

 algorithms-15-00239

algorithms-15-00239

Algorithms 2022, 15(7), 239; doi:10.3390/a15070239

Article

IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms: Traffic Features Analysis, Experiments, and Efficiency

Sergii Lysenko 1,*, Kira Bobrovnikova 1, Vyacheslav Kharchenko 2,*[image: Orcid] and Oleg Savenko 1

1

Computer Engineering and Information Systems Department, Khmelnytskyi National University, 29016 Khmelnytskyi, Ukraine

2

Department of Computer Systems, Networks and Cybersecurity, National Aerospace University “KhAI”, 61001 Kharkiv, Ukraine

*

Correspondence: sirogyk@ukr.net (S.L.); v.kharchenko@csn.khai.edu (V.K.); Tel.: +380-68-772-81-79 (S.L.); +380-67-915-19-89 (V.K.)

Academic Editors: Francesco Bergadano and Giorgio Giacinto

Received: 19 June 2022 / Accepted: 9 July 2022 / Published: 12 July 2022

Abstract

:

Cybersecurity is a common Internet of Things security challenge. The lack of security in IoT devices has led to a great number of devices being compromised, with threats from both inside and outside the IoT infrastructure. Attacks on the IoT infrastructure result in device hacking, data theft, financial loss, instability, or even physical damage to devices. This requires the development of new approaches to ensure high-security levels in IoT infrastructure. To solve this problem, we propose a new approach for IoT cyberattack detection based on machine learning algorithms. The core of the method involves network traffic analyses that IoT devices generate during communication. The proposed approach deals with the set of network traffic features that may indicate the presence of cyberattacks in the IoT infrastructure and compromised IoT devices. Based on the obtained features for each IoT device, the feature vectors are formed. To conclude the possible attack presence, machine learning algorithms were employed. We assessed the complexity and time of machine learning algorithm implementation considering multi-vector cyberattacks on IoT infrastructure. Experiments were conducted to approve the method’s efficiency. The results demonstrated that the network traffic feature-based approach allows the detection of multi-vector cyberattacks with high efficiency.

Keywords:

Internet of Things; cybersecurity; cyber threats; malware detection; machine learning; network traffic

1. Introduction

1.1. Motivation

The Internet of Things is a concept that aggregates many technologies and physical objects—devices that exchange data and interact over the internet, as well as big data that generate these devices. Internet of Things devices have various purposes and complexities, from wearable things or technology to intelligent devices in smart homes and critical infrastructure. The Internet of Things was designed to make many areas of human life more comfortable and safer. However, the Internet of Things not only brings increased comfort but also new challenges and problems related to cybersecurity [1,2].

Security issues surrounding the Internet of Things infrastructure are determined by the specific features of an environment. One possible feature involved in building an IoT infrastructure is an IoT system of groups of identical or similar technical characteristic devices. If a specified device has a vulnerability, such homogeneity multiplies its impact [3,4,5].

Important issues include security issues with protocols used in the internet infrastructure, the use of unsafe network services, such as Telnet and SSH, and vulnerabilities in routers and open ports. With the ability to monitor and collect data on the IoT, even specialized compromised IoT devices with limited resources can be used to leverage critical infrastructure systems, such as database servers. Vulnerability in the IoT device communication protocol can spread to other devices that use the vulnerable protocol in the IoT infrastructure [6].

Thus, vulnerabilities in the protocols used in the IoT network can have devastating effects on the entire IoT infrastructure. The criticalities of these effects depend on the environments in which the compromised IoT devices operate.

Moreover, in some cases, the deployment conditions of IoT devices make it difficult or impossible to reconfigure or upgrade IoT devices. Often, IoT devices cannot be upgraded due to the discontinuation of device support from the manufacturer. This leads to the possibility of new vulnerabilities and threats to the IoT device in the future, as the current security mechanisms of device deployment may be out of date. Technical support and management of IoT smart devices are important cybersecurity issues in the long run. Another specific problem surrounding IoT cybersecurity is the fact that the internal operation of a smart device and the data streams generated by the device may be unknown to the user. The situation is complicated by the constant availability of IoT devices on a network and the ignorance of users (i.e., concerning potential cybersecurity risks). It may lead to the use of dangerous settings on IoT devices (default), direct network connections of internet devices to the internet, the use of obsolete or unreliable devices, and weak passwords.

One important IoT cybersecurity risk is that the functionality of smart devices can be changed by the device manufacturer without the consent or knowledge of the user (by updating the device firmware). It creates a new vulnerability that can allow the smart device to partially change the functionality or perform undesirable actions on the user’s device, such as collecting sensitive user data without the user’s knowledge.

However, the risks are not limited to data confidentiality. Attacks on IoT infrastructure can not only target compromised devices to steal sensitive data or cause financial losses but also disrupt or damage IoT devices physically. Compromised IoT devices can even lead to the injuries or deaths of people who depend on these devices or work with them.

Thus, non-compliance with basic security requirements (for both manufacturers and the users of smart devices) is the main cause of IoT cybersecurity problems. Common causes of security breaches in IoT infrastructure due to manufacturers are vulnerabilities in the IoT device software, lack of support for automatic updates, lack of firmware updates, and dangerous update mechanisms. This situation is often caused by manufacturers attempting to launch new smart devices as soon as possible. Vulnerabilities in software and web applications can lead to the theft of sensitive information or the spread of malicious firmware updates. Another common problem is unsafe authentication methods provided by the device manufacturers. The above weaknesses of the current IoT state of affairs, as well as the heterogeneity of the IoT environment, make IoT devices more vulnerable than computers and servers on conventional networks. Vulnerable components of IoT can be IoT devices, device software, and communication channels of the IoT infrastructure. The main threats in IoT infrastructure are distributed denial of service (DDoS), disclosure of confidential information, falsification, spoofing, and elevation of privilege. These threats are commonly used by cybercriminals as entry points, followed by other criminal activities: infecting devices with malicious software, stealing sensitive data, or blocking network connections.

Mentioned factors contribute to the high probability of compromising IoT devices, the spread of malicious software, and various multi-vector cyberattacks on IoT infrastructure (MVIA). At the same time, compromised IoT devices can be used as sources of attacks both inside and outside the IoT infrastructure.

The next subsection presents a brief analysis of the modern ideas and methods addressed to solve the problem of IoT malware detection by analyzing the advantages and disadvantages.

1.2. Objectives and Contribution

The main objectives of the work were to study the possibility of a multi-vector cyberattack detection in the IoT infrastructure based on a flow analysis and a deeper traffic analysis that takes into account IoT protocol features. This research aims to improve detection efficiency via various machine learning algorithm usages. The proposed approach deals with the set of network traffic features that may indicate the presence of cyberattacks in the IoT infrastructure and compromised IoT devices.

Thus, the novelty of this work involves the approach used for IoT multi-vector cyberattack detection, which involves a flow-based features analysis. It enables decreased detection time and is scalable. On the other hand, if the flow-based feature analysis was unable to conclude the attack presence, a deep analysis of network traffic with the use of MQTT-based, DNS-based, and HTTP-based features analysis was employed.

This paper is organized as follows. Section 2 presents the state-of-the-art. Section 3 describes the machine learning algorithms for cyberattack detection. Section 4 discusses the stages of the proposed IoT multi-vector cyberattack detection technique based on machine learning algorithms with the traffic features analysis. Section 5 proposes the experiments and the efficiency of the proposed approach. Finally, we present our conclusions and future research.

2. The State-of-the-Art

The scientific community is focusing on the increasing problems concerning cybersecurity today. Solutions devoted to cyberattack detection against Internet of Things infrastructure are widely presented [7,8]. Quite possibly, the most encouraging approaches for IoT cyberattack detection are based on machine learning algorithms (MLA) [9,10,11,12,13].

To solve the cyberattack detection problem, the authors of [14] proposed an approach that executes the IoT malware traffic analysis. It is based on the usage of multilevel artificial intelligence and involves neural networks and binary visualization. In addition, the approach proposes efficiency improvement via learning from the misclassification approach, which includes three main stages, is designed to collect the network traffic, perform the binary visualization to store the collected network traffic in ASCII, convert it to 2D images, and process/analyze the obtained binary image. An analysis of the binary images is executed using the TensorFlow tool, an end-to-end open-source platform designed to use machine learning for different problem solutions. It can find and classify patterns automatically. The main advantage of the tool is the ability to organize the system retraining as well as the possibility to make the image recognition. The approach proposes the use of the algorithm to perform the visualization of the collected traffic characteristics as an image (in the form of tiles using the Binvis tool). The TensorFlow machine tool can make predictions. The use of graphic tiles allows the determination of the tile combination on which the image is based. It is able to detect needed objects regardless of the location within the obtained image. The provided method can perform the IoT device protection on the gateway level, bypassing the IoT environment constraints.

The authors of [15] presented a survey on the experimental studies with a detailed analysis of a set of machine learning algorithms. The article included comparative data concerning the algorithm detection efficiency of anomalous behavior in IoT networks. Experimental results have shown that the best efficiency concerning used datasets is produced by the random forest algorithm. Nevertheless, all investigated machine learning algorithms demonstrated to be very close to random forest algorithm and detection efficiency results; sometimes the choice of an appropriate algorithm depends on the nature of the analyzed data.

Article [16] is devoted to machine learning classifiers involved in the botnet traffic analysis in the IoT environment. Nine IoT devices were employed for dataset construction, consisting of several botnet attack types. To evaluate the efficiency of the proposed approach, true positive, true negative, false positive, false negative, F1-score accuracy, precision, and recall were used. The experimental results of the research demonstrated that the random forest algorithm produced the best results while the support vector machine produced the lowest results. The main disadvantage of the approach is the strong need for data analysis of all features in processed datasets.

The IoT cyberattack detection approach for the IoT network is presented in [17]. It is based on the use of intelligent technologies. The produced intelligent system operates with a set of network features. The approach aims to reduce the feature number via its ranking with the usage of the correlation coefficient, random forest algorithm, and the gain ratio. The base for the experimental research involves three feature sets, where using the proposed algorithm is to be combined to obtain an optimized feature set. The means of data processing the authors used were K-nearest neighbor, random forest, and XGBoost machine learning algorithms. All experiments were based on the usage of NSL-KDD, BoT-IoT, and DS2OS datasets. The investigation of the detection efficiency of the proposed system was executed. For this purpose, the metrics of accuracy, detection rate, F1-score, and precision were evaluated.

An approach for IoT attack detection based on the usage of cloud technologies and software-defined networks (SDNs) is presented in [18]. It employs a decentralized two-layer SDN and is able to perform attack mitigation in the wireless IoT infrastructure. To execute the network traffic control for each subnet domain, the predefined local domain controller of the specified domain was employed. The core of the approach is a special controller connected to a local controller and it is placed in the cloud environment. The approach also involves some special local controllers to perform the traffic collection from the investigated domains to perform the feature extraction, and, as a result, to find out the facts of the DDoS attack presence in the domain. The attack detection process is based on the analysis of 155 features, collected via the SPAN function of the Cisco switch. The obtained feature values were evaluated by detection modules placed within all defined local controllers to detect DDoS attacks. The approach used an extreme learning machine (ELM) as a decision-maker for attack detection. The feed-forward neural network with semi-supervised learning was used. The main advantage of ELM implementation is the training time reduction as it performs the random selection of the initial parameters. As a result, usage of ELM decreases the detection time. An attack mitigation module is also presented on each local controller. There is the possibility to organize the data exchange between each local controller, as well as with the universal controller. The proposed attack mitigation technique involves a set of attack mitigation scenarios able to perform in the wireless internet environment for different fixed devices.

