [40]. Meanwhile, Barbedo et al. [41] and Khosrokhani et al. [42] investigated ML to
detect nutritional deficits in palm oil using proximal images. Studies have also reviewed
the ML features in automated fruit grading using image processing and predicting crop
yields, including palm oil [43] Nevertheless, most of the current studies did not conduct
a thorough literature review. Table 1 lists the objectives of the most recent related review
articles, their critical evaluations, and publication dates.

Table 1. An analysis of recent literature reviews on algorithms in palm oil yield prediction.

Reference Objectives of the Review Lack of the Review

[38]

Applications of remote sensing technology for
palm plantation monitoring. A list of the existing

knowledge gaps is compiled. The findings are
followed up withrecommendations for further

investigation.

This review omits any mention related to the
algorithm prediction of palm oil yield prediction.

[39]
An overview of the biotechnology used in palm oil
breeding. This paper only reviews the application

of molecular methods.

It does not employ ML techniques. These methods
are insufficient to forecast specific breeding.

[41]
An overview of the techniques used for detecting

palm oil nutrition deficiencies using proximal
images and application examples.

This review does not mention algorithms for
predicting palm oil yields and breeding.

[44]

An overview of existing ML models for predicting
crop yields. Various performance metrics are

employed to assess the effectiveness of various
strategies.

Excludes other factors such as breeding. It only
uses ML models to predict crop yield and few

predictions on palm oil.

[45]

An overview of several existing ML models in
forecasting palm oil yields. Multiple performance
metrics were used to determine the effectiveness of

various strategies.

Excludes other factors such as breeding and only
uses ML models to predict palm oil yield.

Based on Table 1, only several aspects of palm oil using ML are discussed, i.e., yield
prediction, crop monitoring, and nutrient deficits. Over the last decade, unidimensional
reviews have yet to present the full scope of palm oil cultivation involving ML and multiple
artificial intelligence (AI) aspects. Thus, this review article provides an in-depth perspective
on how ML is used in palm oil cultivation, summarising everything that has been conducted
to date. Unlike others, this review employed a systematic protocol to retrieve data from
databases, ensuring objectivity. The contributions of this review paper are summarised
as follows:

• Outlining the background of the palm oil breeding programmes.
• Introducing the factor that affects the palm oil growth and the fruit quality.
• Comprehensive critical assessment of ML-based palm oil prediction algorithms, critical

evaluation of feature sets used, and comparison of relevant research.



Algorithms 2022, 15, 218 4 of 34

• A thorough examination of the advantages and drawbacks of ML algorithms in
predicting palm oil yield.

This review outlined current types of research in predicting palm oil production using
ML by extensively collecting various forecasting models for the palm oil ML framework.
The rest of the paper is organised as follows: Section 2 presents a detailed review of
related studies on the background of palm oil and factors affecting its growth and quality.
Section 3 introduces the existing research on predicting palm oil yield using ML. Meanwhile,
Section 4 discusses issues of palm oil predictions, future directions, and the selection of the
optimum prediction algorithm. Section 5 summarises the framework prediction of palm
oil, finalising with the conclusion in Section 6.

2. The PRISMA Strategy Article Selection

The search is narrowed down to the basic concepts relevant to the scope of this review.
Various published studies are likely outside this review article's scope due to the substantial
applications in ML. Figure 1 depicts the article selection process following the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) strategies [46]. Google
Scholar, Scopus, Web of Sciences, IEEE Explore, Science Direct, SpringerLink, and Taylor
Francis were the databases used to find the relevant articles. Searching for the most basic
information was performed by an automated search engine. We consulted several reputable
websites in order to obtain specific information. The scope of this review is primarily
determined by two keywords: (“machine learning” OR “deep learning”) AND “oil palm”.
As a result, in the majority of the searches, we used these two keywords in conjunction with
other keywords such as “crop yield”, “palm oil”, “genomic prediction”, “yield forecasting”,
“yield estimation”, “prediction model”, “Elaeis guineensis”, “machine learning”, “deep
learning”, “artificial intelligence”. Among the documents we have collected are original
articles, review articles, book chapters, conference papers, lecture notes, and reports.

We downloaded, read the title, abstract, conclusion, keywords datasets, models used,
techniques, and metric evaluations in the first round of review and selected only the relevant
articles manually and then entered them into excel. Articles that have been included in
excel will be refiltered to be analyzed with data that may be important in this study to
facilitate information retrieval to improve contextual understanding. This selection is due
to constraints such as the difficulty to find palm oil study factors, especially in phenotypic
data, because they are rarely studied because they have a long plant life span to bear
fruit. After removing duplicates, the remaining articles are classified according to their
application. During the first round of screening, machine learning-based palm oil and crop
prediction articles written in English are used as selection criteria.

The selected manuscripts are scrutinised in the second round of screening. The detailed
methodology was the final article selection criteria in this case. After following the above
procedures, only “163” articles are chosen for this review.

The following information was meticulously extracted from each article: publication
year, dataset information, detailed information about features, prediction algorithms, and
system performance. The number of selected documents is divided into four categories:
journal articles (82%), conference papers (11%), book chapters (5%), and websites (2%), as
shown in Figure 2. In terms of the annual distribution of published work, trends show
that a greater number of research articles were published in 2017, 2019, and 2021, while
the number of articles dropped too low in 2015. Figure 3 depicts the annual distribution of
research publications.
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3. Palm Oil Background

The Arecaceae family includes palm oil (Elaeis spp.), encompassing two species:
African palm oil (E. guineensis) and American palm oil (E. occidentalis) (E. oleifera). The
male and female inflorescences can be detected on the same palm, and on rare occasions,
inflorescences of hermaphrodites can be found as well. A cross-pollinated crop is created
when the male and female inflorescences are produced alternately. However, artificial
pollination is necessary to produce specific hybrids [47,48]. The drupe, or the oil palm’s
fruit, matures approximately six months after pollination. Within the drupe, a pericarp is
formed from the exocarp (the outer layer) and the husk. The outer layer protects the kernel
containing the endosperm and embryo located within the endocarp (the inner layers).

The E. guineensis species are classified into three oil palm fruit forms (pisifera, dura,
and tenera) based on the thickness of their shell, an essential factor that will be used for
breeding [49]. The pisifera genotype of the recessive homozygous (Sh−Sh−) alleles is
shell-less. It is believed that most palms are sterile; however, several were reported to
bear fruit and have varying degrees of sterility. The dura genotype comprises a thick shell
consisting of the dominant (Sh+Sh+) alleles. Meanwhile, the tenera of the heterozygous
(Sh+Sh+) alleles exhibit a mesocarp with a thinner outer shell and a thicker inner ring of
fibres. Notably, the tenera genotype is the only form of oil palm fruit used for commercial
planting because of its higher mesocarp content. The three types of oil palm fruits are the
dura (D), pisifera (P) and tenera (T), identified based on the thickness of their shells. Alleles
Sh+ and Sh− are codominantly expressed at a single locus that controls shell thickness [50].
The thick-shell dura is controlled by a dominant homozygote gene (Sh+Sh+), whereas
the shell-less pisifera is controlled by a recessive homozygote gene (Sh−Sh−). The cross
between the dura and pisifera would result in a homozygote tenera hybrid (Sh+Sh−) with
a thin shell. Despite having a high mesocarp content of 95 per cent, pisifera is usually
female sterile or semifertile and does not produce bunches. Hence, pisifera is only used as
the male parent in the tenera hybrid. Notably, the tenera genotype is the only form of oil
palm fruit used for commercial planting due to its higher mesocarp content.

3.1. Breeding Programmes

Tenera is a commercial term for palm oil, a cross between dura × pisifera, responsible
for various new varieties. The germplasm of these materials is used to produce hybrid
seeds. Vegetative characteristics and the bunch performance of four seedlings introduced
to Indonesia in 1848 are consistent [51]. In 1848, Indonesia introduced the vegetative
characteristics and consistent performance of four oil palm seedlings [51,52]. Private com-
panies proposed various independent, breed-specific variations. Deli subpopulations and
breeding materials are currently available for purchase or trade worldwide. Accordingly,
the following populations were used in effective breeding programmes [2,53].

1. Deli: The thick-shelled dura is a descendant of the original Bogor palms from Java.
The subsequent progeny and local selection distribution to other countries resulted in



Algorithms 2022, 15, 218 7 of 34

the development of subpopulations in Malaysia. The regions include Elmina, Serdang,
Avenue, and Ulu Remis Deli Dura, followed by the Ivory Coast of Dabou and Le Mé
Dura. This idea led to speculation that all four Bogor palms were descended from the
same ancestor. All major commercial hybrid seed production programmes utilise the
mother Deli (dura) palm. The Dumpy and Gunung Melayu palms are short variants
of the longer Deli palms.

