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Abstract

:

Cracks in concrete cause initial structural damage to civil infrastructures such as buildings, bridges, and highways, which in turn causes further damage and is thus regarded as a serious safety concern. Early detection of it can assist in preventing further damage and can enable safety in advance by avoiding any possible accident caused while using those infrastructures. Machine learning-based detection is gaining favor over time-consuming classical detection approaches that can only fulfill the objective of early detection. To identify concrete surface cracks from images, this research developed a transfer learning approach (TL) based on Convolutional Neural Networks (CNN). This work employs the transfer learning strategy by leveraging four existing deep learning (DL) models named VGG16, ResNet18, DenseNet161, and AlexNet with pre-trained (trained on ImageNet) weights. To validate the performance of each model, four performance indicators are used: accuracy, recall, precision, and F1-score. Using the publicly available CCIC dataset, the suggested technique on AlexNet outperforms existing models with a testing accuracy of   99.90 %  , precision of   99.92 %  , recall of   99.80 %  , and F1-score of   99.86 %   for crack class. Our approach is further validated by using an external dataset, BWCI, available on Kaggle. Using BWCI, models VGG16, ResNet18, DenseNet161, and AlexNet achieved the accuracy of   99.90 %  ,   99.60 %  ,   99.80 %  , and   99.90 %   respectively. This proposed transfer learning-based method, which is based on the CNN method, is demonstrated to be more effective at detecting cracks in concrete structures and is also applicable to other detection tasks.
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1. Introduction


Concrete cracks are a common indication of concrete defects in civil engineering structures. It affects structural health and induces an additional risk of unexpected breakdowns and accidents [1,2]. Hence, detecting cracks regularly and taking appropriate actions for the safety of the concrete structure is of great significance. The traditional method of detecting cracks on concrete structures relies on professional observation. Such conventional methods are not only costly but also laborious, time-consuming, and on many occasions, dangerous too [3]. However, the recent advancement of machine learning-based image processing technologies has gained attention as an efficient and automated method to detect cracks on concrete structures that also overcome the cons of manual methods [4].



The growing computer vision community working on different image-detection methods. It has proposed many techniques over the decades, including thresholding [5], edge detection [6], and wavelet transforms [7], to name a few, where some of these methods address concrete crack detection problems. However, this field needs an efficient and reliable solution as the concrete images are challenged with various surface textures, irregularity of cracks, and background complexity that differs crack detection from other image analysis applications.



Recently, deep learning-based models, predominantly neural networks with multiple layers, are playing a significantly successful role in feature learning [8]. On top of that, the availability of high-performing computing facilities and ongoing improvement of excellent training methods on available datasets drive the rapid development of deep learning. In this saga, the convolutional neural network (CNN) is a feed-forward neural network that performs excellently in large-scale image processing [9,10]. Although some of these models proved excellent in feature extractions on different applications, their accuracy requires improvement for concrete crack detection. To achieve efficient performance, reduce training time, and overcome the lack of a humongous dataset, in this paper, we have proposed a method of transfer learning-based CNN with the pre-trained model that shows significant improvement [11]. Our work has made the following contribution:




	
We conduct experiments on the CCIC dataset with four different CNN models (VGG16, ResNet18, DenseNet161, and AlexNet), applying the transfer learning technique for detecting concrete surface cracks from images and examination with other models to demonstrate the success of the suggested model.



	
We designed our model such that every CNN model has only one fully connected (FC) layer, having two output features for binary classification. We modified the VGG16 and AlexNet models by replacing the last three FC layers with only one FC layer.



	
Our strategy is the most compatible with AlexNet, and it outperforms the competition. AlexNet achieves   99.90 %   accuracy on the validation set on the CCIC dataset.



	
The proposed method demonstrates superior crack detection for concrete structures, which can efficiently be utilized for other detection purposes.








The paper is now organized as follows. We provided a brief review of the literature in Section 2. Section 3 includes methodology, which describes experimental Setup, Model Training, and Evaluation. Section 4 presents the result analysis and discussions. The paper is concluded in Section 5.




