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Abstract: Cracks in concrete cause initial structural damage to civil infrastructures such as buildings,
bridges, and highways, which in turn causes further damage and is thus regarded as a serious safety
concern. Early detection of it can assist in preventing further damage and can enable safety in advance
by avoiding any possible accident caused while using those infrastructures. Machine learning-based
detection is gaining favor over time-consuming classical detection approaches that can only fulfill the
objective of early detection. To identify concrete surface cracks from images, this research developed a
transfer learning approach (TL) based on Convolutional Neural Networks (CNN). This work employs
the transfer learning strategy by leveraging four existing deep learning (DL) models named VGG16,
ResNet18, DenseNet161, and AlexNet with pre-trained (trained on ImageNet) weights. To validate
the performance of each model, four performance indicators are used: accuracy, recall, precision, and
F1-score. Using the publicly available CCIC dataset, the suggested technique on AlexNet outperforms
existing models with a testing accuracy of 99.90%, precision of 99.92%, recall of 99.80%, and F1-score
of 99.86% for crack class. Our approach is further validated by using an external dataset, BWCI,
available on Kaggle. Using BWCI, models VGG16, ResNet18, DenseNet161, and AlexNet achieved the
accuracy of 99.90%, 99.60%, 99.80%, and 99.90% respectively. This proposed transfer learning-based
method, which is based on the CNN method, is demonstrated to be more effective at detecting cracks
in concrete structures and is also applicable to other detection tasks.

Keywords: transfer learning; alexnet; crack detection

1. Introduction

Concrete cracks are a common indication of concrete defects in civil engineering struc-
tures. It affects structural health and induces an additional risk of unexpected breakdowns
and accidents [1,2]. Hence, detecting cracks regularly and taking appropriate actions for the
safety of the concrete structure is of great significance. The traditional method of detecting
cracks on concrete structures relies on professional observation. Such conventional methods
are not only costly but also laborious, time-consuming, and on many occasions, dangerous
too [3]. However, the recent advancement of machine learning-based image processing
technologies has gained attention as an efficient and automated method to detect cracks on
concrete structures that also overcome the cons of manual methods [4].
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The growing computer vision community working on different image-detection meth-
ods. It has proposed many techniques over the decades, including thresholding [5], edge
detection [6], and wavelet transforms [7], to name a few, where some of these methods
address concrete crack detection problems. However, this field needs an efficient and
reliable solution as the concrete images are challenged with various surface textures, irreg-
ularity of cracks, and background complexity that differs crack detection from other image
analysis applications.

Recently, deep learning-based models, predominantly neural networks with multiple
layers, are playing a significantly successful role in feature learning [8]. On top of that,
the availability of high-performing computing facilities and ongoing improvement of
excellent training methods on available datasets drive the rapid development of deep
learning. In this saga, the convolutional neural network (CNN) is a feed-forward neural
network that performs excellently in large-scale image processing [9,10]. Although some of
these models proved excellent in feature extractions on different applications, their accuracy
requires improvement for concrete crack detection. To achieve efficient performance, reduce
training time, and overcome the lack of a humongous dataset, in this paper, we have
proposed a method of transfer learning-based CNN with the pre-trained model that shows
significant improvement [11]. Our work has made the following contribution:

• We conduct experiments on the CCIC dataset with four different CNN models (VGG16,
ResNet18, DenseNet161, and AlexNet), applying the transfer learning technique for
detecting concrete surface cracks from images and examination with other models to
demonstrate the success of the suggested model.

• We designed our model such that every CNN model has only one fully connected (FC)
layer, having two output features for binary classification. We modified the VGG16
and AlexNet models by replacing the last three FC layers with only one FC layer.

• Our strategy is the most compatible with AlexNet, and it outperforms the competition.
AlexNet achieves 99.90% accuracy on the validation set on the CCIC dataset.

• The proposed method demonstrates superior crack detection for concrete structures,
which can efficiently be utilized for other detection purposes.