The authors of [19] propose an intrusion detection system for IoT infrastructures. It is based on deep learning (DL-IDS). The approach for the IoT infrastructure intrusion detection involves the network traffic analysis; the data normalization procedure (to avoid the uncertainties in the obtained dataset); the data similarity evaluation on the usage of the Minkowski distance (to take into account the missing values, to eliminate possible redundancy, and to remove from the dataset the redundant and duplicate data); the replacement of the missing feature values in the obtained dataset (taking into account the evaluated values of the nearest neighbor on the basis of the K-nearest neighbor in the Euclidean distance to produce the average values for proceed data (to not take into account the classification results based on the data obtained from the more frequent entries); the traffic feature selection procedure on the basis of the spider monkey optimization algorithm usage (the set of features that are able to indicate the intrusion into the IoT infrastructure); and the exact intrusion detection procedure based on the stacked-deep polynomial network for the incoming data classification to mark it as normal or abnormal. The proposed approach is able to detect intrusions concerning the IoT environment (a remote-to-local attack, a DDoS attack, a probing attack, a user-to-root attack, etc.).

The study [20] provides research devoted to the usage of machine learning algorithms for anomaly detection in the Internet of Things infrastructures. To do this, the authors investigated the effectiveness and the main aspects of the usage of several single algorithms or their combinations for detection. The efficiency of the anomaly detection involved performance metrics, such as false positives, false negatives, specificity, sensitivity, and overall accuracy. The experimental part of the study is based on the Nemenya and Friedman tests that made it possible to perform a statistical analysis of the classifiers’ differences. Another aspect of the research was the evaluation of the classifiers’ response time. For this purpose, specific IoT infrastructure (as part of the implemented IDS) was employed. As a result of the conducted experiments, the authors of the study concluded that the most acceptable classification accuracy and the time of response were provided by the classification trees, regression trees, and extreme gradient boosting.

An approach for cyberattack detection as an AD-IoT system is presented in [21]. The proposed system is designed for the smart city infrastructure and is based on the random forest machine learning algorithm. The system aims to detect the compromised IoT devices that are placed in the distributed fog nodes. The division of normal and malicious behaviors of IoT devices is executed on the basis of monitoring and analyzing the fog nodes’ network traffic. Such analysis is performed to verify whether the fog level attacks are detected and to inform the cloud security services concerning the evaluated results. The presented approach demonstrates sufficient detection efficiency and applies to the smart city infrastructure.

An approach for DDoS attack detection is presented in [22]. It is based on the hybrid optimization algorithms of Metaheuristic lion and Firefly. It was designed to perform data collecting, data preprocessing for noise removing, and filling missing data. The feature extraction was performed by employing recursive feature elimination (RFE). An important item of the proposed technique is the possibility of detecting low-rate attacks using the hybrid ML-F optimization algorithm. For the attack classification, a random forest classifier was used.

The article [23] introduces an IDS, which is based on the technique that uses an ensemble-based voting classifier. This approach uses multiple classifiers as a base learner. The final prediction is formed via producing the classifier’s vote for the traditional classifier predictions. As the mean of the efficiency evaluation of the presented approach, a set of IoT devices with the usage of different sensors (garage door, light motion, GPS sensor, fridge sensor, thermostat, modbus, and weather) were employed. Multi-class attacks, such as XSS, Ransomeware, scanning injection, DDoS, and backdoor, were involved in the technique efficiency verification. The efficiency of the presented method was compared with the set of new intrusion detection approaches provided by scientists. The comparison was constructed on the basis of the accuracy, precision, recall, and F-score metrics. Furthermore, a set of machine learning algorithms, such as decision tree, naive Bayes, random forest, and K-nearest neighbors were involved in the comparison procedure. The experimental results demonstrated that the proposed approach has a high detection efficiency.

The authors of [24] propose a detection method for DoS/DDoS attacks against the IoT using machine learning. The approach aims to detect and apply the mitigation scenarios in the situation of DoS/DDoS attacks. To do this, the approach employs a multiclass classifier (“Looking back”). In addition, the ability of the technique to detect “malicious” packets makes it possible to apply mitigation measures against attacks that employ specific packet types.

The approach in [25] provides a botnet detection system for IoT devices. It is based on the algorithm named local–global best bat, which is used for neural networks and is able to process the botnet’s feature sets to distinguish malicious and benign network traffic. As an experimental part of the study, the botnets Mirai and Gafgyt were used to infect several commercial IoT devices. In addition, to classify 10 botnet classes, the proposed algorithm was used. It was designed to tune the neural network hyperparameters and optimize the weight. The authors made the efficiency comparison of the provided algorithm with other approaches. The experimental results demonstrated that the proposed botnet detection approach accuracy was up to 90%, while BA-NN was 85.5%, and PSO-NN was 85.2%.

The authors of [26] proposed a taxonomy of intrusions detection systems that utilizes the data objects as the dimensions to summarize and classify machine learning- and deep learning-based IDS. The survey clarifies the concept of IDSs. Moreover, machine learning-based algorithms, metrics, and benchmark datasets frequently used in IDSs were introduced. IDSs applied to various data sources, i.e., logs, sessions, packets, and flow, were analyzed. The proposed taxonomic system was presented as a baseline and key IDS issues with using machine learning and deep learning algorithms. Moreover, future developments and challenges of IDS were discussed.

The authors of [27] introduced a probabilistic-driven ensemble (PDE)-based approach. This approach operates with several classification algorithms, wherein the effectiveness of these algorithms has been improved by applying a probabilistic criterion. Thus, the proposed approach allows maximizing the possibility of detecting intrusion events, regardless of the operational scenario, using several evaluation models. This makes it possible to distinguish ordinary events from related events to all classes of attacks. Experiments performed by using real-world data show that the proposed ensemble approach has better capability in detecting intrusion events (concerning known solutions).

The authors of [28] presented machine learning-based IDS. The feature reduction approach has two components: (1) Auto-encoder as a deep learning instance for dimensionality reduction; and (2) principal component analysis. The resulting set of low-dimensional features from both approaches was used to build different classifiers, i.e., Bayesian network, random forest, linear discriminant analysis, and quadratic discriminant analysis for designing IDS. The obtained experimental findings show better performance in terms of detection rate, false alarm rate, accuracy, and F-measure for binary and multi-class classification. This approach is able to reduce the feature dimensions of the CICIDS2017 dataset from 81 to 10, with high accuracy in both multi-class and binary classifications.

The objective of [29] was to apply various approaches for handling imbalanced datasets to design an effective IDS from the CIDDS-001 dataset. The effectiveness of sampling methods based on CIDDS-001 was studied and experimentally evaluated via random forest, deep neural networks, variational autoencoder, voting, and stacking machine learning classifiers. The developed system makes it possible to detect attacks with high accuracy when processing an unbalanced distribution of classes using a smaller number of samples. It makes it possible to apply the proposed system to data classification problems if it is necessary to merge data in real-time.

In [30], the authors were devoted to solving cybersecurity problems, such as the difficulty in distinguishing illegitimate activities from legitimate ones due to their high degrees of heterogeneity and similar characteristics. To solve this problem, a local feature engineering approach was proposed. This approach is based on the adoption of a data preprocessing strategy that allows reducing the number of network event patterns, increasing their characterization. The main distinguishing feature of the approach is that it operates locally in the feature space of each single network event, allowing to introduce new features and discretizing their values. The experimental results showed that the proposed approach improves the performance of known solutions.

The results of the machine learning algorithm efficiency analysis for detecting cyberattacks in the Internet of Things infrastructure are presented in Table 1.

The analysis of related works allows concluding that most studies had good detection accuracy; nevertheless, the main disadvantage of the investigated works is that they do not cover most features that may indicate the attack presence.

The analysis shows that the known approaches for detecting IoT cyberattacks demonstrate high-efficiency levels. Nevertheless, there are limitations—the inability to detect and respond to unknown attacks (zero-day attacks), the low efficiency of detection of multi-vector attacks; a high level of false positives, a significant response time that is unacceptable for real-time systems, and the need for significant amounts of computing resources. Another important aspect is the need to select a minimum and sufficient set of informative network traffic features that are able to indicate the presence of cyberattacks in the IoT infrastructure.

To summarize, there is a strong need to evolve new methods for cyberattack detection in the IoT infrastructure. To do this, we are to eliminate technique drawbacks and increase the detection efficiency of detecting known and unknown cyberattacks in the IoT infrastructure.

3. Machine Learning Algorithms for Cyberattack Detection

The current study has involved five MLAs for IoT multi-vector cyberattack detections, as they were mostly used in (recent) research for efficient object classification [15,16,17,20,22,30]; we relied on our own experience in MLA use for cyberattack detection [11]:

	
Decision tree (DT) [31,32];

	
Random forest (RF) [33,34,35,36,37,38];

	
K-Nearest Neighbor (KNN) [39];

	
Extreme Gradient Boosting (XGBoost) [40];

	
Support Vector Machine (SVM) [41,42,43].

4. IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms

4.1. Detection Steps

The approach for IoT cyberattack detection includes the following steps (Figure 1):

	
Traffic obtaining;

	
Grouping packets by type, source device, and time. Packets from each device are grouped by type and by N records, according to the last connection time;

	
Feature extraction;

	
Feature classification based on the machine learning algorithm;

	
Result producing.

4.2. Features Description

An important task is to speed up the detection of attack traffic. Early detection of attack traffic provides an opportunity to increase the security of the Internet of Things infrastructure, as it prevents the further spread of malicious software compromising not yet infected devices in the IoT infrastructure. Therefore, to speed up the detection of cyberattacks in the infrastructure, four types of features are involved:

	
Flow-based features;

	
MQTT-based features;

	
DNS-based features;

	
HTTP-based features.

Using only flow-based features (Table 2) makes it possible to speed up the detection of attacks on the network by faster extraction of features from streams and their analyses. In the case of suspicious traffic behavior that cannot be unambiguously classified as an attack, an in-depth traffic analysis is applied with the MQTT-based (Table 3), DNS-based (Table 4), and HTTP-based (Table 5) feature extractions.

This section presents the involvement of four feature types for multi-vector cyberattack detection in the IoT infrastructure. The features based on flow analysis enable the possibility of speeding up attack detections through faster analyses and make the detection algorithm scalable, allowing us to analyze high-bandwidth IoT traffic. On the other hand, the features based on deep packet analyses enable us to improve the accuracy of detection in cases where the use of a sign based on flow analysis does not provide an unambiguous answer about the presence of a cyberattack (and also allows detecting the multi-vector attacks).