2. Literature Review


Sometimes, some research work has been done based on transfer learning for various types of crack detection. In [12], the authors presented a practical deep-learning-based crack detection model for three types of crack images, including concrete pavement, asphalt pavement, and bridge deck cracks. Also, they proposed an encoder-decoder structural model with a fully convolutional neural network, named PCSN, also known as SegNet, and achieved   99 %   accuracy. In [13], the MobileNet-based transfer learning model is proposed for wall crack detection as well as authors got   99.59 %   accuracy. In [14], a transfer learning approach was applied to the VGG16 model to recognize structural damage and achieved   90 %   accuracy. In [15], a deep transfer learning method based on YOLOv3 and RetinaNet models, pre-trained on the COCO dataset, was proposed for detecting rail surface cracks. In 2021, a novel method, FF-BLS, was proposed that could accurately classify crack and non-crack images with an accuracy of   96.72 %   [16]. In 2019, a transfer learning approach on the VGG16 pre-trained model achieved   94 %   accuracy, and slightly fine-tuning a well-trained FC layer with VGG16 achieved   98 %   accuracy [17]. In 2018, a transfer learning method on the VGG16 pre-trained model gained   92.27 %   accuracy after training with less than 3500 images [18]. They conclude the transfer learning approach is suitable to train on limited datasets. In [19], an image segmentation model based on ResNet101 was proposed for concrete crack detection with   94.52 %   precision and   95.25 %   recall accuracy in 2021. In 2021, a deep learning model was proposed, and although they achieved good accuracy on training, validation accuracy was   97.7 %   for the CCIC [20] dataset [21]. A deep, fully convolutional neural network named CrackSegNet with dilated convolution, spatial pyramid pooling, and skip connection modules was proposed to detect concrete cracks in tunnels [22]. In 2021, three kinds of deep neural networks, AlexNet, ResNet18, and VGGNet13, were compared and found ResNet18 (accuracy   98.8 %  ) performs well compared with the remaining two models [23]. In 2021, the transfer learning method was applied on GoogLeNet Inception V3 and CNN-Crack; GoogLeNet Inception V3 performs well compared to the other one with an accuracy of   97.3 %   on drone cameras [24]. In [25], vision-based metal crack detection was proposed. In 2021, a pavement crack detection method based on the YOLOv5 model was proposed with   88.1 %   accuracy [26]. Recently in 2021, a railway slab crack detection method was proposed based on the VGG16 model and achieved   81.84 %  ,   67.68 %  , and   84.55 %   in precision, IoU, and F1-score, respectively [27]. In [28], a deep learning model was developed for ceramic crack segmentation. In [29], a concrete air voids detection and segmentation method was proposed based on the path aggregation network (PANet). In [30], a thermal crack detection method, U-Net, was proposed to be used in fire-exposed concrete structures and achieved   78.12 %   Intersection over Union (IoU). In [31], a dilated convolution with Resnet-18 as the basic network model was proposed for detecting concrete cracks. In [32], a concrete crack detection method using a U-net fully convolutional network was proposed in this paper.



In this experiment, we built a concrete cracks detection model using the transfer learning (TL) approach on various well-known CNN models. We applied four available CNN models named VGG16, ResNet18, DenseNet161, and AlexNet with pre-trained (trained on ImageNet) weights for utilizing the transfer learning approach. TL-based CNN approach achieves over   99 %   accuracy for all the models. Our approach fits well with AlexNet most, and its performance outweighs others. AlexNet achieves   99.90 %   accuracy on the validation set after only 13 epochs of training. The training duration provides better timing over VGG16, ResNet18, and DenseNet161 models.




3. Materials and Methods


In this work, we presented a transfer learning method for detecting concrete surface cracks with high accuracy. Figure 1 illustrates the detailed block diagram of the methodology.



We divided our collected dataset into two sets: train and test. The train set is used for method training, while the test set is used for model validation and model testing. The splitting procedure was carried out at random. On the training dataset, data augmentation, and transformations take place. Following that, we designed transfer learning models. On designed TL models, model training and evaluation take place. Then we compare the TL methods before displaying the best TL method proposed. Finally, we feed the input images into the best TL model that has been proposed, and it produces the expected result, which is either crack or non-crack.



3.1. Dataset Description


The utilized dataset in this research paper is Concrete Crack Images for Classification (CCIC) [20]. It contains concrete images having cracks and non-cracks, collected from various METU Campus Buildings. The dataset is classified into positive and negative classes, referring to cracks and non-cracks images, respectively. There are 40,000 images with 227 × 227 pixels with RGB channels, and each type has 20,000 images. The dataset is generated from 458 high-resolution (4032 × 3024 pixels) images taken from floors and walls of various concrete buildings. Images are taken with the camera facing directly to the concrete surfaces keeping about a one-meter distance. The images are captured on the same day with similar illumination conditions. The concrete surface has variation because of plastering, paint, exposure, etc. But no data augmentation is applied [33]. Some cracks and non-cracks images of the used dataset are shown in Figure 2.