The paper is now organized as follows. We provided a brief review of the literature
in Section 2. Section 3 includes methodology, which describes experimental Setup, Model
Training, and Evaluation. Section 4 presents the result analysis and discussions. The paper
is concluded in Section 5.

2. Literature Review

Sometimes, some research work has been done based on transfer learning for various
types of crack detection. In [12], the authors presented a practical deep-learning-based
crack detection model for three types of crack images, including concrete pavement, asphalt
pavement, and bridge deck cracks. Also, they proposed an encoder-decoder structural
model with a fully convolutional neural network, named PCSN, also known as SegNet,
and achieved 99% accuracy. In [13], the MobileNet-based transfer learning model is
proposed for wall crack detection as well as authors got 99.59% accuracy. In [14], a transfer
learning approach was applied to the VGG16 model to recognize structural damage and
achieved 90% accuracy. In [15], a deep transfer learning method based on YOLOv3 and
RetinaNet models, pre-trained on the COCO dataset, was proposed for detecting rail surface
cracks. In 2021, a novel method, FF-BLS, was proposed that could accurately classify crack
and non-crack images with an accuracy of 96.72% [16]. In 2019, a transfer learning approach
on the VGG16 pre-trained model achieved 94% accuracy, and slightly fine-tuning a well-
trained FC layer with VGG16 achieved 98% accuracy [17]. In 2018, a transfer learning
method on the VGG16 pre-trained model gained 92.27% accuracy after training with
less than 3500 images [18]. They conclude the transfer learning approach is suitable to
train on limited datasets. In [19], an image segmentation model based on ResNet101 was
proposed for concrete crack detection with 94.52% precision and 95.25% recall accuracy
in 2021. In 2021, a deep learning model was proposed, and although they achieved
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good accuracy on training, validation accuracy was 97.7% for the CCIC [20] dataset [21].
A deep, fully convolutional neural network named CrackSegNet with dilated convolution,
spatial pyramid pooling, and skip connection modules was proposed to detect concrete
cracks in tunnels [22]. In 2021, three kinds of deep neural networks, AlexNet, ResNet18,
and VGGNet13, were compared and found ResNet18 (accuracy 98.8%) performs well
compared with the remaining two models [23]. In 2021, the transfer learning method was
applied on GoogLeNet Inception V3 and CNN-Crack; GoogLeNet Inception V3 performs
well compared to the other one with an accuracy of 97.3% on drone cameras [24]. In [25],
vision-based metal crack detection was proposed. In 2021, a pavement crack detection
method based on the YOLOv5 model was proposed with 88.1% accuracy [26]. Recently
in 2021, a railway slab crack detection method was proposed based on the VGG16 model
and achieved 81.84%, 67.68%, and 84.55% in precision, IoU, and F1-score, respectively [27].
In [28], a deep learning model was developed for ceramic crack segmentation. In [29],
a concrete air voids detection and segmentation method was proposed based on the path
aggregation network (PANet). In [30], a thermal crack detection method, U-Net, was
proposed to be used in fire-exposed concrete structures and achieved 78.12% Intersection
over Union (IoU). In [31], a dilated convolution with Resnet-18 as the basic network model
was proposed for detecting concrete cracks. In [32], a concrete crack detection method
using a U-net fully convolutional network was proposed in this paper.

In this experiment, we built a concrete cracks detection model using the transfer
learning (TL) approach on various well-known CNN models. We applied four available
CNN models named VGG16, ResNet18, DenseNet161, and AlexNet with pre-trained
(trained on ImageNet) weights for utilizing the transfer learning approach. TL-based CNN
approach achieves over 99% accuracy for all the models. Our approach fits well with
AlexNet most, and its performance outweighs others. AlexNet achieves 99.90% accuracy
on the validation set after only 13 epochs of training. The training duration provides better
timing over VGG16, ResNet18, and DenseNet161 models.