5. Experiments

5.1. Evaluation Setting

To conduct the experiments, a Wi-Fi network of IoT devices was created. A Raspberry Pi 3 was configured as a middlebox, which acted as a Wi-Fi access point. To simulate DoS attacks as a source of malicious traffic, a computer system with a virtual Kali Linux was used. As a victim of DoS attacks, Raspberry Pi 2 with an installed Apache web server was used. All devices were connected to create a Wi-Fi network access point.

Three IoT devices (router, thermostat, camcorder) were also connected to the Wi-Fi network. To obtain normal traffic, a simulation of user interactions with the devices of the created IoT network was performed. To do this, actions such as transmitting video from the camera and installing software updates on connected IoT devices were performed. To obtain malicious traffic, a simulation of performing the most common classes of DoS attacks was executed.

An HTTP GET flood attack was simulated with the Goldeneye tool [44]; TCP SYN and UDP flood were simulated with Kali Linux hping3 utility [45]. The iodine utility was used to perform DNS tunneling attacks [46].

Malicious/benign traffic was collected at the Wi-Fi access point. The IoT traffic collection was executed via the Zeek tool [47]. It gives capacities to the network intrusion detection systems (IDS) and empowers security operation centers (SOC). The Zeek tool was used as a network traffic analyzer with an in-built classification engine.

In the collected DoS traffic samples, the source IP addresses and MAC addresses were substituted for the IP addresses and MAC addresses of the devices of the created IoT network. The time of sending malicious packets was modified so that the total collected IoT traffic replicated the activity of the attacking and normal activity devices.

Thus, the execution of DoS attacks of different types by each IoT device was simulated.

5.2. Dataset Description

To hold the experiments, the traffic generated by Mirai, Gafgyt, Dark Nexus botnets, UCI Machine Learning Repository, DS2OS, Bot-IoT, N-BaIoT, CIDDS, UNSW-NB15, and NSL-KDD traffic datasets [48,49,50,51,52,53,54] were used.

The DS2OS dataset contains traces gathered from the application layer of the IoT environment from devices such as movement sensors, light controllers, thermometers, batteries, thermostats, smart doors, etc. This dataset can be used to assess anomaly-based attack detection algorithms.

The UNSW-NB15 dataset contains data on nine types of attacks, such as Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. A total of 49 features were extracted to describe these types of attacks.

The N_BaIoT dataset offers real-world IoT traffic data collected from nine IoT devices infected by Mirai and BASHLITE. Malicious data are divided into 10 attacks as well as harmless data (with 115 different features).

The Kitsune Network Attack Dataset contains nine network capture datasets in total that relate to different types of attack traffic against the IoT Infrastructure.

The BoT-IoT dataset was created by deploying a realistic IoT infrastructure network environment and it includes legitimate IoT network traffic as well as various types of attacks. The BoT-IoT includes DDoS and DoS for different protocols, OS scan, service scan, data exfiltration, and keylogging attacks.

The CIDDS and NSL-KDD datasets are built on network intrusion data describing “bad” connections, which are called intrusions (or attacks) and “good” connections (legitimate connections). These databases describe a wide range of intrusions and take into account user behavior scenarios.

Furthermore, experiments dealt with the set of traffic features presented in the above-mentioned datasets for three IoT devices: router, thermostat, and camcorder that were infected by Mirai, Gafgyt, and Dark Nexus botnets. The set of traffic features corresponds to four types of attacks (TCP, UDP, HTTP GET, and DNS tunneling).

As each dataset contains different samples and features, the preprocessing and feature selection processes were executed via each file type analysis and their parsing into the needed presentation for the next preprocessing. Such files as .csv, .pcap, Argus files, Zeek files, and .txt were processed.

Mirai is well-known malware that is able to infect an IoT device and turn such a smart device into a remotely-controlled network of bots—a botnet. The main negative impact of Mirai is the ability to launch massive DDoS attacks, as well as the ability to scan the internet for IoT smart devices based on the ARC processor. Such vulnerability as the usage of a stripped-down Linux version makes it possible to perform the logging into the device and execute malicious actions. In addition, the Mirai botnet uses a great amount of hijacked IoT devices to increase its spread and it is very dangerous for its mutating [55].

Gafgyt is a botnet that uses the vulnerabilities of IoT devices. It employs infected devices for large-scale (DDoS) attack execution. Moreover, Gafgyt uses known vulnerabilities (e.g., CVE-2017-17215, CVE-2018-10561) to implement the downloading of the next-stage payloads to compromised devices. New versions of the Gafgyt botnet include Mirai-based components to perform DDoS attacks; HTTP flooding to send a great number of HTTP requests to server targets to overwhelm them; UDP flooding to send special UDP packets to server victims to exhaust them; TCP flood attacks; STD attacks to send a random string to a specified IP address [56].

Dark Nexus is an IoT botnet that launches DDoS attacks. It was designed to launch credential stuffing attacks against different kinds of IoT devices (video recorders; DLink, Dasan Zhone, ASUS routers, thermal cameras, etc.) [57].

5.3. Training and Testing

The proposed approach involves five ML algorithms (decision tree, random forest, K-nearest neighbor, extreme gradient boosting, and support vector machine) to compare their detection possibilities. All algorithms were trained and tested using the dataset with training and testing percentages of 75% and 25%.

The BotGRABBER framework uses the scikit-learn library–an open-source platform for MLA in Python [58]. The configuration of each used MLA relies on the appropriate set of algorithm parameters. The optimal used values of algorithm parameters are presented in Table 6, Table 7, Table 8, Table 9 and Table 10 [59,60,61,62,63].

5.4. Implementation Platform

To perform the feature extraction, the feature classification based on the machine learning algorithm, as well as the result of production, the BotGRABBER framework was employed. It is a multi-vector protection system that can perform network and host activity analyses. The BotGRABBER framework presents the tool, not only for botnet detection but also to produce the needed security scenario of the network reconfiguration according to the type of cyberattack performed by the detected botnet [11,13,43]. The mentioned tool includes several units aimed at traffic collection, packet processing, feature extraction, feature classification based on machine learning algorithms, and producing results. The feature classification unit of the framework is based on the scikit-learn library usage. It is a free software ML library for the Python programming language [58].

5.5. Results

Experimental results are presented in Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18 and Table 19.

As examples, comparisons of the different MLA efficiencies for Router/Mirai botnet detection (TCP attack, UDP attack, HTTP GET attack, and DNS tunneling) are presented in Figure 2, Figure 3 and Figure 4.

In this study, the highest level of detection was shown by the random forest algorithm. However, the type of IoT device that was the source of the attack traffic did not affect the level of attack detection in any way.

The combination of proposed features based on flow analysis and a deeper traffic analysis that took into account the IoT protocol features provided good detection levels of the multi-vector attacks on the IoT infrastructure performed by different types of botnets.

6. Conclusions and Future Work

A flow-based traffic analysis allows detecting malicious behavior without the need for an in-depth packet analysis. Meanwhile, a packet content analysis provides an opportunity to decide whether the intercepted traffic belongs to the attack traffic or normal traffic in cases where the flow-based analysis does not give an unambiguous result. Attempting to cover features (as many as possible) that indicate the presence of attacks in the Internet of Things infrastructure has its weaknesses. Such an approach requires some time to analyze in-depth, and it is poorly scalable.

The main experiment results concerning MLA involvement showed that SVM demonstrated the worst results, while the RF algorithm demonstrated the best results.

In addition, the involvement of different IoT multi-vector cyberattack features based on flow analysis and features based on the most commonly used IoT protocols caused the detection of TCP, UDP, HTTP GET, and DNS tunneling attacks approximately at the same level.

In this paper, we reviewed the known approaches to detect attacks on the Internet of Things infrastructure based on machine learning and investigated their effectiveness. We investigated the possibility of detecting traffic attacks on the Internet of Things infrastructure based on flow analysis and the most commonly used IoT protocols, such as HTTP, MQTT, and DNS.

Traffic from well-known botnets, such as Mirai, Dark Nexus, and Gafgyt was taken from well-known databases that represent common attacks on the Internet of Things infrastructures, such as TCP, UDP, HTTP GET, and DNS tunneling, used as malicious traffic.

In addition, attack traffic was generated using known utilities, and benign IoT traffic was collected from devices such as a router, a thermostat, and a camcorder.

The features presented in the work were classified using various methods of machine learning and were removed from the received traffic.

The levels of detection of the multi-vector attacks on the Internet of Things infrastructure largely depend on the involved objects of training and test samplings/settings of machine learning algorithms. This important aspect is the subject of further research.

Therefore, future work will focus on the following issues:

	
Different Internet of Things protocols [64] to remove signs of traffic, which will improve the accuracy of attack detection in the lack of flow-based analysis cases;

	
Efficient ways to reduce the number of traffic features sufficient to detect attacks;

	
Development of ML-based methods for dependability assurance of IoT systems by combining attacks and intrusion detection, redundancy, and recovery procedures [65].

Author Contributions

Data curation K.B. and V.K.; formal analysis S.L.; investigation K.B. and O.S.; methodology K.B. and S.L.; project administration V.K.; Software K.B.; supervision V.K.; validation K.B. and O.S.; visualization K.B. and S.L.; writing—original draft K.B. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Informed consent was obtained from all subjects involved in the study.

Data Availability Statement

The dataset used for this study is publicly available at [43,44,45,46,47,48,49].

Acknowledgments

This work was supported by the ECHO project, which has received funding from the European Union’s Horizon 2020 research and innovation program under the grant agreement no 830943. The authors appreciate the scientific society of the consortium for creative analysis and discussion during the preparation of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Nozomi Networks Labs. New OT/IoT Security Report: Trends and Countermeasures for Critical Infrastructure Attacks. Available online: https://www.nozominetworks.com/blog/new-ot-iot-security-report-trends-and-countermeasures-for-critical-infrastructure-attacks/ (accessed on 3 February 2022).

	

Global Cyber Alliance. GCA Internet Integrity Papers: IoT Policy and Attack Report. Available online: https://www.globalcyberalliance.org/wp-content/uploads/IoT-Policy-and-Attack-Report_FINAL.pdf (accessed on 5 December 2021).