3.2. Dataset Splitting


Our dataset consists of 20,000 cracks and 20,000 non-cracks images, in a total of 40,000 images. We split the datasets into 2 groups, with ratios of   80 %   and   20 %   for the Train set as well as the Test or Validation set, respectively. After randomly splitting the dataset into train along with test sets, we obtained 31,999 images (16,000 cracks and 15,999 non-cracks images) in the train set and 8001 (4000 cracks and 4001 non-cracks) images in the test set. After using the test dataset for validation of the model, the training dataset is used for training the model and calculating various evaluation matrices. Dataset splitting is shown in Table 1 briefly.




3.3. Data Augmentation and Transformation


Deep learning models perform very well on large datasets. Data augmentation is a crucial technique in deep learning for a limited dataset that enhances the size and quality of a training dataset to build a better deep learning model. There are various data augmentation techniques like flipping, cropping, rotation, color space transformation, noise injection, etc. [34]. We used data augmentation and transfer learning to overcome the lack of training data as well as get rid of overfitting. In our training dataset, we use some of the data augmentation techniques, which are described below.



3.3.1. Random-Resized-Crop Method


The random-Resized-Crop method is an augmentation method that crops a random portion of the image and resizes it according to the desired size. Such a crop is made by a random area depending on a scale and an arbitrary aspect ratio. The scale specifies a lower and upper bound for the arbitrary location of the crop, and the ratio specifies required bounds from the random aspect ratio of the yield before resizing. In our training dataset, scale = (0.8, 1.0), ratio = (0.75, 1.33) and size = (227, 227) are used. Figure 3 shows an example of this technique.




3.3.2. Random-Rotation Method


This augmentation method rotates the image by randomly selected angles from a specific range of degrees. In our training dataset, angles are selected between −15 degrees and +15 degrees. The area outside the rotated image is filled with pixel value 0. Figure 4 shows an example of the Random Rotation technique.




3.3.3. Color-Jitter Method


This augmentation method randomly changes the brightness, contrast, saturation, and hue of an image. An example of this method is shown in Figure 5.




3.3.4. Random-Horizontal-Flip Method


This augmentation method horizontally flips the given image randomly with a specified probability. Our training dataset has been flipped with   50 %   probability. An example of a Random Horizontal Flip is exhibited in Figure 6.



We used the above data augmentation techniques for training datasets and did not use data augmentation techniques for testing test data. Besides, some preprocessing stages are applied to both train and test datasets. CCIC dataset’s image dimension is 227 × 227. But the desired input image dimension of our proposed model is 224 × 224. For this reason, preprocessing is applied to achieve desired image dimensions. Center cropping is applied on the 227 × 227 dimension image for getting a 224 × 224 dimension image. Also, we apply normalization to all images. Our pre-trained models expect input 3-channel RGB images normalized using mean of [0.485, 0.456, 0.406] and standard deviation of [0.229, 0.224, 0.225].





3.4. Design Transfer Learning Model


Image recognition has advanced remarkably, mostly because deep learning (DL) and deep convolutional neural networks (CNNs) with large-scale annotated datasets are now widely available. With enough training data, CNNs can learn data-driven, highly representative, hierarchical image characteristics. Currently, there are three main methods for effectively employing CNNs for image classification: building the CNN from scratch, using pre-trained CNN features that are available for purchase, and using unsupervised CNN pre-training with supervised fine-tuning. Transfer learning, or fine-tuning CNN models pre-trained from natural image datasets to image problems, is another efficient technique. A step in the process by which computers may examine a picture and assign it the proper label is image categorization [35,36,37].



Overall, CNN and deep learning (DL) are key components of image categorization nowadays. DL methods can tackle issues with increasingly complicated, highly variable functions. It also involves a sizable picture dataset, even one without labels. Machines can recognize and extract characteristics from images with the aid of DL. The image categorization [35,38] on CNN, therefore, generates a lot of attention. To perform tasks correctly, DL approaches need a lot of data [8]. Having access to a wealth of knowledge is not necessarily true. Pre-trained models are applied in this situation. In this study, transfer learning (TL) is the reuse of a deep learning pre-trained approach where knowledge is driven from one model to another [39].