3. Materials and Methods

In this work, we presented a transfer learning method for detecting concrete surface
cracks with high accuracy. Figure 1 illustrates the detailed block diagram of the methodology.

Dataset Splitting
(Train & Test)Dataset

Data 
Augmentation

& Transformation

Design Transfer 
Learning Model

Model Training & 
Evaluation

Proposed ModelPrediction

Input 
ImageCrack No Crack

Figure 1. A block diagram of the proposed methodology.

We divided our collected dataset into two sets: train and test. The train set is used for
method training, while the test set is used for model validation and model testing. The split-
ting procedure was carried out at random. On the training dataset, data augmentation,
and transformations take place. Following that, we designed transfer learning models.
On designed TL models, model training and evaluation take place. Then we compare the
TL methods before displaying the best TL method proposed. Finally, we feed the input
images into the best TL model that has been proposed, and it produces the expected result,
which is either crack or non-crack.
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3.1. Dataset Description

The utilized dataset in this research paper is Concrete Crack Images for Classification
(CCIC) [20]. It contains concrete images having cracks and non-cracks, collected from
various METU Campus Buildings. The dataset is classified into positive and negative
classes, referring to cracks and non-cracks images, respectively. There are 40,000 images
with 227 × 227 pixels with RGB channels, and each type has 20,000 images. The dataset
is generated from 458 high-resolution (4032 × 3024 pixels) images taken from floors and
walls of various concrete buildings. Images are taken with the camera facing directly to
the concrete surfaces keeping about a one-meter distance. The images are captured on the
same day with similar illumination conditions. The concrete surface has variation because
of plastering, paint, exposure, etc. But no data augmentation is applied [33]. Some cracks
and non-cracks images of the used dataset are shown in Figure 2.

Figure 2. Sample crack and non-crack images of the CCIC dataset.

3.2. Dataset Splitting

Our dataset consists of 20,000 cracks and 20,000 non-cracks images, in a total of
40,000 images. We split the datasets into 2 groups, with ratios of 80% and 20% for the Train
set as well as the Test or Validation set, respectively. After randomly splitting the dataset
into train along with test sets, we obtained 31,999 images (16,000 cracks and 15,999 non-
cracks images) in the train set and 8001 (4000 cracks and 4001 non-cracks) images in the test
set. After using the test dataset for validation of the model, the training dataset is used for
training the model and calculating various evaluation matrices. Dataset splitting is shown
in Table 1 briefly.

Table 1. Dataset Test-train splitting.

Crack Non-Crack Total

Train 16,000 15,999 31,999
Test 4000 4001 8001
Total 20,000 20,000 40,000

3.3. Data Augmentation and Transformation

Deep learning models perform very well on large datasets. Data augmentation is
a crucial technique in deep learning for a limited dataset that enhances the size and
quality of a training dataset to build a better deep learning model. There are various data
augmentation techniques like flipping, cropping, rotation, color space transformation, noise
injection, etc. [34]. We used data augmentation and transfer learning to overcome the lack
of training data as well as get rid of overfitting. In our training dataset, we use some of the
data augmentation techniques, which are described below.

3.3.1. Random-Resized-Crop Method

The random-Resized-Crop method is an augmentation method that crops a random
portion of the image and resizes it according to the desired size. Such a crop is made by a
random area depending on a scale and an arbitrary aspect ratio. The scale specifies a lower
and upper bound for the arbitrary location of the crop, and the ratio specifies required
bounds from the random aspect ratio of the yield before resizing. In our training dataset,
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scale = (0.8, 1.0), ratio = (0.75, 1.33) and size = (227, 227) are used. Figure 3 shows an
example of this technique.

Figure 3. Example of Random Resized Crop transformation. (Left is the original image).

3.3.2. Random-Rotation Method

This augmentation method rotates the image by randomly selected angles from a
specific range of degrees. In our training dataset, angles are selected between −15 degrees
and +15 degrees. The area outside the rotated image is filled with pixel value 0. Figure 4
shows an example of the Random Rotation technique.