	

Shaaban, A.M.; Chlup, S.; El-Araby, N.; Schmittner, C. Towards Optimized Security Attributes for IoT Devices in Smart Agriculture Based on the IEC 62443 Security Standard. Appl. Sci. 2022, 12, 5653. [Google Scholar] [CrossRef]

	

Seo, S.; Kim, D. IoDM: A Study on a IoT-Based Organizational Deception Modeling with Adaptive General-Sum Game Competition. Electronics 2022, 11, 1623. [Google Scholar] [CrossRef]

	

Makarichev, V.; Lukin, V.; Illiashenko, O.; Kharchenko, V. Digital Image Representation by Atomic Functions: The Compression and Protection of Data for Edge Computing in IoT Systems. Sensors 2022, 22, 3751. [Google Scholar] [CrossRef]

	

Bliss, D.; Garbos, R.; Kane, P.; Kharchenko, V.; Kochanski, T.; Rucinski, A. Homo Digitus: Its Dependable and Resilient Smart Ecosystem. Smart Cities 2021, 4, 514–531. [Google Scholar] [CrossRef]

	

Deorankar, A.V.; Thakare, S.S. Survey on Anomaly Detection of (IoT)- Internet of Things Cyberattacks Using Machine Learning. In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March 2020; pp. 115–117. [Google Scholar] [CrossRef]

	

Hristov, A.; Trifonov, R.A. Model for Identification of Compromised Devices as a Result of Cyberattack on IoT Devices. In Proceedings of the 2021 International Conference on Information Technologies (InfoTech), Varna, Bulgaria, 16–17 September 2021; pp. 1–4. [Google Scholar] [CrossRef]

	

Lysenko, S.; Bobrovnikova, K.; Shchuka, R.; Savenko, O. A Cyberattacks Detection Technique Based on Evolutionary Algorithms. In Proceedings of the 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 14–18 May 2020; pp. 127–132. [Google Scholar]

	

Lysenko, S.; Pomorova, O.; Savenko, O.; Kryshchuk, A.; Bobrovnikova, K. DNS-based Anti-evasion Technique for Botnets Detection. In Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Warsaw, Poland, 24–26 September 2015; pp. 453–458. [Google Scholar]

	

Savenko, B.; Lysenko, S.; Bobrovnikova, K.; Savenko, O.; Markowsky, G. Detection DNS Tunneling Botnets. In Proceedings of the 2021 IEEE 11th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, Cracow, Poland, 22–25 September 2021; Volume 1, pp. 64–69. [Google Scholar]

	

Lysenko, S.; Savenko, O.; Bobrovnikova, K. DDoS Botnet Detection Technique Based on the Use of the Semi-Supervised Fuzzy c-Means Clustering. CEUR-WS 2018, 2104, 688–695. [Google Scholar]

	

Lysenko, S.; Bobrovnikova, K.; Matiukh, S.; Hurman, I.; Savenko, O. Detection of the botnets’ low-rate DDoS attacks based on self-similarity. Int. J. Electr. Comput. Eng. 2020, 10, 3651–3659. [Google Scholar] [CrossRef]

	

Shire, R.; Shiaeles, S.; Bendiab, K.; Ghita, B.; Kolokotronis, N. Malware Squid: A Novel IoT Malware Traffic Analysis Framework Using Convolutional Neural Network and Binary Visualisation. In Ininternet of Things, Smart Spaces, and Next Generation Networks and Systems; Springer: Cham, Switzerland, 2019; pp. 65–76. [Google Scholar]

	

Elmrabit, N.; Zhou, F.; Li, F.; Zhou, H. Evaluation of machine learning algorithms for anomaly detection. In Proceedings of the 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June 2020; pp. 1–8. [Google Scholar]

	

Bagui, S.; Wang, X.; Bagui, S. Machine Learning Based Intrusion Detection for IoT Botnet. Int. J. Mach. Learn. Comput. 2021, 11, 399–406. [Google Scholar] [CrossRef]

	

Kumar, P.; Gupta, G.P.; Tripathi, R. Toward design of an intelligent cyberattack detection system using hybrid feature reduced approach for IoT networks. Arab. J. Sci. Eng. 2021, 46, 3749–3778. [Google Scholar] [CrossRef]

	

Ravi, N.; Shalinie, S.M. Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture. IEEE Internet Things J. 2020, 7, 3559–3570. [Google Scholar] [CrossRef]

	

Otoum, Y.; Liu, D.; Nayak, A. DL-IDS: A deep learning-based intrusion detection framework for securing IoT. Trans. Emerg. Telecommun. Technol. 2019, 33, e3803. [Google Scholar] [CrossRef]

	

Verma, A.; Ranga, V. Machine learning based intrusion detection systems for IoT applications. Wirel. Pers. Commun. 2020, 111, 2287–2310. [Google Scholar] [CrossRef]

	

Alrashdi, I.; Alqazzaz, A.; Aloufi, E.; Alharthi, R.; Zohdy, M.; Ming, H. Ad-IoT: Anomaly Detection of IoT Cyberattacks in smart City Using Machine Learning. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 305–310. [Google Scholar]

	

Krishna, E.S.; Thangavelu, A. Attack detection in IoT devices using hybrid metaheuristic lion optimization algorithm and firefly optimization algorithm. Int. J. Syst. Assur. Eng. Manag. 2021, 1–14. [Google Scholar] [CrossRef]

	

Mihoub, A.; Fredj, O.B.; Cheikhrouhou, O.; Derhab, A.; Krichen, M. Denial of service attack detection and mitigation for internet of things using looking-back-enabled machine learning techniques. Comput. Electr. Eng. 2022, 98, 107716. [Google Scholar] [CrossRef]

	

Khan, M.A.; Khan Khattk, M.A.; Latif, S.; Shah, A.A.; Ur Rehman, M.; Boulila, W.; Ahmad, J. Voting classifier-based intrusion detection for IoT networks. In Advances on Smart and Soft Computing; Springer: Singapore, 2022; pp. 313–328. [Google Scholar]

	

Alharbi, A.; Alosaimi, W.; Alyami, H.; Rauf, H.T.; Damaševičius, R. Botnet attack detection using local global best bat algorithm for industrial internet of things. Electronics 2021, 10, 1341. [Google Scholar] [CrossRef]

	

Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396. [Google Scholar] [CrossRef]

	

Saia, R.; Carta, S.; Recupero, D.R. A Probabilistic-driven Ensemble Approach to Perform Event Classification in Intrusion Detection System. In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Seville, Spain, 18–20 September 2018; pp. 141–148. [Google Scholar]

	

Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features dimensionality reduction approaches for machine learning based network intrusion detection. Electronics 2019, 8, 322. [Google Scholar] [CrossRef]

	

Abdulhammed, R.; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. Deep and machine learning approaches for anomaly-based intrusion detection of imbalanced network traffic. IEEE Sens. Lett. 2018, 3, 1–4. [Google Scholar] [CrossRef]

	

Carta, S.; Podda, A.S.; Recupero, D.R.; Saia, R. A local feature engineering strategy to improve network anomaly detection. Future Internet 2020, 12, 177. [Google Scholar] [CrossRef]

	

Rokach, L.; Maimon, O. Data Mining with Decision Trees: Theory and Applications; World Scientific: Singapore, 2014; p. 81. [Google Scholar]

	

Flow of Decision Tree Algorithm. Available online: https://www.analyticsvidhya.com/blog/2022/04/complete-flow-of-decision-tree-algorithm/ (accessed on 10 December 2021).

	

Kotu, V.; Deshpande, B. Data Science: Concepts and Practice; Morgan Kaufmann: San Francisco, CA, USA, 2019; pp. 65–163. [Google Scholar]

	

Polamuri, S. How the Random Forest Algorithm Works in Machine Learning. Available online: https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing (accessed on 10 December 2021).

	

Biau, G.; Scornet, E.A. Random Forest Guided Tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]

	

Scornet, E.; Biau, G.; Vert, J.-P. Consistency of random forests. Ann. Statist. 2015, 43, 1716–1741. [Google Scholar] [CrossRef]

	

Athey, S.; Tibshirani, J.; Wager, S. Generalized random forests. Ann. Statist. 2019, 47, 1148–1178. [Google Scholar] [CrossRef]

	

Ronaghan, S. The Mathematics of Decision Trees, Random Forest and Feature Importance in Scikit-Learn and Spark. Available online: https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3 (accessed on 10 December 2021).

	

Campos, G.O.; Zimek, A.; Sander, J.; Campello, R.J.; Micenková, B.; Schubert, E.; Assent, I.; Houle, M.E. On the evaluation of unsupervised outlier detection: Measures, datasets, and an empirical study. Data Min. Knowl. Discov. 2016, 30, 891–927. [Google Scholar] [CrossRef]

	

Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme gradient boosting. R Package Version 0.4-2 2015, 1, 1–4. [Google Scholar]

	

Weston, J.; Mukherjee, S.; Chapelle, O.; Pontil, M.; Poggio, T.; Vapnik, V. Feature selection for SVMs. Advances in neural information processing systems 2001, 13, 668–674. [Google Scholar]

	

Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46, 131–159. [Google Scholar] [CrossRef]

	

Lysenko, S.; Bobrovnikova, K.; Savenko, O.; Kryshchuk, A. BotGRABBER: SVM-Based Self-Adaptive System for the Network Resilience Against the Botnets’ Cyberattacks. In International Conference on Computer Networks; Springer: Cham, Switzerland, 2019; pp. 127–143. [Google Scholar]

	

GoldenEye Is a HTTP DoS Test Tool. Available online: https://www.kali.org/tools/goldeneye/ (accessed on 11 December 2021).

	

hping3 Network Tool. Available online: https://github.com/antirez/hping (accessed on 11 December 2021).

	

DNS Tunneling Tool. Available online: https://github.com/yarrick/iodine (accessed on 11 December 2021).

	

Zeek. An Open Source Network Security Monitoring Tool. Available online: https://zeek.org/ (accessed on 11 May 2022).

	

UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on 11 December 2021).

	

Kaggle. DS2OS Traffic Traces. Available online: https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces (accessed on 11 December 2021).

	

IEEEDataPort. The Bot-IoT Dataset. Available online: https://ieee-dataport.org/documents/bot-iot-dataset (accessed on 11 December 2021).

	

Kaggle. N-BaIoT Dataset to Detect IoT Botnet Attacks. Available online: https://www.kaggle.com/datasets/mkashifn/nbaiot-datasetURL (accessed on 11 December 2021).

	

Hochschule Coburg. CIDDS-Coburg Intrusion Detection Data Sets. Available online: https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html (accessed on 11 December 2021).

	

UNSW Sydney. The UNSW-NB15 Dataset. Available online: https://research.unsw.edu.au/projects/unsw-nb15-dataset (accessed on 11 December 2021).

	

UNB. University of New Brunswick. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 11 December 2021).

	

What Is the Mirai Botnet? Available online: https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/ (accessed on 11 May 2022).

	

Gafgyt Botnet Lifts DDoS Tricks from Mirai. Available online: https://threatpost.com/gafgyt-botnet-ddos-mirai/165424/ (accessed on 11 May 2022).

	

Dark Nexus, the Latest IoT Botnet Targets a Wide Range of Devices. Available online: https://crazygreek.co.uk/dark-nexus-iot-botnet-targets-devices/ (accessed on 11 May 2022).

	

Scikit-Learn. Machine Learning in Python. Available online: https://scikit-learn.org/stable/index.html (accessed on 11 May 2022).

	

Sklearn.Tree.DecisionTreeClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html (accessed on 11 May 2022).

	

Sklearn.Ensemble.RandomForestClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 15 May 2022).

	

Sklearn.Neighbors.KNeighborsClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html (accessed on 15 May 2022).

	

Sklearn.Neighbors.GradientBoostingClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html (accessed on 11 May 2022).

	

Sklearn.Svm.SVC—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed on 15 May 2022).