2. AVROS: AVROS seeds were collected from the Eala Botanical Garden (Jardin Botanique
d’Eala) in Zaire (now the Democratic Republic of Congo) in 1923. SP540 is a com-
mon name for this pisifera, known for its vigorous growth, precocious bearing, thin
shell, thick mesocarp, and high-yielding traits. Notably, the Deli (dura) × AVROS
(pisifera) is the basis for effective seed production programmes in Indonesia, Malaysia,
Colombia, Papua New Guinea, and Costa Rica.

3. Yangambi: The seeds are acquired from the INEAC in Yangambi, Democratic Republic
of the Congo. The population of the Dejongo palm and Yawenda tenera was developed
using open-pollinated seeds, distinguished from their large fruits and high oil content.

4. La Mé: Twenty-one tenera palm seeds were collected from the wild groves of the
Ivory Coast by IRHO, creating the La Mé populations. The tenera palms are used
in the seed production industry in West Africa and Indonesia. The La Mé progenies
(pisifera) are smaller and bear fewer fruits per bunch but are resilient in less-ideal
growing conditions.

5. Binga: The pisifera subpopulation was derived from Yangambi progenies from F2 and
F3 generations. They are planted in the Binga plantation in Yangambi, Democratic
Republic of Congo. The Bg 312/3 and Bg 312/3 are two-parent palm varieties of
interest for breeding purposes.

6. Ekona: Wild palms were used from the Ekona region to create the Ekona population.
The regions include Unilever’s Crown Estate, Ndian Estate, and Lobe Estate plan-
tations in Cameroon. Its high bunch yield, excellent oil content, and wilt resistance
make it a sought-after crop.

7. Calabar: Aba, Calabar, Ufuma, and Umuabi are all represented in Nigeria Institute for
Oil Palm Research’s (NIFOR) breeders, which are more diverse than their predecessors.
Hence, many seed-production programmes make use of this pisifera.

3.2. Factors Affecting Palm Oil Growth and Quality

Palm oil forecasting has been critically shown in studies, particularly in early warning
of potential problems. The current state of palm oil modelling indicates a lack of knowledge
on palm oil growth and the ability to improve the fruit quality [54,55]; thus, an in-depth
analysis is required. It is necessary to examine the heterogeneity of its production to better
comprehend and exert control over the emergence of palm oil. An initial step can be
taken before establishing predictive modelling to gain insight and understand the factors
(environmental factors, phenotypes, and genotypes).

This step includes determining the relationships between palm oil and the method
used in the growth analysis. An analysis method is essential to gain insight into the factors
and inter-relationships in palm oil production. Palm oil analysis provides a comprehensive
understanding of the uncertainty and nonlinearity of its forecast. The most common
method of analysing the palm oil data is through, for example, using a preprocessing
algorithm or feature selection algorithm. However, previous studies only needed the
analysis with no attempt at making predictions.

Oil palms require light and nutrients such as nitrogen and phosphorus as a starting
point for photosynthesis. Temperature and water turbidity are other environmental factors
that affect palm oil production. Five environmental parameters facilitate the oil palm stress
tolerance [56]: rainfall, temperature, relative humidity, light intensity, and wind speed. The
inefficient production of palm oil may occur in low humidity levels, especially in the dry
seasons when the watering holes and rivers have dried up. Oil palms may be more stressed
during this season, affecting their yields.
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Humidity concentration in palm oil cultivation can be predicted [57], for example, a
study recognised several environmental effects influencing inflorescence abortion and sex
determination. These factors include rainfall, monthly rain, sunshine hour, and evapotran-
spiration, followed by the minimum and maximum temperature [58]. Notably, in various
studies, rainfall is positively correlated with crop output but is weakly associated with
crop prices [59]. However, a cointegration analysis from 2018 to 2050 reported that rainfall
changes affect future and spot prices with different time lags [60]. Furthermore, a study
utilised monthly temperature anomalies to successfully predict palm oil yields [61].

Soil type and texture potentially improve the accuracy of forecasts and climate.
Malaysian yields of over 30T fruit bunches per hectare were reported on all soil types, ex-
cluding shallow ones. This type exhibits issues such as reduced root proliferation, increased
sensitivity to drought and flooding, and a higher risk of palms toppling. The most common
soil type based on the Asian soil taxonomy is ultisols and oxiols [62,63]. One study used
14 different soil textures and chemical variables on six palm oil plantations to measure
the effects on palm oil and the physicochemical properties of soil [64]. Anaba et al. [65]
mentioned that palm oil physiological and behavioural adaptations to survive were defined
as early tenera hybrid seedling stages. Sandy soils with macropores exhibit low resistance
to penetration, producing excellent root growth in length and ramification. Meanwhile,
the variability of soil in the water column is recognised as a more effective measurement
approach than conventional techniques.

Phenotyping is possible at all levels of an organism’s organisation, including the
subcellular, cellular, tissue, organismic, and agrophytocenosis levels. This approach is
used to identify productivity determinants, abiotic stressors, and plantation planning,
especially on lands. This list can be extended to include the determining of the critical
mechanisms of oil palm’s resistance to pathogens [66]. In oil palm phenotyping, the fruit’s
size, shape, and physiological and biochemical characteristics are considered. These factors
are then evaluated under specific environmental conditions and the oil palm genome [67,68].
Essentially, modern phenotyping methods enable the collection of real-time data and
information analysis on the entirety of the phenotypic features. Hence, palm oil growth,
development, and reproduction processes can now be comprehensively investigated [69,70].
One common phenotype in palm oil is the identification of ripe fruit. One of the prevalent
phenotypes used in research is identifying the types of fruits, whether ripe or unripe.

Genotype has received significant attention, exhibiting the potential to improve the en-
vironment, phenotype, and forecast accuracy. The individual genotype can be determined
using genotypic assaying, a method used in genotyping technology. Previous research
used molecular markers (known DNA markers) breeding by deciphering genetics based on
deoxyribonucleic acid (DNA) to enhance palm oil fruits. These markers include restriction
fragment length polymorphism markers (RFLPs), amplified fragment length polymor-
phism markers (AFLPs), and short tandem repeat or simple sequence repeat markers
(SSRs). Furthermore, the markers are used in the early stages of oil palm genetic mapping.
For instance, the SNP’s marker entails linkage and linkage disequilibrium (LD) mapping.
This marker is favoured because of its abundance, low mutation rates, and amenability to
high-throughput analysis.

Automated and high-throughput genotyping is well-suited to the binary SNPs at the
genomewide scale. This genotyping technique is currently possible using the array [71,72] or
sequencing-based technologies [73,74]. The SNP arrays serve as an alternative to the laborious
cloning and primer design, though it lacks the discovery process and favours genotyping new
populations. Hence, new sequencing techniques have emerged, including next-generation
sequencing, i.e., restriction-site-associated DNA sequencing (RAD-seq) [75] and genotyping by
sequencing (GBS) [76]. Currently, genome-wide markers can be discovered in a model of palm
oil. Table 2 presents several categories in which the variables listed above, and others, can be
sorted, and additional variables present a list of categories that influence oil palm growth along
with input features used in previous studies.
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Table 2. Categorical variables.

Type of Components Features Data Factor Category

Soil and Fertilisation

Levels of potassium (K), nitrogen (N), phosphorus (P), magnesium
(Mg), calcium (Ca), nutrient supplements of groundwater,
topography and slope, consumption of chemical fertilisers,

consumption of agricultural pesticide, type and texture of the soil,
and planting density.

Environment (E)

Climatic

Precipitation, humidity, maximum temperature, minimum
temperature, mean temperature, rainfall, irrigation carbon dioxide

concentration, solar radiation, water measurements, and
waterlogging.

UAV for Canopy Surveillance Tree crown, stems length, tree colours, crown size, bare land, and
water.

Phenotype (P)

Yield

Low lipase, high stearic and high oleic, low free fatty acids content
and high iodine value, oil quality, quality, yield, oil to-dry mesocarp

(O/DM), total oil yield per palm (O/P), oil content in mesocarp,
oil-to-wet mesocarp (O/WM), palm oil yield (PO), FFB, yield,

height, and high carotene.

Fruit

Mesocarp-to-Fruit (M/F), Shell-to-Fruit (S/F), Kernel-to-Fruit
(K/F), oil-bearing mesocarp, shell thickness, reasonable stalk
length, good fruit set, and low parthenocarpy, fruit form, fruit

quality, fruit colour virescent (VIR), and fruit ripeness.