Figure 4. Example of Random Rotation transformation. (Left is the original image).

3.3.3. Color-Jitter Method

This augmentation method randomly changes the brightness, contrast, saturation,
and hue of an image. An example of this method is shown in Figure 5.

Figure 5. Example of Color Jitter transformation. (Left is the original image).

3.3.4. Random-Horizontal-Flip Method

This augmentation method horizontally flips the given image randomly with a speci-
fied probability. Our training dataset has been flipped with 50% probability. An example of
a Random Horizontal Flip is exhibited in Figure 6.

Figure 6. Example of Random Horizontal Flip transformation. (Left is the original image).



Algorithms 2022, 15, 287 6 of 17

We used the above data augmentation techniques for training datasets and did not
use data augmentation techniques for testing test data. Besides, some preprocessing stages
are applied to both train and test datasets. CCIC dataset’s image dimension is 227 × 227.
But the desired input image dimension of our proposed model is 224 × 224. For this reason,
preprocessing is applied to achieve desired image dimensions. Center cropping is applied
on the 227 × 227 dimension image for getting a 224 × 224 dimension image. Also, we
apply normalization to all images. Our pre-trained models expect input 3-channel RGB
images normalized using mean of [0.485, 0.456, 0.406] and standard deviation of [0.229,
0.224, 0.225].

3.4. Design Transfer Learning Model

Image recognition has advanced remarkably, mostly because deep learning (DL)
and deep convolutional neural networks (CNNs) with large-scale annotated datasets are
now widely available. With enough training data, CNNs can learn data-driven, highly
representative, hierarchical image characteristics. Currently, there are three main methods
for effectively employing CNNs for image classification: building the CNN from scratch,
using pre-trained CNN features that are available for purchase, and using unsupervised
CNN pre-training with supervised fine-tuning. Transfer learning, or fine-tuning CNN
models pre-trained from natural image datasets to image problems, is another efficient
technique. A step in the process by which computers may examine a picture and assign it
the proper label is image categorization [35–37].

Overall, CNN and deep learning (DL) are key components of image categorization
nowadays. DL methods can tackle issues with increasingly complicated, highly variable
functions. It also involves a sizable picture dataset, even one without labels. Machines
can recognize and extract characteristics from images with the aid of DL. The image
categorization [35,38] on CNN, therefore, generates a lot of attention. To perform tasks
correctly, DL approaches need a lot of data [8]. Having access to a wealth of knowledge is
not necessarily true. Pre-trained models are applied in this situation. In this study, transfer
learning (TL) is the reuse of a deep learning pre-trained approach where knowledge is
driven from one model to another [39].

Several well-known pre-trained models exhibit excellent performance across a range
of computer vision issues. Some of them are VGG [40], ResNet [41], DenseNet [42],
AlexNet [43], Inception v3 [44], GoogLeNet [45], MobileNet [46] etc. These models are
trained on extensive datasets with various classes of images. Using TL methods, it is now
possible to achieve very good performance on several computer vision issues with a lack of
data and computing power. This paper experimented on four well-known models named
VGG, ResNet, DenseNet, and AlexNet. In the following sections, we discuss these transfer
learning models.

3.4.1. VGG16

VGG16 is a CNN model trained on the ImageNet dataset of over 1.2 million images
from 1000 classes [40]. The architecture of the VGG16 model is depicted in Figure 7.

There are several convolutional (conv) layers, where filters with 3 × 3 kernels are used.
The convolution stride and padding are fixed to 1 pixel. Max-pooling is applied, followed
by some conv layers with 2 × 2 kernels, a stride of 2, and padding of 0. The input to conv
layer is of fixed size 224 × 224 RGB image.

Three FC layers are added in the last part of the architecture, and the last layer is
configured for 1000 classes. The Rectified Linear Unit (ReLU), a non-linear activation
function is used by all hidden layers.