	

Kolisnyk, M. Vulnerability analysis and method of selection of communication protocols for information transfer in Internet of Things systems. Radioelectron. Comput. Syst. 2021, 1, 133–149. [Google Scholar] [CrossRef]

	

Illiashenko, O.; Kolisnyk, M.; Strielkina, A.; Kotsiuba, I.; Kharchenko, V. Conception and application of dependable Internet of Things based systems. Radio Electron. Comput. Sci. Control 2020, 4, 139–150. [Google Scholar] [CrossRef]

[image: Algorithms 15 00239 g001 550]

Figure 1. IoT cyberattack detection scheme.

Figure 1. IoT cyberattack detection scheme.

[image: Algorithms 15 00239 g001]

[image: Algorithms 15 00239 g002 550]

Figure 2. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for Router/Mirai botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

Figure 2. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for Router/Mirai botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

[image: Algorithms 15 00239 g002]

[image: Algorithms 15 00239 g003 550]

Figure 3. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for Router/Gafgyt botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

Figure 3. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for Router/Gafgyt botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

[image: Algorithms 15 00239 g003]

[image: Algorithms 15 00239 g004 550]

Figure 4. Comparison for different MLA efficiencies (decision tree—DT, random forest—RF, K-nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for Router/Dark Nexus botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

Figure 4. Comparison for different MLA efficiencies (decision tree—DT, random forest—RF, K-nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for Router/Dark Nexus botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

[image: Algorithms 15 00239 g004]

[image: Table]

Table 1. Machine learning algorithm (MLA) efficiency for cyberattack detection in the Internet of Things infrastructure.

Table 1. Machine learning algorithm (MLA) efficiency for cyberattack detection in the Internet of Things infrastructure.

	Authors
	Goal
	MLA
	Data Set
	Result

	Shire, R.; Shiaeles, S.; Bendiab, K.; Ghita B.;

Kolokotronis, N. [14]
	malware detection, zero-day malware classification
	Convolutional Neural Network and binary visualization
	Real network environments
	Accuracy of 91.32%,

Precision of 91.67%,

Recall of 91.03%

	Elmrabit, N.;

Zhou, F.; Li, F.;

Zhou H. [15]
	anomaly detection, attack detection
	Logistic Regression, Decision Tree, Adaptive boosting, KNN, Random Forest, Naive Bayes, Gated Recurrent Units, Simple Recurrent Neural Network, Convolutional Neural Network and Long short-Term Memory, Convolutional Neural Network, Long short-Term Memory, Deep Neural Network
	UNSW-NB15, CICIDS-2017, ICS Cyberattack
	Performance about 99.9% using Random Forest (CICIDS-2017)

	Bagui, X. Wang;

Bagui, S. [16]
	intrusion detection
	Logistic regression, SVM, random forest
	UCI Machine Learning Repository
	Accuracy of about 99%

	Kumar, P.;

Gupta, G.P.;

Tripathi, R. [17]
	cyber-attack detection against IoT networks
	K-nearest neighbor, random forest, XGBoost
	DS2OS, NSL-KDD, BoT-IoT
	Accuracy up to 99%,

detection 90–100%

	Ravi N.;

Shalinie S.M. [18]
	DDoS attacks detection and attacks mitigation
	ELM, semi-supervised extreme learning machines
	UNB-ISCX
	Accuracy of about 96.28%

	Otoum, Y.; Liu, D.; Nayak A. [19]
	DoS, user-to-root (U2R), remote-to-local (R2L) detection, probe, intrusions
	Stacked-deep polynomial network
	NSL-KDD
	Accuracy up to 99.02%, Precision up to 99.4%,

recall up to 98.3%,

F1-score up to 98.8%

	Verma, A.;

Ranga, V. [20]
	Survey on machine learning algorithms for DoS attacks detection
	AdaBoost, extremely randomized trees, multilayer perceptron, classification and regression trees, random forest, gradient boosted machine, extreme gradient boosting
	UNSW-NB15, NSL-KDD, CIDDS-001
	Regression trees, classification trees, and EG boosting show the best results—accuracy up to 96.7%, specificity up to 96.2%, sensitivity up to 97.3%

	Alrashdi, I.;

Alqazzaz, A.;

Aloufi, E.;

Alharthi, R.;

Zohdy, M.;

Ming, H. [21]
	Detection of DDoS attacks
	Bat Algorithm
	N-BaIoT
	Accuracy up to 90%

	Krishna, E.S.; Thangavelu, A. [22]
	Detection of the DDoS attacks
	Random Forest
	NSL-KDD, NBaIoT
	Accuracy up to 99.98%, precision up to 99.87%, recall up to 100%,

and F-score up to 99.73%

	Mihoub, A.;

Fredj, O.B.; Cheikhrouhou, O.; Derhab, A.;

Krichen, M. [23]
	Investigation of DoS/DDoS attacks detection for IoT based on ML algorithms
	Looking-back-enabled random forest
	IoT-Bot
	Accuracy up to 99.81%

	Khan, M.A.;

Khan Khattk, M.A.; Latif, S.; Shah, A.A.; Ur Rehman, M.; Boulila, W.;

Ahmad, J. [24]
	intrusion detection
	Combined decision tree, naive Bayes, random forest, and K-Nearest Neighbors using a voting-based technique
	TON IoT
	Accuracy up to 88%,

Precision up to 90%,

Recall up to 88%,

F-score of 88% for DT-RF-NB based on binary classification with a combined IoT dataset

	Alharbi, A.;

Alosaimi, W.; Alyami, H.;

Rauf, H.T. [25]
	detection of DDoS attacks
	Bat algorithm
	N-BaIoT
	Accuracy up to 90%

	Saia, R.; Carta, S.; Recupero, D.R. [27]
	intrusion events detection
	Multilayer perceptron, decision tree, adaptive boosting, gradient boosting, random forests
	NSL-KDD
	Better performance compared to single classifiers in terms of specificity, without significant degradation in other aspects, since there is little degradation in terms of mean F-score, but a positive mean AUC (compared to competitor approaches), demonstrates the effectiveness of the approach

	Abdulhammed, R.; Musafer, H.;

Alessa, A.;

Faezipour, M.;

Abuzneid, A. [28]
	developing the features dimensionality reduction approaches for machine learning-based IDS
	Bayesian network, random forest, linear discriminant analysis, quadratic discriminant analysis
	CICIDS2017
	Reducing the feature dimensions of a dataset from 81 to 10, with high accuracy of 99.6% in both multi-class and binary classification

	Abdulhammed, R.; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. [29]
	applying various approaches for handling imbalanced datasets to design effective IDS
	Random forest, deep neural networks, variational autoencoder, voting, stacking
	CIDDS-001
	Attacks detection with up to 99.99% accuracy

	Carta, S.; Podda, A.S.; Recupero, D.R.;

Saia, R. [30]
	solving such cybersecurity problems, as the difficulty of distinguishing illegitimate activities from legitimate ones
	Random forests, decision tree, gradient boosting, adaptive boosting, multilayer perceptron
	NSL-KDD, CICIDS2017, UNSW-NB15
	Improving the performance of the state-of-the-art canonical solutions

[image: Table]

Table 2. Flow-based features.

Table 2. Flow-based features.

	#
	Features Designation
	Value Description

	1
	f1
	Protocol type

	2
	f2
	Source IP address

	3
	f3
	Destination IP address

	4
	f4
	Source port

	5
	f5
	Destination port

	6
	f6
	Last connection time

	7
	f7
	Transaction bytes from f2 to f3

	8
	f8
	Transaction bytes from f3 to f2

	9
	f9
	Mean packet size transmitted by f2

	10
	f10
	Mean packet size transmitted by f3

	11
	f11
	Source bits per second

	12
	f12
	TTL value, f2 to f3

	13
	f13
	TTL value, f3 to f2

	14
	f14
	Interpacket interval

	15
	f15
	Bandwidth

	16
	f16
	Packet jitter

[image: Table]

Table 3. MQTT-based features.

Table 3. MQTT-based features.

	#
	Features Designation
	Value Description

	1
	f18
	The amount of connections to f3 in N gathered records according to f6

	2
	f19
	The amount of connections of f2 in N gathered records according to f6

	3
	f20
	The amount of connections of f2 and f5 in N gathered records according to f6

	4
	f21
	The amount of connections to f3 and f4 in N gathered records according to f6

	5
	f22
	The amount of connections of f2 and f3 in N gathered records according to f6

[image: Table]

Table 4. HTTP-based features.

Table 4. HTTP-based features.

	#
	Features Designation
	Value Description

	1
	f48
	HTTP request method (GET, POST, HEAD)

	2
	f49
	HOST header value

	3
	f50
	Length of the HOST header value

	4
	f51
	URL in the request

	5
	f52
	Length of URL

	6
	f53
	HTTP pipelining depth

	7
	f54
	Uncompressed size of the transferred data from the client

	8
	f55
	Uncompressed size of the transferred data from the server

	9
	f56
	Percentage of f48 with the same f49 in N records according to f6

	10
	f57
	Percentage of the f49 the with same the f51 in N records according to f6

	11
	f58
	Percentage of f48 with the same f51 in N records according to f6

[image: Table]

Table 5. DNS-based features.

Table 5. DNS-based features.

	#
	Features Designation
	Value Description

	1
	f23
	Requested domain name

	2
	f24
	Value specifying the request type

	3
	f25
	Length of f23

	4
	f26
	Amount of unique characters in f23

	5
	f27
	Entropy of f23

	6
	f28
	TTL-period, mode (the value that appears most often in a set of data), in N records according to f6

	7
	f29
	TTL-period, median (the numerical value separating the higher half of a data sample from the lower half), in N records according to f6

	8
	f30
	TTL-period, average value, in N records according to f6

	9
	f31
	Amount of A-records corresponding to f23 in the incoming DNS messages (the feature is used if value f31 > 1), in N records according to f6

	10
	f32
	Amount of IP addresses concerned with f23 (feature is used if value f31 = 1), in N records according to f6

	11
	f33
	Average distance between the IP addresses concerned with f23 (feature is used if value f31 = 1), in N records according to f6

	12
	f34
	Average distance between the IP addresses in the set of A-records for f23 in the incoming DNS message (feature is used if value f31 > 1), in N records according to f6

	13
	f35
	Amount of unique IP addresses in sets of A-records corresponding to f23 in the DNS messages (feature is used if value f31 > 1), in N records according to f6

	14
	f36
	Average distance between unique IP addresses in sets of A-records corresponding to f23 in the DNS messages (feature is used if value f31 > 1), in N records according to f6

	15
	f37
	Domain name amounts that share IP addresses corresponding to f23, in N records according to f6

	16
	f38
	Sign of the usage of uncommon types of DNS records, or DNS records that are not commonly used by a typical client (e.g., TXT are most often used for tunneling (excluding mail servers), KEY, or NULL)

	17
	f39
	The entropy of the DNS records, which are contained in the DNS messages (CNAME, TXT, NS, MX, KEY, NULL, etc.)