Bunch

Annual cumulative bunch number (BN), annual average bunch
weight (ABW), annual cumulative bunch production (FFB), bunch

production, bunch index, pulp-to-fruit ratio (PF), fruit-to-bunch
(F/B), oil to bunch (O/B) oil extraction rate (OER), and oil-to-pulp
ratio (OP), average bunch number per hectare (BUNCH_HA), and

bunch weight (BW).

Crop Samples
Flavonoid, anthocyanin content, fruit colour, fruit size, hue,

saturation, intensity, contour lines, and blue-to-red fluorescence
ratio (BRR_FRF).

Tree Detection Positive/negative histogram of oriented gradients (HOG), crown
size, images of palm oil, built-up, bare land, water, and forest.

Vegetative
Total dry matter, plant architecture, leaf length, number of leaves
per plant, plant height, height increment (HT), and frond length

(FL).

Estimation

Nutrient content and plant height, shell thickness, mantled
somaclonal variation together with gene networks for oil

biosynthesis, drought and cold tolerance, in vitro regeneration
potential, lipase activity, carotene and vitamin E contents, FA

composition and iodine value, fruit shell thickness, fatty acid (FA)
profile, fruit age, plant life, age factor, average value, daily CPO

prices, monthly closing prices of oils, benefits, plant scale index, sex
determination, inflorescence abortion, foliar nutrient composition,

FFB yield, growth, and respiration.

Disease detection

Bud and spear rot, sudden wilt, red ring disease and basal stem rot
disease spectral reflectance, leaves and stem colours, freckle
(Cercospora elaeidis), blast (Pythium splendens and Rhizoctonia

lamellifera), vascular wilt (Fusarium oxysporum f. sp. elaeidis), and
ganoderma trunk rot (Ganoderma spp.).

Others
Tree crowns and categorical features, thermal images, quantitative

features, oil per palm, chlorophyll-sensitive wavelengths, and
electrical properties of leaves.

Breeding DNA and tissues of the dura, pisifera, tenera; breeding-Deli,
AVROS, Yangambi, Calabar, Ekona, Binga, and La Mé. Genotype
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The review results based on this review will be highly significant given that essential
factors are incorporated into the prediction process via big data. However, more research is
required to determine if big data can improve the prediction of palm oil performance.

4. Data-Driven Prediction Model

Data and process-driven models are the most frequently employed algorithms in palm
oil forecasting. Several parameters, such as initial conditions and agricultural variables, are
required for process-driven models, which entail the extensive accuracy of their systems [9].
Nevertheless, the model exhibits multiple problems due to the uncertainty of breeding anal-
ysis and difficulty obtaining necessary data during the simulation. Meanwhile, empirical
studies have reported proven success in using Data-Driven Models (DDMs) based on AI
and ML [10]. The process requires a training dataset representing the system’s behaviour
to be fed into a machine-learning algorithm.

The data is then utilised to learn the relationship between the inputs and outputs.
Eventually, the trained model can be tested using independent data to determine the
generalisability of the new datasets. Accordingly, palm oil forecasts are more accurate if the
optimum parameter level is acquired from previous data, though the correct features must
first be selected. For instance, clustering can support data discovery and insight rather than
relying on domain knowledge-based and unsupervised ML methods. Consequently, we
can build a palm oil prediction model using ML, unsupervised and supervised, explained
in the following sections.

4.1. Prediction of Palm Oil Using Unsupervised ML

Conventional clustering methods are unsupervised, signifying the absence of outcome
variables or relationships between the dataset observations [77]. Generally, it is easier to
spot patterns and features when the palm oil data are clustered. There are numerous cluster
approaches, e.g., hierarchical clustering, comprising Unweighted Pair Group Methods with
Arithmetic Mean (UPGMA) and Neighbour-Joining (NJ). These two methods are widely
utilised in genotype predictions of palm oil. The UPGMA is a unique high-dimensional
data visualisation technique with a quick hierarchical clustering system, which provides
a simple approach to constructing the distance matrix of the phylogenetic tree [78]. The
method implicitly assumes a constant substitution rate with time and phylogenetic lines.
Meanwhile, the NJ method is expressed as an algorithm involving knowledge of the
distance between each pair of taxa to shape a tree [79]. The bottom-up (agglomerative)
clustering approach creates phylogenetic trees based on DNA or protein sequence data [80].
A recent review of hierarchical clustering in palm oil genotype prediction proposed UPGMA
and NJ to cluster the DNA of palm oil [81].

Bayesian network (BN) clustering is a prediction model where the division of items
into subsets becomes a probability model parameter for the data. However, this model is
subjected to presumptions and clustering references derived from post distribution prop-
erties. Notably, NJ and Bayesian methods were effective clustering and model-prediction
tools. A study proposed these methods to predict the leaf genotype of the Acrocomia
aculeata species [74]. Meanwhile, other clustering algorithms, such as k-means, are used in
phenotype predictions of palm oil. K-means clustering is an unsupervised classification
technique derived from signal processing. This model seeks to divide n observations into k
clusters, where each observation is a cluster prototype of the cluster of the nearest mean.

Table 3 indicates that the clustering of phenotype and environment datasets is less,
compared to genotype. This result demonstrates that k-means were applied less often to
the phenotype dataset.
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Table 3. Unsupervised prediction of palm oil (2016–2021).

Author(s) Objective Dataset Feature Methods
Relevant

Findings/Performances
Factor Category *

E P G

[71] Breeding
prediction

Three hundred
twelve tenera
palms, three

palm oil
breeding

S/F NJ, chi-square, SNPs

Genomic Estimated
Breeding Value (GEBV)
S/F = 0.65%, 4425 SNP

loci

/

[82] Breeding
prediction

Twenty-six
leaves of E.

guineensis palms
O/B, M/F UPGMA, SSRs

Average polymorphic
information content (PIC)
= 0.7325, per centage of

polymorphic loci = 83.3%

/

[83] Breeding
prediction

DxP cross
produced 300

dura, 25 pisifera,
80 tenera, and

100 T×T progeny
lines

BW, F/B,
M/F; K/F,

O/DM S/F,
O/WM, O/B

Bayesian, SSRs
QTLs on seven linkage

groups affecting F/B and
O/B

/

[84] Breeding
prediction

Deli Dura and
AVROS F/B

NJ, PCA, AMOVA
(Analysis of

molecular variance)

230 alleles in 17 palm
progenies /

[85] Breeding
prediction

Eighty-one palm
oil leaves

O/B,
polyprenols.

and
dolichols

UPGMA
27 E. guineensis sites were

grouped into the dura,
pisifera, and tenera types

/

[86] Yield
prediction

Four hundred
forty-seven

blocks with a
planted area of

19,809 ha

FFB,
BUNCH_HA,

ABW

Bayesian
networks—ANN

FFB accuracy = 5%,
BUNCH_HA accuracy =
85%, and ABW accuracy

= 90%

/

[87] Breeding
prediction

Two hundred
and thirty-six oil
palm leaf tissues

- NJ
Bayesian, SNPs

9% of SNP loci, 8 189
SNPs /

[88] Disease
prediction

Thirty-nine oil
palm trees Soil moisture k-Means-ANOVA

(Analysis of variance) Accuracy = 82% /

[89]
FFB

ripeness
prediction

Twenty-seven
palm oils Tenera

FFB maturity
levels k-Means Three ripeness

centroidsof 0, 1, and 2 /

[76]
Breeding

population
prediction

Five hundred
and fifty-three

palm oil
-

UPGMA Bayesian
network, DArTseq
(Diversity Array

Technology
Sequencing),

AMOVA

245 SNPs on all 16
chromosomes /

[90]
Biomass
palm oil

boiler

Biopower boiler
historical

Environment,
deaerator,

and
economiser

Bayesian network Probability of boiler =
54% /

[81] Breeding
prediction

Two hundred
and fifty-one
Dura cross

Pisifera (DxP)

BN, BW, VIR,
M/F,

O/WM,
O/B, S/F,

PO, HT, and
FL

NJUPGMA, SSRs,
AMOVA

Shared alleles = 68.5%
and specific alleles =

31.5%
/

* Factor Category: E = environment; P = phenotype; G = genotype.

4.2. Palm Oil Prediction Using Supervised ML

Function learning based on examples of input–output pairs is known as supervised
ML. From a labelled set of training examples, it deduces the function from labelled training
data, consisting of a set of training examples. Regression analyses, i.e., classification analysis
and artificial intelligence, were used to analyse a historical dataset in predicting palm oil
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yield [36,38]. The prediction models of palm oil growth were previously studied. Hence,
this review will focus on these models and other methods such as Genetic Algorithm (GA),
Naive Bayes (NB), Random Forest (RF), and Regression and Support Vector Machine (SVM).