We apply the pre-trained VGG16 model to the proposed Transfer Learning (TL) model.
We call it TL VGG16. We remove the last three FC layers and replace them with an FC2
layer such that output features match for binary classification.
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Figure 7. VGG16 and TL VGG16 architectures.

3.4.2. ResNet18

ResNet is a CNN technique presented in the paper titled Deep Residual Learning for
Image Recognition’ [41]. The model trained on ImageNet dataset of over 1.2 million images
belonging to 1000 classes. The architecture of the ResNet18 model is depicted in Figure 8.

There are several convolutional (conv) layers. Filters with 7 × 7 kernels, strides of
2, and padding of 3 are used in the first conv layer. In the remaining conv layers, filters
with 3 × 3 kernels, strides of 1, and padding of 1 are used except for some down-sampling
conv with 1 × 1 kernels and stride of 2. The pattern remains the same, bypassing the
input every 2 convolutions. Max-pooling is applied following the 1st conv layer with
3 × 3 kernels, a stride of 2 as well as padding of 1. The input to conv layer is of fixed size
224 × 224 RGB image.

Three FC layers are added in the last part of the architecture, and the last layer is
configured for 1000 classes. Most hidden layers employ Batch Normalization, and a
convolutional layer after ReLU.

Figure 8. ResNet18 and TL ResNet18 architecture.

We use the pre-trained ResNet18 method for the proposed TL ResNet18 model. We
replace the last FC layer with a Fully-Connected FC2 layer such that output features match
for binary classification.

3.4.3. DenseNet161

DenseNet161 is a CNN model proposed by Zhuang et al. [42]. They have trained their
model on an ImageNet dataset of over 1.2 million images from 1000 classes. A typical
architecture of the DenseNet161 model is shown in Figure 9. It can be seen that there are a
series of convolution (conv) layers within it, where every layer has access to its preceding
feature maps. In the first conv layer, filters with 7 × 7 kernels, strides of 2, and padding
of 3 are used. Then Normalization, ReLU, and max-pooling with 3 × 3 kernels, a stride
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of 2, and padding of 1 are used. After the first conv layer, there are four dense blocks and
each block has corresponding 6, 12, 36, and 24 dense layers. Each dense layer consists of
two conv layers; the preceding conv layer has a filter with 1 × 1 kernels and stride of 1
and, the latter conv layer has a filter with 3 × 3 kernels, a stride of 1, and padding of 1.
Before conv layer, Batch Normalization, and ReLU are used. In the middle of two dense-
blocks transition layers with Batch Normalization, ReLU, conv layer with 1 × 1 kernels
and a stride of 1 and then an AvgPool with 2 × 2 kernels, a stride of 2, and padding of 0 are
used. After the 4th dense-block Batch, normalization is applied.

An FC layer is added in the last part of the architecture and configured for 1000 classes.

Figure 9. DenseNet161 and TL DenseNet161 architectures.

We used the pre-trained DenseNet161 model for the proposed TL DenseNet161 model.
We have replaced the last FC layer with an FC2 layer such that output features match binary
classification. The input to conv layer is of fixed size 224 × 224 RGB image.

3.4.4. AlexNet

AlexNet is a CNN model proposed by Alex Krizhevsky [43]. The model trained on
ImageNet dataset of over 1.2 million images belonging to 1000 classes. The architecture of
the AlexNet model is depicted in Figure 10. There are several convolutional (conv) layers.
In the conv layer, filters with 11 × 11 kernels, strides of 4, and padding of 2 are used. In the
2nd conv layer, filters with 5 × 5 kernels, strides of 1, and padding of 2 are used. In the
remaining three conv layers, filters with 3 × 3 kernels, strides of 1, and padding of 1 are
used. Max-pooling is applied, followed by conv layers with 3 × 3 kernels, a stride of 2,
and padding of 0.