	18
	f40
	Maximum size of the DNS messages about f23, in N records according to f6

	19
	f41
	Sign of success of DNS query (f41 = 0 if DNS query failed, and f41 = 1 if DNS query was successful)

	20
	f42
	Answer length

	21
	f43
	Mean class value in N records according to f6

	22
	f44
	Mean type value in N records according to f6

	23
	f45
	Amount of f2 and f23 in N records according to f6

	24
	f46
	Amount of f23 to the same f2 in N records according to f6

	25
	f47
	Percentage of the domain in N records according to f6

[image: Table]

Table 6. Decision tree algorithm parameters [59].

Table 6. Decision tree algorithm parameters [59].

	Parameter
	Value
	Description

	criterion
	gini
	The function to measure the quality of a split.

	splitter
	best
	The strategy used to choose the split at each node.

	max_depth
	None
	The maximum depth of the tree.

	min_samples_split
	3
	The minimum number of samples required to split an internal node.

	min_samples_leaf
	1
	The minimum number of samples required to be at a leaf node.

	min_weight_fraction_leaf
	0.0
	The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node.

	max_features
	auto
	The number of features to consider when looking for the best split.

	random_state
	RandomState instance
	Controls the randomness of the estimator.

	class_weight
	balanced
	Weights associated with classes.

	ccp_alpha
	0.0
	Complexity parameter used for minimal cost complexity pruning.

[image: Table]

Table 7. Random forest algorithm parameters [60].

Table 7. Random forest algorithm parameters [60].

	Parameter
	Value
	Description

	n_estimators
	100
	The number of trees in the forest.

	criterion
	gini
	The function to measure the quality of a split.

	max_depth
	None
	The maximum depth of the tree.

	min_samples_split
	2
	The minimum number of samples required to split an internal node.

	min_samples_lea
	1
	The minimum number of samples required to be at a leaf node.

	min_weight_fraction_leaf
	0.0
	The minimum weighted fraction of the sum total of weights.

	max_features
	log2
	The number of features to consider when looking for the best split.

	class_weight
	balanced
	Weights associated with classes.

	ccp_alpha
	0.0
	Complexity parameter used for minimal cost complexity pruning.

[image: Table]

Table 8. K-Nearest Neighbor algorithm parameters [61].

Table 8. K-Nearest Neighbor algorithm parameters [61].

	Parameter
	Value
	Description

	n_neighbors
	5
	Number of neighbors.

	weights
	distance
	Weight function used in prediction.

	algorithm
	kd_tree
	The algorithm used to compute the nearest neighbors.

	leaf_size
	30
	Leaf size passed to KDTree.

	p
	2
	Power parameter for the Minkowski metric.

	metric
	str
	The distance metric to use for the tree.

	metric_params
	dict
	The number of parallel jobs to run for the neighbors’ search.

[image: Table]

Table 9. Extreme gradient boosting algorithm parameters [62].

Table 9. Extreme gradient boosting algorithm parameters [62].

	Parameter
	Value
	Description

	loss
	exponential
	The loss function to be optimized.

	learning_rate
	0.1
	Learning rate shrinks the contribution of each tree.

	n_estimators
	100
	The number of boosting stages to perform.

	subsample
	1.0
	The fraction of samples to be used for fitting the individual base learners.

	criterion
	squared_error
	The function to measure the quality of a split.

	min_samples_split
	2
	The minimum number of samples required to split an internal node.

	min_weight_fraction_leaf
	0.0
	The minimum weighted fraction of the sum total of weights (of all the input samples) required to be at a leaf node.

	max_depth
	3
	The maximum depth of the individual regression estimator.

	random_state
	RandomState instance
	Controls the random seed given to each tree estimator at each boosting iteration.

	max_features
	None
	The number of features to consider when looking for the best split.

	max_leaf_nodes
	None
	Grow trees with max_leaf_nodes in the best-first fashion.

	validation_fraction
	0.1
	The proportion of training data to set aside as the validation set for early stopping.

	n_iter_no_change
	None
	The decision as to whether early stopping will be used to terminate training when the validation score does not improve.

	tol
	1 × 103
	Tolerance for the early stopping.

	ccp_alpha
	0.0
	Complexity parameter used for minimal cost complexity pruning.

[image: Table]

Table 10. Support vector machine parameters [63].

Table 10. Support vector machine parameters [63].

	Parameter
	Value
	Description

	C
	1.0
	Regularization parameter.

	kernel
	rbf
	Specifies the kernel type to be used in the algorithm.

	gamma
	auto
	Kernel coefficient.

	tol
	1 × 103
	Tolerance for stopping criterion.

	cache_size
	100
	Specify the size of the kernel cache (in MB).

	max_iter
	−1
	Hard limit on iterations (no limit).

	random_state
	RandomState instance
	Controls the pseudo-random number generation to shuffle the data for probability estimates.

[image: Table]

Table 11. Classification results (router—Mirai).

Table 11. Classification results (router—Mirai).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Router/

Mirai

	
TCP

	
RF

	
0.999479

	
3620

	
2

	
4

	
2024

	
0.9994748

	
0.999896

	
0.999572

	
0.999615

	
DT

	
0.998584

	
3612

	
3

	
5

	
2030

	
0.99917

	
0.998618

	
0.998894

	
0.998994

	
kNN

	
0.999469

	
3603

	
1

	
2

	
2044

	
0.999723

	
0.999445

	
0.999584

	
0.999692

	
XGBoost

	
0.998938

	
3562

	
5

	
1

	
2082

	
0.998598

	
0.999719

	
0.999158

	
0.999573

	
SVM

	
0.996991

	
3544

	
6

	
11

	
2089

	
0.99831

	
0.996906

	
0.997607

	
0.997881

	
UDP

	
RF

	
0.999767

	
7531

	
5

	
2

	
2012

	
0.999937

	
0.999835

	
0.999935

	
0.999841

	
DT

	
0.999267

	
7515

	
4

	
3

	
2028

	
0.999468

	
0.999601

	
0.999534

	
0.99975

	
kNN

	
0.999476

	
7470

	
2

	
3

	
2075

	
0.999732

	
0.999599

	
0.999665

	
0.999821

	
XGBoost

	
0.999686

	
7465

	
1

	
2

	
2082

	
0.999866

	
0.999732

	
0.999799

	
0.999827

	
SVM

	
0.998534

	
7455

	
10

	
17

	
2068

	
0.998678

	
0.998678

	
0.998678

	
0.999174

	
HTTP GET

	
RF

	
0.999694

	
6434

	
3

	
3

	
2060

	
0.999834

	
0.999734

	
0.999734

	
0.999839

	
DT

	
0.999412

	
6419

	
1

	
4

	
2076

	
0.999844

	
0.999377

	
0.999611

	
0.999793

	
kNN

	
0.999412

	
6387

	
1

	
4

	
2108

	
0.999843

	
0.999374

	
0.999609

	
0.999458

	
XGBoost

	
0.999529

	
6340

	
2

	
2

	
2156

	
0.999685

	
0.999685

	
0.999685

	
0.999671

	
SVM

	
0.997412

	
6381

	
5

	
14

	
2100

	
0.998636

	
0.99637

	
0.997502

	
0.999051

	
DNS tunneling

	
RF

	
0.999624

	
5978

	
3

	
4

	
2005

	
0.999798

	
0.999731

	
0.999615

	
0.999944

	
DT

	
0.999249

	
5935

	
2

	
4

	
2049

	
0.999663

	
0.999326

	
0.999495

	
0.999928

	
kNN

	
0.999374

	
5920

	
3

	
2

	
2065

	
0.999493

	
0.999662

	
0.999578

	
0.999632

	
XGBoost

	
0.998999

	
5903

	
5

	
3

	
2079

	
0.999154

	
0.999492

	
0.999323

	
0.999186

	
SVM

	
0.997247

	
5899

	
5

	
14

	
2072

	
0.998649

	
0.99542

	
0.997032

	
0.997547

[image: Table]

Table 12. Classification results (router—Gafgyt).

Table 12. Classification results (router—Gafgyt).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Router/

Gafgyt

	
TCP

	
RF

	
0.999714

	
11984

	
2

	
2

	
2002

	
0.999833

	
0.999833

	
0.999833

	
0.999835

	
DT

	
0.999571

	
11963

	
2

	
4

	
2021

	
0.999833

	
0.999666

	
0.999749

	
0.999757

	
kNN

	
0.999357

	
11917

	
4

	
5

	
2064

	
0.999664

	
0.999581

	
0.999623

	
0.999792

	
XGBoost

	
0.999643

	
11881

	
3

	
2

	
2104

	
0.999748

	
0.999832

	
0.99979

	
0.999734

	
SVM

	
0.998713

	
11888

	
7

	
11

	
2084

	
0.999412

	
0.999076

	
0.999244

	
0.999523

	
UDP

	
RF

	
0.999738

	
4498

	
2

	
1

	
1999

	
0.999656

	
0.999878

	
0.999667

	
0.999882

	
DT

	
0.999077

	
4453

	
4

	
2

	
2041

	
0.999103

	
0.999551

	
0.999327

	
0.99947

	
kNN

	
0.999385

	
4430

	
3

	
1

	
2066

	
0.999323

	
0.999774

	
0.999549

	
0.999648

	
XGBOOST

	
0.999077

	
4391

	
5

	
1

	
2103

	
0.998863

	
0.999772

	
0.999317

	
0.999712

	
SVM

	
0.998308

	
4433

	
6

	
9

	
4433

	
0.999056

	
0.998867

	
0.998961

	
0.998861

	
HTTP GET

	
RF

	
0.999784

	
21082

	
2

	
3

	
2013

	
0.999905

	
0.999858

	
0.999881

	
0.999913

	
DT

	
0.99987

	
21034

	
1

	
2

	
2063

	
0.999952

	
0.999905

	
0.999929

	
0.999912

	
kNN

	
0.999697

	
20997

	
2

	
5

	
2096

	
0.999905

	
0.999762

	
0.999833

	
0.999971

	
XGBoost

	
0.999827

	
20990

	
1

	
3

	
2106

	
0.999952

	
0.999857

	
0.999905

	
0.999845

	
SVM

	
0.998961

	
20986

	
6

	
17

	
18684

	
0.998409

	
0.996144

	
0.997275

	
0.999221

	
DNS tunneling

	
RF

	
0.999846

	
3191

	
2

	
4

	
2003

	
0.999674

	
0.999748

	
0.999561

	
0.999783

	
DT

	
0.998269

	
3153

	
5

	
4

	
2038

	
0.998417

	
0.998733

	
0.998575

	
0.999548

	
kNN

	
0.998654

	
3115

	
2

	
5

	
2078

	
0.999358

	
0.998397

	
0.998878

	
0.999539

	
XGBoost

	
0.999615

	
3074

	
1

	
1

	
2124

	
0.999675

	
0.999675

	
0.999675

	
0.999882

	
SVM

	
0.996154

	
3121

	
10

	
11

	
1485

	
0.998919

	
0.995688

	
0.997301

	
0.997861

[image: Table]

Table 13. Classification results (router—Dark Nexus).