Several well-known pre-trained models exhibit excellent performance across a range of computer vision issues. Some of them are VGG [40], ResNet [41], DenseNet [42], AlexNet [43], Inception v3 [44], GoogLeNet [45], MobileNet [46] etc. These models are trained on extensive datasets with various classes of images. Using TL methods, it is now possible to achieve very good performance on several computer vision issues with a lack of data and computing power. This paper experimented on four well-known models named VGG, ResNet, DenseNet, and AlexNet. In the following sections, we discuss these transfer learning models.



3.4.1. VGG16


VGG16 is a CNN model trained on the ImageNet dataset of over 1.2 million images from 1000 classes [40]. The architecture of the VGG16 model is depicted in Figure 7.



There are several convolutional (conv) layers, where filters with 3 × 3 kernels are used. The convolution stride and padding are fixed to 1 pixel. Max-pooling is applied, followed by some conv layers with 2 × 2 kernels, a stride of 2, and padding of 0. The input to conv layer is of fixed size 224 × 224 RGB image.



Three FC layers are added in the last part of the architecture, and the last layer is configured for 1000 classes. The Rectified Linear Unit (ReLU), a non-linear activation function is used by all hidden layers.



We apply the pre-trained VGG16 model to the proposed Transfer Learning (TL) model. We call it TL VGG16. We remove the last three FC layers and replace them with an FC2 layer such that output features match for binary classification.




3.4.2. ResNet18


ResNet is a CNN technique presented in the paper titled Deep Residual Learning for Image Recognition’ [41]. The model trained on ImageNet dataset of over 1.2 million images belonging to 1000 classes. The architecture of the ResNet18 model is depicted in Figure 8.



There are several convolutional (conv) layers. Filters with 7 × 7 kernels, strides of 2, and padding of 3 are used in the first conv layer. In the remaining conv layers, filters with 3 × 3 kernels, strides of 1, and padding of 1 are used except for some down-sampling conv with 1 × 1 kernels and stride of 2. The pattern remains the same, bypassing the input every 2 convolutions. Max-pooling is applied following the 1st conv layer with 3 × 3 kernels, a stride of 2 as well as padding of 1. The input to conv layer is of fixed size 224 × 224 RGB image.



Three FC layers are added in the last part of the architecture, and the last layer is configured for 1000 classes. Most hidden layers employ Batch Normalization, and a convolutional layer after ReLU.



We use the pre-trained ResNet18 method for the proposed TL ResNet18 model. We replace the last FC layer with a Fully-Connected FC2 layer such that output features match for binary classification.




3.4.3. DenseNet161


DenseNet161 is a CNN model proposed by Zhuang et al. [42]. They have trained their model on an ImageNet dataset of over 1.2 million images from 1000 classes. A typical architecture of the DenseNet161 model is shown in Figure 9. It can be seen that there are a series of convolution (conv) layers within it, where every layer has access to its preceding feature maps. In the first conv layer, filters with 7 × 7 kernels, strides of 2, and padding of 3 are used. Then Normalization, ReLU, and max-pooling with 3 × 3 kernels, a stride of 2, and padding of 1 are used. After the first conv layer, there are four dense blocks and each block has corresponding 6, 12, 36, and 24 dense layers. Each dense layer consists of two conv layers; the preceding conv layer has a filter with 1 × 1 kernels and stride of 1 and, the latter conv layer has a filter with 3 × 3 kernels, a stride of 1, and padding of 1. Before conv layer, Batch Normalization, and ReLU are used. In the middle of two dense-blocks transition layers with Batch Normalization, ReLU, conv layer with 1 × 1 kernels and a stride of 1 and then an AvgPool with 2 × 2 kernels, a stride of 2, and padding of 0 are used. After the 4th dense-block Batch, normalization is applied.



An FC layer is added in the last part of the architecture and configured for 1000 classes.



We used the pre-trained DenseNet161 model for the proposed TL DenseNet161 model. We have replaced the last FC layer with an FC2 layer such that output features match binary classification. The input to conv layer is of fixed size 224 × 224 RGB image.




3.4.4. AlexNet


AlexNet is a CNN model proposed by Alex Krizhevsky [43]. The model trained on ImageNet dataset of over 1.2 million images belonging to 1000 classes. The architecture of the AlexNet model is depicted in Figure 10. There are several convolutional (conv) layers. In the conv layer, filters with 11 × 11 kernels, strides of 4, and padding of 2 are used. In the 2nd conv layer, filters with 5 × 5 kernels, strides of 1, and padding of 2 are used. In the remaining three conv layers, filters with 3 × 3 kernels, strides of 1, and padding of 1 are used. Max-pooling is applied, followed by conv layers with 3 × 3 kernels, a stride of 2, and padding of 0.