Three FC layers are added in the last part of the architecture. All hidden layers use the
ReLU, a non-linear activation function. Dropout with the possibility of 0.5 is utilized before
the first two FC layers. The last layer is configured for 1000 classes.

We use the pre-trained AlexNet model for the proposed TL AlexNet model. We remove
the last three FC layers and replace them with an FC2 layer such that output features match
for binary classification. The input to conv layer is of fixed size 224 × 224 RGB image.
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Figure 10. AlexNet and TL AlexNet architecture.

3.5. Experimental Setup, Model Training, and Evaluation

All the experiments take place in a Google Colaboratory notebook with a GPU runtime.
Training is taken repeatedly throughout a number of epochs. We train our models for
30 epochs. After using the test dataset for validation of the model, the training dataset is
applied for training the model. We use the PyTorch library primarily developed by the AI
Research lab of Facebook. We implement the PyTorch data loader to take data of 128 batch
size. We utilize the same hyperparameters optimization setup for all architectures. Table 2
shows the used hyperparameters in the experimental setup.

Table 2. Hyperparameters of different TL methods.

Parameters Parameters Value

Batch size 128
Optimizer Adam

Learning rate 0.001
Betas (0.9, 0.999)
Eps 1 × 10−8

Weight decay 0
Criterion Cross Entropy Loss

We determine the cross-entropy loss on the train as well as test sets for each epoch.
We employ the Adam optimizer [47] using the mentioned parameters value.

In Figure 11, train losses, validation losses along with train accuracies as well as
validation accuracies of each TL method are depicted. In the experimental observation,
we see that there is no over-fitting occurring in any of the TL models. In the first row
of Figure 11, the TL VGG16 models show that both train and validation loss is reduced
very quickly, and they do not improve for a higher number of epochs. The TL ResNet18
model’s train and validation loss are decreased gradually and the validation loss is always
lower than the training loss with very little difference. The TL DenseNet161 model’s
train and validation loss follow an almost similar pattern to the TL ResNet18 model.
On the other hand, we see in the training and validation loss of TL AlexNet that the
bare difference between the two lines, unlike ResNet18 and DenseNet161. Hence, we can
conclude this model converge quickly with very good generalization capability. Whereas,
train along with validation accuracy of several TL methods are presented in the second
row Figure 11. We see a similar pattern like the train and validation loss of different TL
models. The ResNet18 and DenseNet161 follow the same pattern: validation accuracy
is always greater than the training accuracy. Also, train accuracy is always less than the
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validation accuracy in the VGG16 model. But the TL AlexNet model shows the different
patterns, the train, and validation accuracy overlap, and achieves high accuracy among
other models. The AlexNet shows good generalization among others.
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Figure 11. Loss and accuracy of all TL models both in Train and validation.

We clearly see that AlexNet achieves the best score for the lowest training and vali-
dation losses among all other models. Also, we clearly see that AlexNet achieves the best
score for the highest training and validation accuracies among all other models.

4. Result Exploration and Argument

Through the confusion matrix, we can find out the P, R, F1, and Accuracy. These are
the criteria for evaluating the classification model. Confusion matrix has four keywords of
this including True Positive, False Positive, False Negative, and True Negative [48].

We can define Precision, Recall, F1-score, and Accuracy mathematically by using the
Equations (1)–(4) respectively.

Precision, P =
TP

TP + FP
(1)

Recall, R =
TP

TP + FN
(2)

F1 − score, F1 = 2 × P × R
P + R

(3)

Accuracy =
Number o f correct predictions

Total number o f predictions made
(4)

After 30 epochs of training of all TL models, an evaluation is made on a test dataset
consisting of 8001 images where 4000 images are cracks and 4001 images are non-cracks.
Figure 12 illustrates the confusion matrix of all models.