Table 13. Classification results (router—Dark Nexus).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Router/

Dark

nexus

	
TCP

	
RF

	
0.999333

	
5490

	
4

	
1

	
2005

	
0.999272

	
0.999818

	
0.999545

	
0.999691

	
DT

	
0.9992

	
5472

	
5

	
1

	
2022

	
0.999087

	
0.999817

	
0.999452

	
0.999982

	
kNN

	
0.998933

	
5455

	
3

	
5

	
2037

	
0.99945

	
0.999084

	
0.999267

	
0.999836

	
XGBOOST

	
0.9992

	
5417

	
2

	
4

	
2077

	
0.999631

	
0.999262

	
0.999446

	
0.999285

	
SVM

	
0.9976

	
5394

	
9

	
9

	
2088

	
0.998334

	
0.998334

	
0.998334

	
0.999444

	
UDP

	
RF

	
0.999344

	
10196

	
5

	
3

	
1996

	
0.99951

	
0.999706

	
0.999608

	
0.999488

	
DT

	
0.999672

	
10171

	
1

	
3

	
2025

	
0.999902

	
0.999705

	
0.999803

	
0.999932

	
kNN

	
0.999426

	
10146

	
3

	
4

	
2047

	
0.999704

	
0.999606

	
0.999655

	
0.999835

	
XGBOOST

	
0.999426

	
10120

	
2

	
5

	
2073

	
0.999802

	
0.999506

	
0.999654

	
0.999844

	
SVM

	
0.998279

	
10137

	
7

	
9

	
10137

	
0.998301

	
0.997736

	
0.998019

	
0.998421

	
HTTP GET

	
RF

	
0.999771

	
19767

	
2

	
3

	
2018

	
0.999899

	
0.999848

	
0.999874

	
0.999853

	
DT

	
0.999725

	
19746

	
3

	
3

	
2038

	
0.999848

	
0.999848

	
0.999848

	
0.999995

	
kNN

	
0.999679

	
19716

	
2

	
5

	
2067

	
0.999899

	
0.999746

	
0.999823

	
0.999931

	
XGBOOST

	
0.999771

	
19666

	
1

	
4

	
2119

	
0.999949

	
0.999797

	
0.999873

	
0.999794

	
SVM

	
0.99899

	
19665

	
4

	
18

	
19665

	
0.99909

	
0.995918

	
0.997502

	
0.999452

	
DNS tunneling

	
RF

	
0.999298

	
9351

	
3

	
5

	
2041

	
0.999679

	
0.999466

	
0.999572

	
0.999457

	
DT

	
0.999474

	
9301

	
4

	
2

	
2093

	
0.99957

	
0.999785

	
0.999678

	
0.999974

	
kNN

	
0.999737

	
9285

	
2

	
1

	
2112

	
0.999785

	
0.999892

	
0.999838

	
0.999859

	
XGBOOST

	
0.999386

	
9243

	
5

	
2

	
2150

	
0.999459

	
0.999784

	
0.999621

	
0.999482

	
SVM

	
0.997895

	
9302

	
7

	
10

	
9302

	
0.998109

	
0.99542

	
0.996763

	
0.998561

[image: Table]

Table 14. Classification results (thermostat—Mirai).

Table 14. Classification results (thermostat—Mirai).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Thermostat/

Mirai

	
TCP

	
RF

	
0.999938

	
3623

	
1

	
5

	
2021

	
0.999724

	
0.999622

	
0.999773

	
0.999913

	
DT

	
0.998938

	
3618

	
1

	
5

	
2026

	
0.999724

	
0.99862

	
0.999171

	
0.999446

	
kNN

	
0.998938

	
3569

	
5

	
1

	
2075

	
0.998601

	
0.99972

	
0.99916

	
0.999017

	
XGBOOST

	
0.999646

	
3528

	
1

	
1

	
2120

	
0.999717

	
0.999717

	
0.999717

	
0.999923

	
SVM

	
0.996106

	
3535

	
5

	
17

	
2093

	
0.998588

	
0.995214

	
0.996898

	
0.999678

	
UDP

	
RF

	
0.999986

	
7495

	
2

	
1

	
2052

	
0.999933

	
0.999897

	
0.9999

	
0.999865

	
DT

	
0.999791

	
7451

	
1

	
1

	
2097

	
0.999866

	
0.999866

	
0.999866

	
0.999834

	
kNN

	
0.999372

	
7446

	
1

	
5

	
2098

	
0.999866

	
0.999329

	
0.999597

	
0.999701

	
XGBOOST

	
0.999476

	
7407

	
1

	
4

	
2138

	
0.999865

	
0.99946

	
0.999663

	
0.999991

	
SVM

	
0.997906

	
7446

	
3

	
10

	
7446

	
0.999056

	
0.997172

	
0.998113

	
0.999816

	
HTTP GET

	
RF

	
0.999859

	
6438

	
4

	
4

	
2054

	
0.999879

	
0.999779

	
0.999779

	
0.999861

	
DT

	
0.999529

	
6391

	
2

	
2

	
2105

	
0.999687

	
0.999687

	
0.999687

	
0.999722

	
kNN

	
0.999412

	
6369

	
4

	
1

	
2126

	
0.999372

	
0.999843

	
0.999608

	
0.999893

	
XGBOOST

	
0.999294

	
6343

	
5

	
1

	
2151

	
0.999212

	
0.999842

	
0.999527

	
0.999791

	
SVM

	
0.997176

	
6402

	
9

	
10

	
6402

	
0.998409

	
0.996144

	
0.997275

	
0.999465

	
DNS tunneling

	
RF

	
0.999649

	
5976

	
1

	
5

	
2008

	
0.999833

	
0.999864

	
0.999498

	
0.999692

	
DT

	
0.998874

	
5967

	
4

	
5

	
2014

	
0.99933

	
0.999163

	
0.999246

	
0.999617

	
kNN

	
0.999249

	
5925

	
3

	
3

	
2059

	
0.999494

	
0.999494

	
0.999494

	
0.999828

	
XGBOOST

	
0.999374

	
5876

	
4

	
1

	
2109

	
0.99932

	
0.99983

	
0.999575

	
0.999422

	
SVM

	
0.996996

	
5890

	
10

	
15

	
5890

	
0.998379

	
0.995152

	
0.996763

	
0.998059

[image: Table]

Table 15. Classification results (thermostat—Gafgyt).

Table 15. Classification results (thermostat—Gafgyt).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Thermostat/

Gafgyt

	
TCP

	
RF

	
0.999943

	
11973

	
3

	
2

	
2012

	
0.999849

	
0.999833

	
0.999891

	
0.999954

	
DT

	
0.999714

	
11942

	
2

	
2

	
2044

	
0.999833

	
0.999833

	
0.999833

	
0.999876

	
kNN

	
0.999571

	
11919

	
2

	
4

	
2065

	
0.999832

	
0.999665

	
0.999748

	
0.999744

	
XGBOOST

	
0.999786

	
11903

	
1

	
2

	
2084

	
0.999916

	
0.999832

	
0.999874

	
0.999962

	
SVM

	
0.99857

	
11885

	
7

	
13

	
2085

	
0.999411

	
0.998907

	
0.999159

	
0.998787

	
UDP

	
RF

	
0.999815

	
4494

	
4

	
5

	
1997

	
0.999811

	
0.999889

	
0.999993

	
0.999972

	
DT

	
0.998923

	
4459

	
2

	
5

	
2034

	
0.999552

	
0.99888

	
0.999216

	
0.998947

	
kNN

	
0.999538

	
4435

	
2

	
1

	
2062

	
0.999549

	
0.999775

	
0.999662

	
0.999642

	
XGBOOST

	
0.998923

	
4400

	
3

	
4

	
2093

	
0.999319

	
0.999092

	
0.999205

	
0.999741

	
SVM

	
0.996769

	
4420

	
6

	
12

	
4420

	
0.99849

	
0.997548

	
0.998019

	
0.998866

	
HTTP GET

	
RF

	
0.999784

	
21087

	
3

	
2

	
2008

	
0.999858

	
0.999905

	
0.999881

	
0.999862

	
DT

	
0.99961

	
21042

	
4

	
5

	
2049

	
0.99981

	
0.999762

	
0.999786

	
0.999649

	
kNN

	
0.99974

	
21025

	
1

	
5

	
2069

	
0.999952

	
0.999762

	
0.999857

	
0.999824

	
XGBOOST

	
0.99974

	
20983

	
1

	
5

	
2111

	
0.999952

	
0.999762

	
0.999857

	
0.999743

	
SVM

	
0.999351

	
20992

	
8

	
10

	
20992

	
0.998409

	
0.998182

	
0.998295

	
0.999371

	
DNS tunneling

	
RF

	
0.999931

	
3187

	
3

	
1

	
2009

	
0.99976

	
0.999886

	
0.999773

	
0.999842

	
DT

	
0.999231

	
3170

	
2

	
2

	
2026

	
0.999369

	
0.999369

	
0.999369

	
0.999636

	
kNN

	
0.999231

	
3125

	
1

	
3

	
2071

	
0.99968

	
0.999041

	
0.99936

	
0.999325

	
XGBOOST

	
0.998654

	
3084

	
2

	
5

	
2109

	
0.999352

	
0.998381

	
0.998866

	
0.998948

	
SVM

	
0.995962

	
3137

	
7

	
9

	
3137

	
0.998649

	
0.995688

	
0.997166

	
0.998563

[image: Table]

Table 16. Classification results (thermostat—Dark Nexus).

Table 16. Classification results (thermostat—Dark Nexus).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Thermostat/

Dark nexus

	
TCP

	
RF

	
0.999067

	
5484

	
5

	
2

	
2009

	
0.999889

	
0.999735

	
0.999862

	
0.999807

	
DT

	
0.999333

	
5457

	
4

	
1

	
2038

	
0.999268

	
0.999817

	
0.999542

	
0.999866

	
kNN

	
0.999067

	
5440

	
2

	
5

	
2053

	
0.999632

	
0.999082

	
0.999357

	
0.999787

	
XGBOOST

	
0.9988

	
5409

	
4

	
5

	
2082

	
0.999261

	
0.999076

	
0.999169

	
0.999392

	
SVM

	
0.9972

	
5386

	
9

	
12

	
2093

	
0.998332

	
0.997777

	
0.998054

	
0.998168

	
UDP

	
RF

	
0.99988

	
10188

	
5

	
5

	
2002

	
0.99988

	
0.99988

	
0.99988

	
0.99988

	
DT

	
0.999344

	
10146

	
3

	
5

	
2046

	
0.999704

	
0.999507

	
0.999606

	
0.999544

	
kNN

	
0.999262

	
10140

	
5

	
4

	
2051

	
0.999507

	
0.999606

	
0.999556

	
0.999830

	
XGBOOST

	
0.999344

	
10130

	
5

	
3

	
2062

	
0.999507

	
0.999704

	
0.999605

	
0.999510

	
SVM

	
0.998033

	
10073

	
3

	
16

	
10073

	
0.99849

	
0.996984

	
0.997736

	
0.998590

	
HTTP GET

	
RF

	
0.999633

	
19765

	
3

	
5

	
2017

	
0.999848

	
0.999747

	
0.999798

	
0.999937

	
DT

	
0.999541

	
19730

	
5

	
5

	
2050

	
0.999747

	
0.999747

	
0.999747

	
0.999730

	
kNN

	
0.999725

	
19716

	
2

	
4

	
2068

	
0.999899

	
0.999797

	
0.999848

	
0.999950

	
XGBOOST

	
0.999679

	
19680

	
3

	
4

	
2103

	
0.999848

	
0.999797

	
0.999822

	
0.999980

	
SVM

	
0.999082

	
19644

	
4

	
13

	
19644

	
0.998182

	
0.997275

	
0.997728

	
0.999110

	
DNS tunneling

	
RF

	
0.999649

	
9381

	
3

	
1

	
2015

	
0.99968

	
0.999893

	
0.999787

	
0.999683

	
DT

	
0.999737

	
9345

	
1

	
2

	
2052

	
0.999893

	
0.999786

	
0.99984

	
0.999960

	
kNN

	
0.999211

	
9335

	
4

	
5

	
2056

	
0.999572

	
0.999465

	
0.999518

	
0.999830

	
XGBOOST

	
0.999561

	
9305

	
3

	
2

	
2090

	
0.999678

	
0.999785

	
0.999731

	
0.999730

	
SVM

	
0.998421

	
9339

	
4

	
13

	
2044

	
0.998379

	
0.996763

	
0.99757

	
0.999860

[image: Table]

Table 17. Classification results (camcorder—Mirai).