4.2.1. Types of Regression

Learning can be achieved using data and regression algorithms in an ML environment
to minimise the observed loss or error. Regression is a supervised learning model to predict
an output variable based on the known data variables. The objective of the regression
process is to predict a continuous quantity from a set of input variables. In other words, a
function that accounts for the observed quantity is approximated using relevant variables.
Linear Regression (LR) and Multiple Linear Regression (MLR) are standard palm oil yield
prediction algorithms. Accordingly, various complex regression algorithms were developed,
such as support vector regression (SVR), pairwise regression (PR), principal component
regression (PCR), and others.

A commonality among regression-based methods exists because the goal entails
the determination of the optimum fit between the two variables. However, the most
significant differences between the two methods are the type of image and the input
variables used. The LR model depicts the link between one or more independent and
dependent variable [91]. Meanwhile, multi-independent variables are more reliable than
single ones using the MLR model [92,93], commonly conducted using the least-squares
method (LSM).

Furthermore, the generalised cross-validation (GCV) index, which uses the MLR
method to account for nonlinearity, can be used to analyse the MARS model [94,95]. A
study proposed LR to predict the vegetative components of oil palms [96]. Similarly,
Solichin [97] suggested a prediction method for LR, SVR, and MLP combined with a time
series model and intelligent nonlinear model. Notably, this approach improves the error
caused by time series analysis. Table 4 comprehensively illustrates regression predictions
derived from previous studies.
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Table 4. Regression prediction of crops and palm oil.

Author(s) Objective Dataset Feature Methods Relevant Findings/Performances Factor Category *

E P G

[98] Crops yield prediction Historical data
WOFOST crop model outputs,

weather, crop areas, remote
sensing, irrigated area, elevation,

slope, soil, field size yield

Ridge regression
Wilcoxon

p-value of 0.9 / /
kNN regression

SVR

GBDT regression

[94] Lard in palm olein oil prediction Fourier-transform infrared
(FTIR) data

Lard, pure palm olein oil, and
the adulterated olein oil at 20%
and 50% different temperatures

PLS RMSE = 13.26

/SLR RMSE = 174.86

MLR RMSE = 14.84

[99] Deforestation population
prediction Tree plantation in 2014 Environment and historical LR Accuracy = 98.25% /

[100] Metisa plana population
prediction Twenty-five palm oils Humidity, frond number

LR R2 = 0.01

/PR R2 = 0.01

ANN R2 = 0.45

[101] Leaf nutrient content prediction Leaf reflectance data K, N, and Mg PCR 0.55 < R2 < 0.94 /
PLSR (Partial least squares

regression) 0.86 < R2 < 0.94

[102] Drought prediction Weather data Malaysian
Meteorology Department and

DID Malaysia (MMD)

Precipitation and temperature

SVR SPEI-1 RMSE =
0.644

SPEI-3 RMSE =
0.202

SPEI-6 RMSE =
0.187

/F-SVR SPEI-1 RMSE =
0.372

SPEI-3 RMSE =
0.159

SPEI-6 RMSE =
0.137

BS-SVR SPEI-1 RMSE =
0.626

SPEI-3 RMSE =
0.172

SPEI-6 RMSE =
0.146

[103] Bio-oil Production FFB
prediction

Palm oil empty fruit bunch
(OPEFB) data Temperature, BW LR Error = 0.3%. /

[104] Soil fertility prediction Thirty-six samples of palm oil Macronutrient soil PCR Accuracy = 91.67% /

[105] FFB ripeness prediction FFB palm oil thermal imaging
data

Moisture, temperature,
humidity MLR R2 = 0.8122. /

[106] Soil nutrients prediction Near-infrared spectroscopy data Total organic carbon, total
nitrogen, and soil pH PLSR RMSE = 0.44 g 100 g−1 /

[107]
Dynamic Viscosity of

MXene/palm Oil Nanofluid
prediction

MXene/palm oil nanofluid data Concentration and temperature SVR-Grid Search MAE = 7.9 × 10−3 /

* Factor category: E = environment; P = phenotype; G = genotype.
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4.2.2. Support Vector Machine (SVM)

A support vector machine is a binary classification system that produces a linear
hyperplane for data classification [108]. The hyperplane is intuitively separated, exhibiting
the most significant distance to the closest data point in a reasonable margin. Generally,
the larger the margin, the less the classification’s generalised error. SVM differs from SVR,
used to address regression issues through the SVR method [109]. The SVR algorithm aims
to find a hyperplane in a space in N dimensions that defines the data points.

Concerning the palm oil growth point, a model of classification of SAR pictures is
proposed for the L-band by hybridising SVM and CNN [110]. Subsequently, CNN removes
unnecessary images in the first step, and SVM is then used as a preliminary basis for
extracting plantation pixels. Chen and Liao [111] suggested a binary SVM classification
algorithm using aerial UAV photos to identify the palm oil growth rate. Resultantly, SVM
requires fewer samples but produces high prediction accuracy. Table 5 describes SVM
prediction based on the previous studies.

Table 5. SVM prediction of crops and palm oil.

Author(s) Objective Dataset Feature Methods
Relevant

Findings/Performances

Factor
Category *

E P G

[23] Grape content
estimation

UAV and Sentinel-2
image data NDVI, pH

SVM R2 = 0.52 ± 0.12

/

Adaboost R2 = 0.44 ± 0.09

RF R2 = 0.41 ± 0.09

Decision Tree R2 = 0.45 ± 0.11

Extra Trees R2 = 0.43 ± 0.08

Huber Regression R2 = 0.52 ± 0.12

OLS (Ordinary Least
Square) R2 = 0.51 ± 0.09

ARD (Automatic
Relevance

Determination)
R2 = 0.53 ± 0.09

Theil-Sen Regression R2 = 0.51 ± 0.12

[112] Rice yield prediction Sentinel-2 monthly
image Vegetative

SVM MAPE = 4.4%
/

RF MAPE = 4.5%

ANN MAPE = 4.5%

[113]
Wheat yield
prediction Satellite image data

Cropland information, crop
yield data, satellite-based SIF

data, vegetation index,
climatic information

SVM

R2 = 0.75 /LASSO

RF

NN

[114] Nutrient deficiencies
and leaf prediction Three leaf images

Healthy, potassium
deficiency, nitrogen

deficiency, and magnesium
deficiency

SVM-RBF Accuracy = 100%
/

RBF-ANN Accuracy = 97.92%

[115]
Nitrogen status in
mature palm oil

prediction

Tenera from MPOB
(Malaysian Palm Oil

Board) data

Vegetative, NIR spectroscopy
colours, soil SVM Accuracy = 81.82% /

[116]
Palm oil trees
detection and
enumeration

Images from palm oil
tree data

Vegetative and
nonvegetative

HOG (Histogram Of
Oriented Gradient) −

SVM
Accuracy = 99.21% /

[117] Adulteration of palm
oil fraud detection

Twenty samples of
palm oil

NIR (Near-infrared)
spectroscopy wavelength

and different types of Sudan
dyes

MSC-PCA (Principal
Component Analysis)

+ SVM
Accuracy = 95.20%

/

LDA (Linear
Discriminant

Analysis)
Accuracy = 91.70%
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Table 5. Cont.

Author(s) Objective Dataset Feature Methods
Relevant

Findings/Performances

Factor
Category *

E P G

[118] Female Inflorescences
anthesis stages

prediction

Anthesis thermal
images

Temperature, humidity,
rainfall

SVM

Exogenous +
Endogenous

Accuracy =
40.45%

/kNN (k-Nearest
Neighbor)

Accuracy =
81.85%

RF Accuracy =
88.5%

[119] Landsat Capability
prediction

Geospatial Remote
sensing data

SRTM (Vegetative and
Shuttle Radar Topographic

Mission), DEM (Digital
Elevation Model)

SVM Accuracy = 93.16% /

[120] Bud root patterns
Aerial UAV

(Unmanned Aerial
Vehicle) images

Healthy and bud root
presence SVM Accuracy = 93.53% /

* Factor category: E = environment; P = phenotype; G = genotype.

4.2.3. Random Forest (RF)

Random forest is widely used in agricultural research to examine organisms’ spread and
model ecosystem suitability [121,122]. It is a supervised learning algorithm commonly trained
with bagging methods and an ensemble of the decision tree. The bagging approach is based
on the premise that combining learning models improves the final result. Several studies
have investigated the RF algorithm’s potential for random agricultural forests [123,124]. The
advantages of using this approach include resolving vector collinearity issues, often encountered
while using traditional LR models.