The TL VGG16 predicts 3996 (TP) cracks and 3990 (TN) non-cracks images correctly,
as well as 4 (FN) cracks images predicted as non-crack, and 11 (FP) non-cracks images
predicted as cracks Figure 12a. The number of FN is minimum among other models.
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(a) TL VGG16 (b) TL ResNet18

(c) TL DenseNet161 (d) TL AlexNet

Figure 12. Confusion matrix of TL VGG16, TL ResNet18, TL DenseNet161, and TL AlexNet.

The TL ResNet18, on the other hand, predicts 3988 (TP) cracks and 3959 (TN) non-
cracks images correctly, as well as 12 (FN) cracks images predicted as non-crack and 42
(FP) non-cracks images predicted as cracks Figure 12b. In this case, the number of FP is the
highest among other models.

We can see in the TL DenseNet161 model’s confusion matrix Figure 12c, that it predicts
3994 (TP) cracks and 3981 (TN) non-cracks images correctly, as well as 8 (FN) cracks images
predicted as non-crack and 20 (FP) non-cracks image predicted as cracks. TL AlexNet
Figure 12d shows the balance between FN and FP and shows the minimum number of FP
(3 FP) among all other models.

Table 3 displays several standard assessment scores, with the number of samples
utilized during the evaluation represented in the Support column which is denoted as Sup.

From Table 3, we can conclude that TL AlexNet achieves the highest 99.86% F1 scores
and 99.86% accuracies among other models and precision of 99.92% on cracks and recall of
99.93% on non-cracks. In the case of popular statistical tests named MCC and CK (Cohen’s
Kappa), AlexNet performs better than others. The values of MCC and CK are almost
the same, we took 4 digits after the decimal point. Although, AlexNet achieves the best
validation accuracy of 99.90% during the 13th epoch training, shown in Table 4.

As a succinct outline of every TL algorithm throughout training as well as validation,
Table 4 displays the highest, lowest, and average accuracy. From the summary, we can
conclude that AlexNet models achieve the best train accuracy of 99.85% on the 24th epoch
and the best validation accuracy of 99.90% on the 13th epoch among all other models.

Table 5 shows the training duration of each epoch during training on Google Colabo-
ratory GPU runtime. The TL AlexNet achieves 1st place by taking minimum training time
among the other models.
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Table 3. Various scores were calculated in the test dataset (CCIC) for different TL models after
30 epochs of training where P = Precision, R = Recall, F1 = F1-score, Sup = Support, A = Accuracy,
CK = Cohen’s Kappa.

Model P (%) R (%) F1 (%) Sup A (%) MCC (%) CK (%)

TL VGG16 Crack 99.73 99.90 99.81 4000 99.81 99.6252 99.6250Non-crack 99.90 99.73 99.81 4001

TL ResNet18 Crack 98.96 99.70 99.33 4000 99.33 98.6529 98.6502Non-crack 99.70 98.95 99.32 4001

TLDenseNet161 Crack 99.50 99.85 99.68 4000 99.68 99.3507 99.3501Non-crack 99.85 99.50 99.67 4001

TL AlexNet Crack 99.92 99.80 99.86 4000 99.86 99.7251 99.7250Non-crack 99.80 99.93 99.86 4001

Table 4. Performance measurement of used TL methods during 30 epochs of training where
MA_E = Maximum Accuracy at epoch, MinA_E = Minimum Accuracy at epoch, Avg_acc = Av-
erage Accuracy.

Model Train/Test Max Acc (%) MA_E Min Acc (%) MinA_E Avg_acc (%)

TL VGG16 Train 99.76 30 98.06 1 99.61
Test 99.86 29 99.65 17 99.78

TL ResNet18 Train 99.09 29 95.31 1 98.74
Test 99.41 18 98.09 1 99.22

TL DenseNet161 Train 99.51 25 96.68 1 99.24
Test 99.68 27 99.29 1 99.60

TL AlexNet Train 99.85 24 98.34 1 99.72
Test 99.90 13 99.58 20 99.84

All
Train Max Acc 99.85 TL AlexNet at Epoch 24
Test Max Acc 99.90 TL AlexNet at Epoch 13
Both Max Acc 99.90 TL AlexNet at Epoch 13

Table 5. Training time per-epoch of TL models.