Table 17. Classification results (camcorder—Mirai).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Camcorder/

Mirai

	
TCP

	
RF

	
0.999292

	
3639

	
2

	
2

	
2007

	
0.999451

	
0.999451

	
0.999451

	
0.99907

	
DT

	
0.998584

	
3623

	
4

	
4

	
2019

	
0.998897

	
0.998897

	
0.998897

	
0.999863

	
kNN

	
0.999646

	
3598

	
1

	
1

	
2050

	
0.999722

	
0.999722

	
0.999722

	
0.999781

	
XGBOOST

	
0.998938

	
3592

	
3

	
3

	
2052

	
0.999166

	
0.999166

	
0.999166

	
0.999396

	
SVM

	
0.996106

	
3560

	
8

	
14

	
2068

	
0.997758

	
0.996083

	
0.99692

	
0.998166

	
UDP

	
RF

	
0.999872

	
7545

	
2

	
4

	
1999

	
0.999835

	
0.99987

	
0.999603

	
0.99983

	
DT

	
0.999267

	
7497

	
5

	
2

	
2046

	
0.999334

	
0.999733

	
0.999533

	
0.999701

	
kNN

	
0.998953

	
7451

	
5

	
5

	
2089

	
0.999329

	
0.999329

	
0.999329

	
0.999833

	
XGBOOST

	
0.999581

	
7444

	
1

	
3

	
2102

	
0.999866

	
0.999597

	
0.999731

	
0.999515

	
SVM

	
0.997592

	
7412

	
6

	
9

	
7412

	
0.998867

	
0.996796

	
0.99783

	
0.998597

	
HTTP GET

	
RF

	
0.999529

	
6479

	
2

	
2

	
2017

	
0.999691

	
0.999691

	
0.999691

	
0.99993

	
DT

	
0.999412

	
6461

	
2

	
3

	
2034

	
0.999691

	
0.999536

	
0.999613

	
0.999737

	
kNN

	
0.999412

	
6437

	
3

	
2

	
2058

	
0.999534

	
0.999689

	
0.999612

	
0.999959

	
XGBOOST

	
0.999412

	
6421

	
2

	
3

	
2074

	
0.999689

	
0.999533

	
0.999611

	
0.999982

	
SVM

	
0.998353

	
6405

	
7

	
10

	
6405

	
0.998409

	
0.998409

	
0.998409

	
0.999113

	
DNS tunneling

	
RF

	
0.999249

	
5978

	
4

	
2

	
2006

	
0.999331

	
0.999666

	
0.999498

	
0.99968

	
DT

	
0.998999

	
5959

	
4

	
4

	
2023

	
0.999329

	
0.999329

	
0.999329

	
0.999963

	
kNN

	
0.999124

	
5942

	
4

	
3

	
2041

	
0.999327

	
0.999495

	
0.999411

	
0.999832

	
XGBOOST

	
0.998874

	
5914

	
5

	
4

	
2067

	
0.999155

	
0.999324

	
0.99924

	
0.999737

	
SVM

	
0.997121

	
5914

	
5

	
8

	
5914

	
0.99757

	
0.996225

	
0.996897

	
0.999861

[image: Table]

Table 18. Classification results (camcorder—Gafgyt).

Table 18. Classification results (camcorder—Gafgyt).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Camcorder/

Gafgyt

	
TCP

	
RF

	
0.999971

	
11981

	
5

	
1

	
2003

	
0.999983

	
0.999917

	
0.99985

	
0.999889

	
DT

	
0.999643

	
11941

	
1

	
4

	
2044

	
0.999916

	
0.999665

	
0.999791

	
0.999486

	
kNN

	
0.999571

	
11924

	
5

	
1

	
2060

	
0.999581

	
0.999916

	
0.999748

	
0.999991

	
XGBOOST

	
0.999571

	
11916

	
3

	
3

	
2068

	
0.999748

	
0.999748

	
0.999748

	
0.999364

	
SVM

	
0.998713

	
11920

	
10

	
8

	
2052

	
0.999162

	
0.999329

	
0.999246

	
0.999484

	
UDP

	
RF

	
0.999923

	
4496

	
4

	
3

	
1997

	
0.999811

	
0.999833

	
0.999822

	
0.999913

	
DT

	
0.998615

	
4465

	
5

	
4

	
2026

	
0.998881

	
0.999105

	
0.998993

	
0.999888

	
kNN

	
0.999077

	
4430

	
1

	
5

	
2064

	
0.999774

	
0.998873

	
0.999323

	
0.999442

	
XGBOOST

	
0.999231

	
4387

	
2

	
3

	
2108

	
0.999544

	
0.999317

	
0.99943

	
0.999591

	
SVM

	
0.997231

	
4365

	
8

	
11

	
1193

	
0.998301

	
0.998301

	
0.998301

	
0.997732

	
HTTP GET

	
RF

	
0.99974

	
21056

	
3

	
3

	
2038

	
0.999858

	
0.999858

	
0.999858

	
0.999965

	
DT

	
0.999827

	
21049

	
1

	
3

	
2047

	
0.999952

	
0.999857

	
0.999905

	
0.999425

	
kNN

	
0.999784

	
21006

	
4

	
1

	
2089

	
0.99981

	
0.999952

	
0.999881

	
0.999628

	
XGBOOST

	
0.99974

	
20958

	
5

	
1

	
2136

	
0.999761

	
0.999952

	
0.999857

	
0.999901

	
SVM

	
0.999091

	
21005

	
8

	
20

	
21005

	
0.998636

	
0.996596

	
0.997615

	
0.999821

	
DNS tunneling

	
RF

	
0.999038

	
3182

	
4

	
1

	
2013

	
0.999745

	
0.999686

	
0.999215

	
0.999491

	
DT

	
0.998077

	
3176

	
5

	
5

	
2014

	
0.998428

	
0.998428

	
0.998428

	
0.999020

	
kNN

	
0.998846

	
3165

	
2

	
4

	
2029

	
0.999368

	
0.998738

	
0.999053

	
0.999290

	
XGBOOST

	
0.998462

	
3160

	
4

	
4

	
2032

	
0.998736

	
0.998736

	
0.998736

	
0.999390

	
SVM

	
0.996923

	
3123

	
5

	
9

	
3123

	
0.998379

	
0.997301

	
0.99784

	
0.997460

[image: Table]

Table 19. Classification results (camcorder—Dark Nexus).

Table 19. Classification results (camcorder—Dark Nexus).

	
Device/

Botnet

	
Attack

	
Algorithm

	
Accuracy

	
TP

	
FP

	
FN

	
TN

	
Precision

	
Recall

	
F1 Score

	
AUC

	
Camcorder/

Dark Nexus

	
TCP

	
RF

	
0.999722

	
5423

	
5

	
1

	
2071

	
0.999779

	
0.999816

	
0.999747

	
0.99986

	
DT

	
0.998933

	
5403

	
3

	
5

	
2089

	
0.999445

	
0.999075

	
0.99926

	
0.999869

	
kNN

	
0.9988

	
5378

	
4

	
5

	
2113

	
0.999257

	
0.999071

	
0.999164

	
0.999911

	
EGB

	
0.9992

	
5359

	
1

	
5

	
2135

	
0.999813

	
0.999068

	
0.999441

	
0.999932

	
SVM

	
0.997867

	
5336

	
10

	
6

	
2148

	
0.998129

	
0.998877

	
0.998503

	
0.999542

	
UDP

	
RF

	
0.999918

	
10187

	
5

	
5

	
2003

	
0.999809

	
0.999839

	
0.999851

	
0.999861

	
DT

	
0.99959

	
10139

	
4

	
1

	
2056

	
0.999606

	
0.999901

	
0.999753

	
0.998747

	
kNN

	
0.999426

	
10132

	
4

	
3

	
2061

	
0.999605

	
0.999704

	
0.999655

	
0.999406

	
EGB

	
0.999262

	
10124

	
4

	
5

	
2067

	
0.999605

	
0.999506

	
0.999556

	
0.999904

	
SVM

	
0.998115

	
10105

	
7

	
16

	
2072

	
0.999308

	
0.998419

	
0.998863

	
0.999489

	
HTTP GET

	
RF

	
0.999633

	
19769

	
3

	
5

	
2013

	
0.999848

	
0.999747

	
0.999798

	
0.999851

	
DT

	
0.999587

	
19733

	
5

	
4

	
2048

	
0.999747

	
0.999797

	
0.999772

	
0.999996

	
kNN

	
0.999862

	
19726

	
1

	
2

	
2061

	
0.999949

	
0.999899

	
0.999924

	
0.999952

	
EGB

	
0.999633

	
19709

	
4

	
4

	
2073

	
0.999797

	
0.999797

	
0.999797

	
0.999766

	
SVM

	
0.999036

	
19704

	
8

	
13

	
2065

	
0.999594

	
0.999341

	
0.999467

	
0.999123

	
DNS tunneling

	
RF

	
0.999474

	
9385

	
4

	
2

	
2009

	
0.999574

	
0.999787

	
0.99968

	
0.999921

	
DT

	
0.999386

	
9344

	
5

	
2

	
2049

	
0.999465

	
0.999786

	
0.999626

	
0.998696

	
kNN

	
0.999649

	
9318

	
3

	
1

	
2078

	
0.999678

	
0.999893

	
0.999785

	
0.999282

	
EGB

	
0.999386

	
9305

	
2

	
5

	
2088

	
0.999785

	
0.999463

	
0.999624

	
0.999645

	
SVM

	
0.998421

	
9317

	
8

	
10

	
2065

	
0.999142

	
0.998928

	
0.999035

	
0.998664

	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

media/file4.png

nav.xhtml

 algorithms-15-00239

 		
 algorithms-15-00239

media/file2.png

media/file5.jpg

media/file3.jpg

media/file1.jpg

media/file7.jpg

media/file0.png

media/file8.png

media/file6.png