Three FC layers are added in the last part of the architecture. All hidden layers use the ReLU, a non-linear activation function. Dropout with the possibility of 0.5 is utilized before the first two FC layers. The last layer is configured for 1000 classes.



We use the pre-trained AlexNet model for the proposed TL AlexNet model. We remove the last three FC layers and replace them with an FC2 layer such that output features match for binary classification. The input to conv layer is of fixed size 224 × 224 RGB image.





3.5. Experimental Setup, Model Training, and Evaluation


All the experiments take place in a Google Colaboratory notebook with a GPU runtime. Training is taken repeatedly throughout a number of epochs. We train our models for 30 epochs. After using the test dataset for validation of the model, the training dataset is applied for training the model. We use the PyTorch library primarily developed by the AI Research lab of Facebook. We implement the PyTorch data loader to take data of 128 batch size. We utilize the same hyperparameters optimization setup for all architectures. Table 2 shows the used hyperparameters in the experimental setup.



We determine the cross-entropy loss on the train as well as test sets for each epoch. We employ the Adam optimizer [47] using the mentioned parameters value.



In Figure 11, train losses, validation losses along with train accuracies as well as validation accuracies of each TL method are depicted. In the experimental observation, we see that there is no over-fitting occurring in any of the TL models. In the first row of Figure 11, the TL VGG16 models show that both train and validation loss is reduced very quickly, and they do not improve for a higher number of epochs. The TL ResNet18 model’s train and validation loss are decreased gradually and the validation loss is always lower than the training loss with very little difference. The TL DenseNet161 model’s train and validation loss follow an almost similar pattern to the TL ResNet18 model. On the other hand, we see in the training and validation loss of TL AlexNet that the bare difference between the two lines, unlike ResNet18 and DenseNet161. Hence, we can conclude this model converge quickly with very good generalization capability. Whereas, train along with validation accuracy of several TL methods are presented in the second row Figure 11. We see a similar pattern like the train and validation loss of different TL models. The ResNet18 and DenseNet161 follow the same pattern: validation accuracy is always greater than the training accuracy. Also, train accuracy is always less than the validation accuracy in the VGG16 model. But the TL AlexNet model shows the different patterns, the train, and validation accuracy overlap, and achieves high accuracy among other models. The AlexNet shows good generalization among others.



We clearly see that AlexNet achieves the best score for the lowest training and validation losses among all other models. Also, we clearly see that AlexNet achieves the best score for the highest training and validation accuracies among all other models.





4. Result Exploration and Argument


Through the confusion matrix, we can find out the P, R, F1, and Accuracy. These are the criteria for evaluating the classification model. Confusion matrix has four keywords of this including True Positive, False Positive, False Negative, and True Negative [48].



We can define Precision, Recall, F1-score, and Accuracy mathematically by using the Equations (1)–(4) respectively.


   P r e c i s i o n , P  =   T P    T P  +  F P     



(1)






   R e c a l l , R  =   T P    T P  +  F N     



(2)






   F 1 − s c o r e , F 1  = 2 ×   P × R   P + R    



(3)






   A c c u r a c y  =   N u m b e r  o f  c o r r e c t  p r e d i c t i o n s   T o t a l  n u m b e r  o f  p r e d i c t i o n s  m a d e    



(4)







After 30 epochs of training of all TL models, an evaluation is made on a test dataset consisting of 8001 images where 4000 images are cracks and 4001 images are non-cracks. Figure 12 illustrates the confusion matrix of all models.



The TL VGG16 predicts 3996 (TP) cracks and 3990 (TN) non-cracks images correctly, as well as 4 (FN) cracks images predicted as non-crack, and 11 (FP) non-cracks images predicted as cracks Figure 12a. The number of FN is minimum among other models.



The TL ResNet18, on the other hand, predicts 3988 (TP) cracks and 3959 (TN) non-cracks images correctly, as well as 12 (FN) cracks images predicted as non-crack and 42 (FP) non-cracks images predicted as cracks Figure 12b. In this case, the number of FP is the highest among other models.



We can see in the TL DenseNet161 model’s confusion matrix Figure 12c, that it predicts 3994 (TP) cracks and 3981 (TN) non-cracks images correctly, as well as 8 (FN) cracks images predicted as non-crack and 20 (FP) non-cracks image predicted as cracks. TL AlexNet Figure 12d shows the balance between FN and FP and shows the minimum number of FP (3 FP) among all other models.