Simultaneous and discrete variables could be used in the RF model, exhibiting an
advantage over linear regression models [125]. Nevertheless, the RF variants present sev-
eral drawbacks. For instance, the model predictions will over-ride other than the range of
training outcomes. Hence, it can be challenging and unpredictable to estimate palm oil
prediction due to the harsh environmental conditions. This restriction is necessary for RF
regression in extrapolating the results and the absence of adequate dataset preparation. Fur-
thermore, the constructed RF models presented a below-average yield. This phenomenon
may be mitigated by the measurement number and the required training predictors. Recent
studies demonstrated the potential of RF regression with long-term algometric variables to
forecast palm oil. Table 6 presents RF predictions derived from previous studies.

Table 6. RF prediction of crops and palm oil.

Author(s) Objective Dataset Feature Methods
Relevant Find-

ings/Performances
Factor Category *

E P G

[25] Wheat yield
prediction

Landsat data Different regions of Punjab
and Pakistan

ACO (Ant colony
optimisation)-RF

201.27 < RMSE <
215.79

/ACO-OSELM
(Online-sequential
extreme learning

machine)

353.55 < RMSE <
381.57

ACO-ELM 352.46 < RMSE <
386.57

[24] Soybean yield
prediction

Historical data

Water, early-season weed
control, late-season weed
control, season-long weed
control, temperature, and

crop management

RF Variability = 88%

/

CART Variability = 70%

[126] Cloud remote sensing
tool Satellite data Spectral, environment,

topographic RF Accuracy = 80.34% /

[127]
Commodity maps
prediction across

Indonesia
Landsat data Vegetative, topographic,

environment RF Accuracy = 95% /
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Table 6. Cont.

Author(s) Objective Dataset Feature Methods
Relevant Find-

ings/Performances
Factor Category *

E P G

[125] Palm oil detection
mapping Landsat data

Spectral bands, SAR
(Synthetic Aperture Radar)
backscatter, vegetative, and

texture

IGSO-RF (Improved
Grid Search

Optimisation)
Accuracy = 96.08%. /

[128] BSR diseases
detection

ALOS PALSAR-2
images

Backscatter, types of
polarisation

MLP (Multilayer
Perceptron) Accuracy = 95.65%

/

RF Accuracy = 92.70%

* Factor category: E = environment; P = phenotype; G = genotype.

4.3. Deep Learning

Artificial Intelligence (AI) depicts the human brain structure through deep learning, a
fundamental part of AI. The primary structure of deep learning, the neural network, is used
to process hidden layers to improve learning. However, the role of AI in agriculture is vague,
given that it is essentially a transformation of knowledge and labour. The primary reason is
that the world is significantly dependent on the diversity of organisms. The agricultural sector
plays the most crucial role in preserving biodiversity. The change or difficulty in agriculture’s
ecological balance directly impacts the human race and its ability to maintain the balance of the
ecosystem. As such, the combination of ML and deep learning supports palm oil forecasting,
which utilises two methods: artificial neural network (ANN) and time-series.

4.3.1. Artificial Neural Network (ANN)

An ANN is an ML algorithm that can model the nonlinear dynamic input–output relation-
ship [129], comprising three layers: an input layer, a hidden layer, and an output layer [130].
Several variables influence ANN success, including the number of nodes in the hidden layer,
the learning intensity, and the training tolerance [95]. In a sequence of iterations, the study rate
specifies the sum at which weight changes to obtain the expected value within a reasonable
range of the observed value. The conventional ANN is a minimal local issue, whereby an
optimised mechanism frequently stops in a local state rather than a global state.

The standard ML models frequently face difficulty in overfitting. The reverse and
forward optimisation process, which maximises performance, is conducted within the back-
propagation backward propagation learning algorithm. The removal of loss functions that
could take place during the reverse propagation can be handled with effective activation
functions such as sigmoid. Table 7 describes ANN predictions based on previous studies.

Table 7. ANN prediction of crops and palm oil.

Author(s) Objective Dataset Feature Methods
Relevant Find-

ings/Performances
Factor Category *

E P G

[131] Cotton yield
prediction Historical data Drought index, precipitation,

vegetative index ANN R2 > 0.80 /

[132] Paddy yield
prediction Historical data

Cropland information, climate
information, soil properties,
agricultural production data,

irrigation information

MLR-ANN RMSE = 0.051, MAE
= 0.041, R = 0.99 /

[133] Nutrient content
prediction Ninety leaf samples Frond numbers and nutrients ANN Accuracy = 85.32% /

[134] The ripeness of FFB
prediction

Real-time FFB system
data Colour, texture, and thorn ANN Accuracy = 93% /

[135] Metisa plana
prediction Twenty-five palms

LST (Land Surface Temperature),
environment and NDVI (Normalised

Difference Vegetation Index)
ANN Accuracy = 95.42% /

[136] Palm oil production
planning Historical data FFB weight, harvesting time, yield ANN RMSE = 0.1290 /

[137] FFB maturity
prediction

MPOB FFB images
data Colour features of palm oil FFB image ANN Accuracy = 94% /

* Factor category: E = environment; P = phenotype; G = genotype.
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4.3.2. Time-Series

A Recurrent Neural Network (RNN), or LSTM, is a feed-forward network with a
backpropagation loop. LSTM provides additional benefits by holding onto the value of
the previous output for short periods, serving as a small part of a network’s memory
that supports feedback analysis. Dynamic time-series models, such as the Autoregressive
Integrated Moving Average (ARIMA), are the most widely used time-series approach.
Other models, such as the Autoregressive (AR), Moving Average (MA), and Autoregressive
Moving Average (ARMA), are subclasses of the ARIMA model. Box and Jenkins suggested
a popular version of the ARIMA paradigm, the Seasonal ARIMA (SARIMA), for seasonal
time-series forecasting. The ARIMA model’s popularity is primarily due to the associated
Box–Jenkins methodology for constructing the best model, in addition to its ability to
represent a wide range of time-series effortlessly.

The complex variables and combinational inputs are the most common utilisation
examples. Vegetative index, weather, and climatic data are used to track the progress of
palm oils. Accordingly, LSTM is used to analyse the data for the attribute variables to
better understand the time-series data. It yields an estimated 83 per cent of the crop [77]. It
produces an estimated accuracy of 83 per cent of palm oil age detection using the Landsat
time-series [77]. The LSTM model possesses two layers, one for processing genotypes and
another for environmental factors. The two-layered approach provided a more effective
process and straightforward suggestions with a value of 8.52 of RMSE [138].

The palm oil’s satellite-based SIF was analysed to determine the vegetative index,
exhibiting 0.69 of r2 [139]. The LSTM method combined price and time-series data to better
estimate yield. The one feedback connection of the RNN can be directly processed by the
one feedback connection data [140]. Furthermore, a low training time indicates that the
processing time and storage space efficiency were due to this data type. The predicted
palm oil yield suggested 2.7098% of MAPE. Table 8 describes the time-series forecasting
based on previous literature.

Table 8. Time-series prediction of crops and palm oil.

Author(s) Objective Dataset Feature Methods
Relevant Find-

ings/Performances
Factor Category *

E P G

[141] Wheat yield
prediction Sentinel-2 image data

Minimum and maximum
temperature, integrated solar

radiation, cumulative
precipitation, soil texture, soil

chemical parameters,
hydrological properties

LSTM MRE (Mean relative
error) = 9.70% /

[59] CPO price prediction

One hundred
thirty-six units of
data of monthly

prices

Temperature, rainfall, radiation LSTM (Long
short-term memory) RMSE = 280.463 /

[142] CPO price prediction Eighty-one complete
sets of monthly

observations

Monthly prices, total imports,
and exports

ARIMA
(Autoregressive

Integrated Moving
Average)

RMSE = 293,016.94

/
ARAR

(Autoregressive
Autoregressive)

RMSE = 19,161.84

ARFIMA
(Autoregressive

Fractional Integral
Moving Average)

RMSE = 43,333.98

[143]
Adverse side-effects

of shaded agroforests
prediction

GPS devise of plot
data

Temperature, wind, drought,
and soil erosion Time series 95% confidence

interval /

[144]
Age and biophysical

qualities of yield
prediction

MODIS (Moderate
Resolution Imaging
Spectroradiometer)

data

Vegetative and yield
Time-series-CART
(Classification And

Regression Tree)
RMSE = 4.7 /

* Factor category: E = environment; P = phenotype; G = genotype.
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4.4. Other Approaches in Palm Oil Prediction

A hybrid solution incorporates more than one algorithm to boost efficiency. Integrating
several ML algorithms will vastly increase the overall outcome of each algorithm by tuning,
generalising, or adapting to new tasks. Table 9 shows other approaches to prediction
derived from previous findings. Metaheuristic algorithms, such as the Genetic Algorithm
(GA), can be used to solve a wide range of optimisation problems. The GA structures
comprise two types based on the assumption of a finite solution space: local and global
search [145]. The GA strings’ populations, or chromosomes, are defined according to an
optimisation problem.

Table 9. Other approaches’ predictions of crops and palm oil.

Author(s) Objective Dataset Feature Methods
Relevant

Findings/Performances

Factor
Category *

E P G

[27] Chilli leaf disease Images data

Types of chilli leaf diseases,
up curl, down curl,

Cer-cospora leaf spot,
Geminivirus

SECNN (Squeeze-and-
excitation-based

convolutional neural
network)

Accuracy = 99.54% /

[26]
Wheat yield
prediction Historical data Weather

CNN RMSE = 0.66

/

DNN RMSE = 0.80

SVR RMSE = 0.86

Regression tree RMSE = 0.85

Ridge RMSE = 0.91

Lasso RMSE = 1.19

XGBoost RMSE = 0.73

RF RMSE = 0.79

kNN RMSE = 0.88

[21] Corn yield prediction Historical data

Time, corn variety,
SOM (Soil organic matter)
content, NFAR (Nitrogen
fertiliser application rate),

PFAR (Phosphorus fertiliser
application rate), KFAR

(Potassium fertiliser
application rate), seeding

rate

GBDT (Gradient
boosting decision

tree)
R2

cv = 0.799

/

RF R2
cv = 0.749

[22] Corn estimation UAV image data
Different unique colors
marked with different

density
ResNet 18-CNN 0.73 < Accuracy < 0.97 /

[146] Palm oil FFB
production Historical data FFB (Fresh Fruit Bunch) Exponential

smoothing method RMSE = 0.1 /

[147] Optimisation yield
production Historical data Environment GA (Genetic

Algorithm) MSE = 0.022 /

[148] Mapping palm oil
plantation

Level-18 Google Earth
images Vegetative and impervious

RCANet (Residual
Channel Attention

Network)
Accuracy = 96.88% /

[149] FFB maturity
prediction 106 FFB palm oil Mesocarp colours and bunch

grading Lazy KStar Accuracy = 63% /

[150]
Predicting and

diagnosing the quality
of refined palm oil

Twenty-five samples
of palm oil

FA (Fatty Acid), moisture
content, and environment

PCorrA (Partial
Correlation Analysis) MSE < 0.01 /

[151] CPO prediction

One hundred
fifty-three months of

CPO (Crude Palm Oil)
production data

CPO Exponential
smoothing method MAPE = 16.06 /

[152] Classify BSR (Basal
Stem Root) prediction Eighty oil palm trees.

Frond number, frond angle,
crown area, and crown

significance
NB (Naïve Bayes) Accuracy = 85% /
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Table 9. Cont.

Author(s) Objective Dataset Feature Methods
Relevant

Findings/Performances

Factor
Category *

E P G

[153]
Classification of

nutrient contents on
the leaf

Types of fronds with
different ages data Ca, K, Mg, N, and P

LMT-SMOTE
(Logistic Model Tree

(LMT)-Synthetic
Minority

Over-sampling
Technique (SMOTE))

+ AdaBoost

Accuracy = 76.13
100.00% /

[154] Movement CPO
prediction

Data from the
Malaysian palm oil

industry in Malaysia

Monthly prices, total imports,
and exports

RBFNN (Radial Basis
Function Neural

Network)-
2SATRAAIS

(Satisfiability Reverse
Analysis with

Artificial Immune
System Algorithm)

Accuracy = 90.46% /

[155]
Palm oil detection

mapping Landsat data Vegetation, humidity (water)

XGBoost
RMSE = 0.1512

/LASSO (LASSO
regression) RMSE = 0.3487

RPART (Recursive
Partitioning and
Regression Trees)

RMSE = 0.1894

RF RMSE = 0.1655

NN (Neural Network) RMSE = 0.3925

[156] Palm oil detection Aerial UAV images Crown size, crown colour,
and crown density Faster-RCNN

ResNet 50 Precision =
96.34% /

VGG-16 Precision =
95.1%

* Factor category: E = environment; P = phenotype; G = genotype.

A study employed GA to improve the generalisation ability of the Radial Basis
Function Neural Network (RBFNN and Fuzzy Radial Basis Function Neural Network
(FRBFNN) [157]. Meanwhile, Ibrahim et al. [158] proposed a prediction method of fatty
acid and an intelligent nonlinear model to improve the error. Ishola et al. [159] suggested an
investigation to determine the palm oil kernel process by improving the error of response
surface methodology (RSM). This method includes the adaptive neuro-fuzzy inference
system (ANFIS) accuracy when combined with GA.

5. Analysis and Discussion

The data-driven projects of various categories in a single dataset are a difficult task;
thus, they are frequently overlooked. The issue with these projects includes the differing
data complexity and its update frequency; hence, distinct preprocessing methods will
be used to clean up the data because of the frequency difference. Various factors must
be considered in future research. Table 2 shows how various critical factors, such as
environment (E), phenotype (P), and genotype (G), can be divided into different categories.
These factors presented evidence of unfinished work based on the literature. As of 2011,
researchers have been focusing on these factors, which are used to summarise trends
between 2015 and 2021, as shown in Figure 4.
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Figure 4. The trend of using categorical factors between 2015 and 2021.

Numerous factors, including genetics, climate, and disease detection, were found
to affect palm oil yield in this study. The term “phenotypes” refers to the traits that
can be seen and measured in a breeding program, such as increased genetic variation
in palm oil yield. Another factor that affected the study’s results was the selection of
reliable data. Genotype, phenotype, and environmental data from oil palm crops are all
difficult to analyse because of the high level of complexity. Most researchers use genotype
data to gather breed-specific DNA for selection purposes. Additional data such as bunch
characteristics, yield component, and vegetative measurement can be used for relative
selection in oil palm. Environmental and historical data are interdependent. Data from
both sources can be used to improve the process and save money.

Figure 5 shows most of the data features from previous studies utilised to predict
palm oil. Seventy-four per cent of studies that rely on the climate and soil and fertilisation
(twenty-six per cent) are in the environment category. However, it is impossible to indicate
the most effective subfeatures for phenotype factors under each feature group. For instance,
there are nine subfeatures listed under “phenotype factors” which are utilised extensively,
e.g., bunch, fruit, and diseases. Nevertheless, these studies did not specify the optimal set
of sub-features under the bunch and yield of palm oil, requiring further research.

The ideal phenotype subfeatures based on various regions should also be investigated.
Because of the wide range of existing factors, such as diseases, tree detection, and physical
characteristics of palm oil yield, predictions in similar fields should be made over several
years [45,105]. Palm oil yield predictions in similar fields should be recorded over several
years due to variations in existing factors such as diseases, tree detection, and physical
characteristics [45,105]. Palm oil forecasting does not emphasise phenotype data similarly
to genotype representation; therefore, redundant features must be eliminated to ensure the
predictive model accuracy.

The insufficient data due to the frequency update would hinder the prediction process.
Specific data are updated every minute, hour, or day, depending on the volume. However,
sporadic data limit the finding of patterns, which occurs when data are collected only once
a month. This phenomenon can also occur in the event of substantial missing data and
when dealing with small-sized data. Hence, larger-sized datasets are the suggested means
of solving this issue. Oil palm phenotype data are challenging to come by due to a lack of
available information. Only a few factors reviewed thus far have fully utilised all three,
even though this paper has learned that climates under the meteorological factor are critical.
However, when it comes to the category of factors, there have been very few that have used
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all of them. Besides, genotype environmental and historical information can be found in
general datasets, whereas phenotype data come from the statutory body of the Malaysian
Palm Oil Board (MPOB) or Felda Global Ventures (FGV), which have their own procedures.
Because of the high cost of capturing data in the field of study, phenotypic data are difficult
to communicate. Data storage and analysis tools, phenotype reduction, and other laboratory
costs are among the challenges to developing an optimal digital phenotype platform [160].
As a result of these concerns, several gaps must be addressed, such as dealing with a wide
range of data sizes and implementing the appropriate data-driven method.
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When parameter selection is required, techniques for managing and conducting data
experiments become complex. In addition, parameter tuning must be performed. More
experiments conducted on the data yield superior results. The difficulty in developing
techniques for future research is minimising the impact of data inaccuracies within datasets.
During testing and training, the first step recommended by this study is to identify and
discard low-quality data points [86]. Due to the random selection of features, varying
quantities of features deemed too high or too low may result in model-fitting issues and
performance fluctuations. According to previous studies, the randomness in the dataset
has caused the model to be overfit and forecasting errors to be made [115,126]. Another
possible cause of forecasting failure is a lack of suitable feature selection methods for ML
and DL.