Table 3 displays several standard assessment scores, with the number of samples utilized during the evaluation represented in the Support column which is denoted as Sup.



From Table 3, we can conclude that TL AlexNet achieves the highest   99.86 %   F1 scores and   99.86 %   accuracies among other models and precision of   99.92 %   on cracks and recall of   99.93 %   on non-cracks. In the case of popular statistical tests named MCC and CK (Cohen’s Kappa), AlexNet performs better than others. The values of MCC and CK are almost the same, we took 4 digits after the decimal point. Although, AlexNet achieves the best validation accuracy of   99.90 %   during the 13th epoch training, shown in Table 4.



As a succinct outline of every TL algorithm throughout training as well as validation, Table 4 displays the highest, lowest, and average accuracy. From the summary, we can conclude that AlexNet models achieve the best train accuracy of   99.85 %   on the 24th epoch and the best validation accuracy of   99.90 %   on the 13th epoch among all other models.



Table 5 shows the training duration of each epoch during training on Google Colaboratory GPU runtime. The TL AlexNet achieves 1st place by taking minimum training time among the other models.



We also depicted the receiver operating characteristic (ROC) curve for comparing the models in the case of appropriate classification results. It is measured based on the performance of the false positive rate and true positive rate respectively. Figure 13 shows the ROC curve of different TL models in our works. In this figure, we denote four curves of red, green, blue, and orange colored for AlexNet, DenseNet, VGG16, and ResNet18 models. All models’ performances are good. On the left side of this figure, all curves are looking together. For understanding better, we observed it as zoom out which is shown in the right portion of the figure. From this figure, we can see that AlexNet places the highest position over other models.



We also presented another way of evaluating the performance of models named the precision-recall (PR) curve. Figure 14 shows the PR curve of different TL models in our works. In this figure, we mark four curves of red, green, blue, and orange colored for AlexNet, DenseNet, VGG16, and ResNet18 models. In the upper side of this figure, all curves are looking together. For understanding better, we observed it as zoom out which is shown in the down portion of the figure. From this figure, we can see that all models’ performance is good.



In addition, we used the external dataset Building Wall Crack Images (BWCI) from Kaggle to validate our models. This is an open-source dataset. BWCI consists of wall crack images with 27 × 27 pixels. Table 6 shows the description of the dataset and a few samples are shown in Figure 15.



Table 7 represents the result of all models on the external dataset. We used only the test folder dataset to validate the models. It can be seen that the performance for both CCIC and external datasets BWCI are almost same.



Two statistical tests have been carried out, named the Matthews correlation coefficient (MCC) and Cohen’s Kappa Statistic [49] for comparing the performance. Matthews correlation coefficient (MCC) is a popular performance metric that is used in the case of an imbalanced dataset. Although the utilized dataset in this paper is a balanced dataset, it is defined by the following mathematical equation number 5.


  M C C =   T P × T N − F P × F N    ( T P + F P ) × ( T P + F N ) × ( T N + F P ) × ( T N + F N )     



(5)







The range of MCC is [−1–1]. The value of MCC is near to 1 is better. All of the utilized models perform well. Their values are near to 1. That means, the models classified the crack images accurately.



Cohen’s Kappa Statistic is applied to assess the degree of agreement between two raters who categorize objects into mutually exclusive groups which are shown mathematically in Equation (6).


  C K =   (  p o  −  p e  )   ( 1 −  p e  )    



(6)







Here,   p o   is the relative agreement of raters’ observation.   p e   denotes the theoretical probability of random agreement. we can calculate   p o   and   p e   between the raters by using the Equations (7)–(10).


   p o  =   T P + T N   T P + T N + F P + F N    



(7)






   p e  =  p r o b a b i l i t y  o f  P o s i t i v e + p r o b a b i l i t y  o f  N e g a t i v e   



(8)




Here,


  P r o b a b i l i t y  o f  P o s i t i v e =   T P + F P   T P + T N + F P + F N   ×   T P + F N   T P + T N + F P + F N    



(9)




and


  P r o b a b i l i t y  o f  N e g a t i v e =   F P + T N   T P + T N + F P + F N   ×   F N + T N   T P + T N + F P + F N    



(10)







Cohen’s Kappa is always between 0 and 1, with 0 indicating no agreement as well as 1 showing full agreement between the 2 raters. All models CK is almost full agreement between the actual and predictors. Table 3, shows the performance of the CCIC dataset, and Table 7 shows the performance metrics of the external dataset.