Another challenge is model selection, which requires data. Accuracy in oil palm
breeding models is achieved through a hybrid method in this study. A model selection
problem is presented because it transitions from traditional to modern model [147]. Rather
than using inefficient and time-consuming traditional modelling methods to optimise crop
yields, farmers are now turning to AI models that are more accurate and efficient. Oil
palm model selection is an example of how knowledge can be applied in various ways.
Evaluating the impact of different parameters on oil palm yields is possible. The artificial
intelligence (AI) method is a form of optimisation based on natural selection and inherited
principles [159].

Previous studies have employed various classification and regression algorithms
to predict palm oil. Figure 6 shows the prediction algorithms based on the previous
findings. The extracted data indicate that regression (24 per cent) is the most used palm
oil prediction algorithm, followed by clustering, SVM, time-series, and RF. The second
most popular algorithms for prediction the clustering approaches, i.e., NJ, UPGMA, and
Bayesian network, focusing on the breeding palm oil prediction. Meanwhile, K-means
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perceive behaviour on nonlinear variables, though more studies are required to test this
claim. The third most preferred algorithm for prediction is SVM, though several flaws
must be resolved. The SVM results were more significant than the MSC–PCA hybrid with
SVM, SVM–RBF, and SVM–ANN [104,107]. This result implies that the increased SVM
performance is attributed to the improved optimisation techniques for a wide range of
parameters [114].
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Figure 6. Widely used palm oil prediction algorithms.

The SVM provides additional kernel functionality, improving the prediction models
through feature recognition. This model possesses a more compact management potential
than ANN, specifically in its distribution, geometry, and data overflow. Furthermore, the
SVM is theorised based on the principle of reducing structural instability, diminishing
the high bond error instead of training error [115]. Moreover, this study found various
issues in ANN related to DL algorithms. For example, the ANN output involves several
hidden layers and types of activation functions. Alternatively, a different optimisation
algorithm can be utilised, optimising hidden layers and the ideal activation function, i.e., a
genetic algorithm [161,162]. This substitute procedure may not be the highest performance
substitute. The terms “much used” and “best output” are not similar definitions (See
Figure 6). The regression and time-series predictably exceeded the ML and DL techniques
as per the anticipated palm oil observations. The parameters and goal parameters could be
isolated from regression and time-series [147,163].

To date, there have been very few investigations into the RF algorithm’s potential
for classification and regression analysis in agriculture. Palm oil yield estimation may
be difficult and unreliable due to varying environmental conditions in different fields.
This constraint may be critical in extrapolating the results for RF regression as well as a
result of the lack of sufficient training datasets. The developed RF models overestimated
the average yield and underestimated the yield below it. As the number of observations
and appropriate predictors for training increase, this issue may be mitigated. According
to this study, long-term agrometric variables can be predicted using RF regression. It
is clear that the ML and DL techniques, as well as LASSO’s ability to isolate dynamic
correlations between the variables and the target predictor, outperformed LR in palm oil
yield prediction [155].

Both clustering and classifier frameworks are used in the selected articles. Since
images are used for clustering in certain articles, the article utilises a numerical dataset in
conjunction with machine vision rather than ML. The use of clustering architectures may be
investigated in depth in order to identify various opportunities regarding this issue. In time
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series prediction, determining the window size, lag value, and even the features selected
as input for the prediction algorithm is standard practice (i.e., LSTM). It is also common
for LSTM to use past data to learn from all the features or input it receives [77]. Due to the
prevalence of LSTM algorithms in palm oil forecasting, a focus on DL architectures should
be investigated. All DL architectures such as ANN and LSTM were found to be the most
frequently used in our review articles that used DL approaches. However, LSTM–CART
hybrid DL algorithms [140,144] have also been applied to this problem.

In previous crop and palm oil yield prediction research, a wide variety of performance
evaluation metrics have been employed. Accuracy is the most utilised metric in the
algorithm for predicting crop and palm oil yield. When palm oil prediction models are
evaluated using different performance metrics, it is nearly impossible to compare them.
A standard and systematic approach, or one single measure, should be used to quantify
the model’s palm oil prediction accuracy. It is possible to compare crops and palm oil
prediction algorithms if the performance metrics used are the same for all of the algorithms.

Only Hilal et al. [147] used a maximum number of features under the historical yield
data, cropland information, and climatic information groups in other previous studies
related to palm oil. Palm oil yield has been predicted using only one feature in other
studies [30,56,110,140,151]. Using a large number of features in a crop yield prediction
model may be more accurate than using a smaller number of features. Studies, such as [98],
show that by combining information from WOFOST crop model outputs data, weather
data, crop data, soil data, and yield statistics, they were able to accurately predict soft wheat,
spring barley, sunflower, grain maize, sugar beets, and potato yields. Data on water, early-
season weed control, late-season weed control, season-long weed control, temperature, and
crop management were used to predict soybean yield by Landau et al. [24]. Soil properties,
different types of fertiliser application rate, and yield data from historical yields were used
to predict corn yields by Du et al. [21]. As a result, the palm oil yield prediction research
should also take into account a large number of features groups.

The efficiency with which palm trees absorb nutrients is directly related to their soil
properties. Nutrients like these have a significant impact on palm yield effectiveness [38].
It is possible to estimate palm oil yield by looking at a wide range of soil properties, such
as soil electrical conductivity and conductivity to clay and silt, organic carbon content, pH
and cation exchange capacity, bulk density, and the percentage of clay, silt, and sand in
the soil. The use of remote sensing to examine soil properties in a palm grove could be a
promising avenue for future investigation. It is possible to monitor the soil’s characteristics
from afar because the reflected light has different responses. For example, soil moisture
content may be taken into consideration when determining the dielectric characteristics
of the spreading wave. It is possible to investigate the relationships between recorded
signals and a variety of soil characteristics, including soil texture, soil form, and overall soil
structure, in order to develop analytical relationships.

However, the estimated parameters, such as soil moisture, LAI, greenness of the palm
canopy, and height, that contribute significantly to the yield prediction should be taken
into account. A precise yield forecasting model can be created once the connection is
defined. Including historical yield data, various climatic data, vegetation data, fertiliser
application information, and other types of satellite data could improve yield forecasting
performance. Remote sensing makes it possible to quickly gather data on the ground from
a large area. For example, it has been used to monitor the environment and topographic
conditions [98,126]. It collects spatial data without any direct contact. According to an
increase in demand for oil palm products, numerous studies have been conducted on oil
palm plantation mapping using remote sensing.

Mapping a palm plantation accurately can have significant economic and environ-
mental advantages. Traditional ML techniques, classical image processing methods, and
deep learning methods can all be used to identify the crowns of trees. RF [125,126] and
SVM [111,116] are two of the most commonly used classifiers for tree crown detection
in traditional ML approaches. When compared to traditional image processing methods,
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ML techniques have made significant progress. Image binarization and segmentation are
commonly obtained using high-resolution UAV images such as local maximum filter [111].
However, complex situations like overlapping tree crowns may degrade detection results
due to the method’s unnecessary labels. Researchers using remote sensing images have
increasingly turned to DL-based classifiers, which employ multiscale computational meth-
ods, in recent studies to detect trees from satellite images; the most advanced studies use
deep learning-based classification [144]. Features can be extracted using DL, which is
known for its impressive capacity. With Faster RCNN [156], advances in object detection
based on pre-trained models have been made to detect palm trees in the plantation area.
It is possible to improve the predictive accuracy of classifiers by optimising their input
hyper-parameters, which are highly dependent on their accuracy. In order to improve
accuracy, hyperparameter optimisation must be used. Its accuracy was superior to other
classifiers, such as SVM, CART, NN, and IGSO–RF classifiers that used the IGSO algorithm
to fine-tune the parameters of the traditional RF model [125].

Disease image recognition plays a critical role in the development of innovative
agriculture. Oil palm diseases have been studied using a wide variety of diagnostic
methods. Categories such as SVM [120], as well as ANN [135] and NB [152], are included.
In this regard, traditional ML methods have some drawbacks when it comes to monitoring
palm oil disease. Furthermore, existing methods are heavily reliant on disease images
that are of high quality. As a result of these methods, which include image preprocessing,
image segmentation, feature extraction, and classification, as well as significant operations
that add complexity and delay implementation, the implementation can be significantly
delayed. Training is challenging using traditional ML methods, especially when the training
dataset is large. Deep learning and transfer learning, two of the most recent advanced ML
techniques, have the potential to aid in the development of oil palm disease recognition.

Oil palm plantations require a lot of monitoring, which takes time and effort.RF [118],
ANN [137], and hybrid CNN–SVM [110] are just a few of the ML approaches that have
been used to track palm growth via remote sensing in the past. Nevertheless, landowners
must extract useful information from remote sensing data. There is a chance that this will
lead to solutions via deep learning, transfer learning, and recognition of objects.