5. Discussion


Noticeable research has been done for detecting concrete surface cracks and researchers concluded different solutions. In this segment, we discuss and liken our presented model to the existing similar study.



Table 8 shows the summary of several publications for cracks detection using CNN. SegNet and MobileNet achieve   99 %   and   99.59 %   accuracy, respectively. Other mentioned papers achieve less than   99 %   accuracy except for our proposed TL AlexNet model, which obtains 1st position by achieving an accuracy of   99.90 %  . That is why our proposed transfer learning (TL) approach to the AlexNet model is an excellent candidate for concrete surface cracks detection.




6. Conclusions


In this paper, we applied a deep convolutional neural network based on transfer learning models to detect crack images using a popular crack dataset named Concrete Crack Images for Classification (CCIC). We utilized four transfer learning models for the experimental setup containing VGG16, ResNet18, DenseNet161, and AlexNet. As a performance metric, we used four terms named accuracy, recall, precision, and f1-score. Among the utilized models, AlexNet outperforms all the cases of performance metrics by achieving the accuracy of   99.90 %  , P of   99.92 %  , R of   99.80 %  , and F1-score of   99.86 %  . We also showed the training duration per epoch of all models. In this case, AlexNet achieves the first position in less time. In future work, we will conduct further research to provide a robust description of changing knowledge in our model.
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Figure 1. A block diagram of the proposed methodology. 
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Figure 2. Sample crack and non-crack images of the CCIC dataset. 
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Figure 3. Example of Random Resized Crop transformation. (Left is the original image). 
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Figure 4. Example of Random Rotation transformation. (Left is the original image). 
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Figure 5. Example of Color Jitter transformation. (Left is the original image). 
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Figure 6. Example of Random Horizontal Flip transformation. (Left is the original image). 
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Figure 7. VGG16 and TL VGG16 architectures. 






Figure 7. VGG16 and TL VGG16 architectures.



[image: Algorithms 15 00287 g007]







[image: Algorithms 15 00287 g008 550] 





Figure 8. ResNet18 and TL ResNet18 architecture. 
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Figure 9. DenseNet161 and TL DenseNet161 architectures. 
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Figure 10. AlexNet and TL AlexNet architecture. 
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Figure 11. Loss and accuracy of all TL models both in Train and validation. 
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Figure 12. Confusion matrix of TL VGG16, TL ResNet18, TL DenseNet161, and TL AlexNet. 
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Figure 13. ROC curve of different TL models. 
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Figure 14. PR curve of different TL models. 
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Figure 15. Sample crack and non-crack images of external dataset. 
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Table 1. Dataset Test-train splitting.
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	Crack
	Non-Crack
	Total





	Train
	16,000
	15,999
	31,999



	Test
	4000
	4001
	8001



	Total
	20,000
	20,000
	40,000
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Table 2. Hyperparameters of different TL methods.
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	Parameters
	Parameters Value





	Batch size
	128



	Optimizer
	Adam



	Learning rate
	0.001



	Betas
	(0.9, 0.999)



	Eps
	1 ×   10  − 8   



	Weight decay
	0



	Criterion
	Cross Entropy Loss
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Table 3. Various scores were calculated in the test dataset (CCIC) for different TL models after 30 epochs of training where P = Precision, R = Recall, F1 = F1-score, Sup = Support, A = Accuracy, CK = Cohen’s Kappa.
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Model

	

	
P (%)

	
R (%)

	
F1 (%)

	
Sup

	
A (%)

	
MCC (%)

	
CK (%)






	
TL VGG16

	
Crack

	
99.73

	
99.90

	
99.81

	
4000

	
99.81

	
99.6252

	
99.6250




	
Non-crack

	
99.90

	
99.73

	
99.81

	
4001




	
TL ResNet18

	
Crack

	
98.96

	
99.70

	
99.33

	
4000

	
99.33

	
98.6529

	
98.6502




	
Non-crack

	
99.70

	
98.95

	
99.32

	
4001




	
TLDenseNet161

	
Crack

	
99.50

	
99.85

	
99.68

	
4000

	
99.68

	
99.3507

	
99.3501




	
Non-crack

	
99.85

	
99.50

	
99.67

	
4001




	
TL AlexNet

	
Crack

	
99.92

	
99.80

	
99.86

	
4000

	
99.86

	
99.7251

	
99.7250




	
Non-crack

	
99.80

	
99.93

	
99.86

	
4001
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Table 4. Performance measurement of used TL methods during 30 epochs of training where MA_E = Maximum Accuracy at epoch, MinA_E = Minimum Accuracy at epoch, Avg_acc = Average Accuracy.
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Model