Palm oil yield prediction is only indirectly addressed in a few ML-based studies con-
ducted in the industry. So far, there have been five studies examining how well scientists
can predict phenotype palm oil yields [56,87,141,150,151]. In light of these studies, it is
difficult to determine which algorithm is best for predicting palm oil yields. It is possible to
predict palm oil yield with the help of some regression algorithms based on ML (ML). Mul-
tiple algorithms should be considered instead of a single algorithm to improve prediction
model robustness.

It is a common practice in the palm oil industry to employ SVM models and algo-
rithms. Perhaps the most critical part of this success is regularisation. Outliers and noise
are common in agricultural data, making it challenging to analyse. The classifier’s gen-
eralisation capabilities may be improved through regularisation, which could help solve
this issue [114]. The regularised linear SVM classifier outperformed the RBF classifier in
this study. For example, the regularisation parameter C and the RBF width using kernel 2
require manual adjustment in SVM. These benefits occurred as a result of the low execu-
tion speed. In addition, because the SVM decision rule is a simple linear function in the
kernel space, it is stable and has low variance [114]. It is critical to obtain low variability
in agricultural data because features are highly dynamic and change over time. SVM’s
ability to withstand the curse of dimensionality may be the final possible explanation for
the problem. Small training sets and high-dimensional feature vectors have allowed SVM
to achieve excellent results [114]. In terms of finding a nonlinear pattern in data, the key
advantages of RF are its generalisation performance, high speed, and the use of an ensem-
ble of tree-structured classifiers. It has low data preprocessing requirements in training
because it is robust regarding to unit differences and can make accurate predictions on
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sparsely annotated data. The RF algorithm yields better results in the selection of features.
Meanwhile, the input hyperparameters play a vital role in RF.

High-dimensional feature vectors can benefit from SVM, one of the best classification
algorithms. To solve the problem of high dimensionality, dynamic classifiers can also
consider a sequence of feature vectors rather than just one high-dimensional feature vector.
Another benefit of using these methods is that they can deal with large datasets. A com-
bination of classifiers may be used to solve this problem because it reduces the variance,
especially when there is no stationarity in the dataset. This method is still useful, but it
may be outperformed by a classifier that uses a combination of RBF and SVM. Due to
the limited number of training datasets, simpler techniques such as LDA may be used.
The k-NN algorithms are rarely employed in the palm oil industry due to the curse of
dimension. However, k-NN may be superior if only low-dimensional feature vectors are
taken into account in agriculture and the palm oil industry, or if no feature vectors are
needed. In remote sensing, the ANN is widely used to predict vegetation parameters and
crop yields because it can retrieve complex, dynamic, and non-linear patterns from the data.
Many libraries and software tools are readily available, making them the most basic form
of ML. A few drawbacks exist in practical applications, such as the rate at which neurons
are learned, how many neurons are chosen for the hidden layers, and the overfitting issue
when using a large training dataset. Large datasets cause the process to slow down. As the
number of epochs required increases, backpropagation networks become slower in training.
Using a CNN for image data with a large training set is a good option. A leaf image can
identify a disease, map an oil palm plantation using remote sensing-based spectral images,
and so on. The use of advanced CNN architectures, such as Faster R-CNN, is also highly
effective for object recognition-based tasks. It is possible to predict palm oil yield and oil
palm price using regression-based algorithms such as RF, ANN, and SVR. In addition, to
improve the predictability of the model, an ensemble of multiple algorithms should be
investigated rather than a single algorithm.

In DL, even though LSTM appears to be the best method in general, LSTM has
primarily been applied to data pertaining to palm oil age detection, environment, as well
as price prediction. Palm oil yield requires additional research. It is also worth noting
that there are several possible reasons for the LSTM’s fluctuating performance, including
the number of indicators used and the method’s limitation. According to [59,77], while
the sequence-to-sequence architecture of LSTM can store long-term memories, its internal
representation is limited to a fixed length. Internal representations or input sequences of
LSTMs have a fixed length because information is divided into small pieces for easier recall.
Various random weight initialisations impact LSTMs, and as a result, they behave in a
manner similar to that of a feed-forward neural network. As a result, many unresolved
issues must be addressed to improve or resolve the issue at hand. LSTM feature engineering
and a basic grasp of the phenotypic factors of palm oil data can enhance performance in this
area. The current performance of LSTM is expected to improve with additional parameter
tuning and additional learning methods.

The DL is a subset of ML, commonly believed to be significantly persuasive for palm
oil prediction. However, the only difference between ML and DL is that the latter is
inefficient for a limited training dataset; thus, fundamental components are automatically
removed from this dataset. The attributes of other samples must be manually removed to
preclude the use of successful DL. Hence, detailed studies must be conducted on the use of
DL strategies in palm oil, and there is still room to delve into the performance of algorithms.
The research has shown that DL usage in forecast time-series is superior to basic ML in
average performance; hence, future studies can focus on this idea. ML data-driven models
were unable to extract features from multifactor timing data efficiently. According to this
study, most models did not reflect the data’s phenotypic characteristics. Time-series has
shown to outperform other forecasting methods with minor forecasting errors.
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6. Identifying Palm Oil Prediction Framework

In the light of previous research on palm oil prediction, we have proposed a framework
for predicting palm oil yields in the future. Figure 7 depicts the prediction of palm oil
yield as a prospective framework. In an effort to accurately predict palm oil, a diverse
range of data must be gathered, including genotype, breeding, fruit, yield, and bunch.
Others include soil properties, climate, vegetation indexes, diseases, previous yield records,
fertilisation, and UAV monitoring data. Furthermore, data must be preprocessed after
collection to further analyse the information. Once the data has been preprocessed, the
entire dataset is divided into a training and testing set.
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A training dataset is used to build a prediction model, which is trained using a variety
of ML-based regression and classification algorithms. Moreover, parameter optimisation is
used to improve trained models when they fail to meet expectations, and the testing of the
models is conducted after achieving the required performance. The critical factors affecting
palm oil prediction include disease recognition and management, fruit and bunch, palm oil
breeding, growth, and nutrition level monitoring. Accordingly, this study combines the
prediction model output with palm oil variables to accurately predict palm oil yield.
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7. Conclusions

This study examined existing research on ML in palm oil conducted over the last
decade, categorised into unsupervised, supervised, and deep learning analyses. The critical
objective of this study aimed to identify the breeding prediction of oil palms derived from
the clustering category. Furthermore, the study incorporated regression analyses, including
determining FFB yield, tree detection, and climate. The findings from the research were
primarily focused on tree detection, the observation of palm oil plantation areas, and
identifying the ripeness of fruit bunches. However, models for forecasting disease were not
widely used, i.e., in fruit yield, oil production, and breeding.

Notably, SVM, RF, LR, and SVR are the most promising conventional machine learning
architectures. Additionally, DL models such as LSTM and ANN are used to estimate crop
yields in the field. This selection has been made based on most of the algorithms used
in previous studies, hybrid modelling, comparison, and performance evaluation. Some
feature selection algorithms and performing ensemble methods identify and treat missing
and outliers’ values, computational complexity, and model fit, as well as outperforming
models, and should be examined comprehensively in order to determine the best model.
Research on palm oil yield prediction is scarce, according to the findings of the current
review. In addition, very few feature sets and ensemble methods have been used in the
existing palm oil yield prediction studies, resulting in large discrepancies between the
predicted and actual palm oil yield. When it comes to palm oil yield predictions, it is too
early to speculate on the best set of features, models to use, and the appropriate ensemble
models. As a result, more studies involving a wide range of features and prediction
algorithms are needed. Extensive research on crop yield prediction and palm oil yield
prediction is expected to be based on this paper.

Nevertheless, most of the data used in palm oil research were climatic from various
sources. For example, identifying suitable land requires various factors that must be
considered, e.g., soil classification, automated pest and weed detection, and optimising
fertiliser use. This list of factors can be extended to identifying the symptoms of sunlight
and water limitations in palm oil crops and seed assessment.

The findings from this review highlight current palm oil and ML research from various
angles. Innovative ML practices, such as big data analytics and automated information
extraction, support the advancement of knowledge-based palm oil. However, research
trends indicate that existing MLAs and techniques were not adequately coupled to support
effective decision-making systems compared to other ML application domains. Thus, the
current research is insufficient to design practical tools that increase yields, quality, and
plantation sustainability. A vivid idea could be presented on how ML can enhance palm
oil development and inspire researchers to find relevant solutions in this area. Overall,
this article may support the palm oil industry’s automation and intelligence development.
However, future work should include a technical review of other ML models used in palm
oil agriculture.
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