	
Train/Test

	
Max Acc (%)

	
MA_E

	
Min Acc (%)

	
MinA_E

	
Avg_acc (%)






	
TL VGG16

	
Train

	
99.76

	
30

	
98.06

	
1

	
99.61




	
Test

	
99.86

	
29

	
99.65

	
17

	
99.78




	
TL ResNet18

	
Train

	
99.09

	
29

	
95.31

	
1

	
98.74




	
Test

	
99.41

	
18

	
98.09

	
1

	
99.22




	
TL DenseNet161

	
Train

	
99.51

	
25

	
96.68

	
1

	
99.24




	
Test

	
99.68

	
27

	
99.29

	
1

	
99.60




	
TL AlexNet

	
Train

	
99.85

	
24

	
98.34

	
1

	
99.72




	
Test

	
99.90

	
13

	
99.58

	
20

	
99.84




	
All

	
Train Max Acc

	
99.85

	
TL AlexNet at Epoch 24




	
Test Max Acc

	
99.90

	
TL AlexNet at Epoch 13




	
Both Max Acc

	
99.90

	
TL AlexNet at Epoch 13
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Table 5. Training time per-epoch of TL models.
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Model

	
Duration Per-Epoch

(h:mm:ss)

	
Remarks






	
TL VGG16

	
0:08:46.729322

	
3rd place




	
TL ResNet18

	
0:03:35.636223

	
2nd place




	
TL DenseNet161

	
0:13:39.103467

	
Lowest place




	
TL AlexNet

	
0:02:53.093954

	
1st place




	
TL AlexNet takes the 1st position by achieving the least training time
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Table 6. Summary of external dataset (BWCI).






Table 6. Summary of external dataset (BWCI).





	Image Folder
	No. of Crack Images
	No. of Noncrack Images
	Total





	Test
	500
	500
	1000



	Train
	1250
	1250
	2500



	Validation
	500
	500
	1000
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Table 7. Performance result of external dataset (BWCI) where P = Precision, R = Recall, F1 = F1-score, A = Accuracy.
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Model

	

	
P (%)

	
R(%)

	
F1 (%)

	
A (%)

	
MCC (%)

	
CK (%)






	
TL VGG16

	
Crack

	
99.80

	
1.00

	
99.90

	
99.90

	
99.8000

	
99.7998




	
Non-crack

	
1.00

	
99.80

	
99.90




	
TL ResNet18

	
Crack

	
99.40

	
99.80

	
99.60

	
99.60

	
99.1999

	
99.1992




	
Non-crack

	
99.80

	
99.40

	
99.60




	
TLDenseNet161

	
Crack

	
99.60

	
1.00

	
99.80

	
99.80

	
99.6004

	
99.5996




	
Non-crack

	
1.00

	
99.60

	
99.80




	
TL AlexNet

	
Crack

	
1.00

	
99.80

	
99.90

	
99.90

	
99.7999

	
99.7997




	
Non-crack

	
99.80

	
1.00

	
99.90
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Table 8. Summary of publications using CNN-based transfer learning techniques for cracks detection.
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	SN
	Reference
	Base Model or Method
	Accuracy
	Dataset





	01
	[14]
	VGG16
	90%
	Beam, column, wall and joint brace images of a building



	02
	[16]
	FF-BLS
	96.72%
	CCIC dataset



	03
	[17]
	VGG16
	94%, 98%
	Fatigue cracks in gusset plate joints in steel bridges



	04
	[12]
	SegNet
	99%
	Concrete pavement, asphalt pavement, and bridge deck cracks images



	05
	[18]
	VGG16
	92.27%
	Concrete surfaces dataset collected from the Danish Technological Institute



	06
	[21]
	DCNN model
	97.70%
	CCIC dataset



	07
	[23]
	ResNet18
	98.80%
	Roads and bridges crack images



	08
	[24]
	GoogLeNet Inception V3
	97.30%
	Wall images at college of environmental resources of Fuzhou University



	09
	[13]
	MobileNet
	99.59%
	Wall, pavements, bridge deck images



	10
	[26]
	YOLOv5
	88.10%
	Asphalt crack pavement images



	11
	Proposed
	AlexNet
	99.90%
	CCIC dataset
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