Model Duration Per-Epoch
(h:mm:ss) Remarks

TL VGG16 0:08:46.729322 3rd place
TL ResNet18 0:03:35.636223 2nd place

TL DenseNet161 0:13:39.103467 Lowest place
TL AlexNet 0:02:53.093954 1st place

TL AlexNet takes the 1st position by achieving the least training time

We also depicted the receiver operating characteristic (ROC) curve for comparing
the models in the case of appropriate classification results. It is measured based on the
performance of the false positive rate and true positive rate respectively. Figure 13 shows
the ROC curve of different TL models in our works. In this figure, we denote four curves of
red, green, blue, and orange colored for AlexNet, DenseNet, VGG16, and ResNet18 models.
All models’ performances are good. On the left side of this figure, all curves are looking
together. For understanding better, we observed it as zoom out which is shown in the right
portion of the figure. From this figure, we can see that AlexNet places the highest position
over other models.

We also presented another way of evaluating the performance of models named the
precision-recall (PR) curve. Figure 14 shows the PR curve of different TL models in our
works. In this figure, we mark four curves of red, green, blue, and orange colored for
AlexNet, DenseNet, VGG16, and ResNet18 models. In the upper side of this figure, all
curves are looking together. For understanding better, we observed it as zoom out which
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is shown in the down portion of the figure. From this figure, we can see that all models’
performance is good.
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Figure 13. ROC curve of different TL models.
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Figure 14. PR curve of different TL models.

In addition, we used the external dataset Building Wall Crack Images (BWCI) from
Kaggle to validate our models. This is an open-source dataset. BWCI consists of wall crack
images with 27 × 27 pixels. Table 6 shows the description of the dataset and a few samples
are shown in Figure 15.
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Table 6. Summary of external dataset (BWCI).

Image Folder No. of Crack Images No. of Noncrack Images Total

Test 500 500 1000
Train 1250 1250 2500

Validation 500 500 1000

Figure 15. Sample crack and non-crack images of external dataset.

Table 7 represents the result of all models on the external dataset. We used only the
test folder dataset to validate the models. It can be seen that the performance for both CCIC
and external datasets BWCI are almost same.

Table 7. Performance result of external dataset (BWCI) where P = Precision, R = Recall, F1 = F1-score,
A = Accuracy.

Model P (%) R(%) F1 (%) A (%) MCC (%) CK (%)

TL VGG16 Crack 99.80 1.00 99.90 99.90 99.8000 99.7998Non-crack 1.00 99.80 99.90

TL ResNet18 Crack 99.40 99.80 99.60 99.60 99.1999 99.1992Non-crack 99.80 99.40 99.60

TLDenseNet161 Crack 99.60 1.00 99.80 99.80 99.6004 99.5996Non-crack 1.00 99.60 99.80

TL AlexNet Crack 1.00 99.80 99.90 99.90 99.7999 99.7997Non-crack 99.80 1.00 99.90

Two statistical tests have been carried out, named the Matthews correlation coefficient
(MCC) and Cohen’s Kappa Statistic [49] for comparing the performance. Matthews cor-
relation coefficient (MCC) is a popular performance metric that is used in the case of an
imbalanced dataset. Although the utilized dataset in this paper is a balanced dataset, it is
defined by the following mathematical equation number 5.

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(5)

The range of MCC is [−1–1]. The value of MCC is near to 1 is better. All of the utilized
models perform well. Their values are near to 1. That means, the models classified the
crack images accurately.

Cohen’s Kappa Statistic is applied to assess the degree of agreement between two raters
who categorize objects into mutually exclusive groups which are shown mathematically in
Equation (6).

CK =
(po − pe)

(1 − pe)
(6)

Here, po is the relative agreement of raters’ observation. pe denotes the theoretical
probability of random agreement. we can calculate po and pe between the raters by using
the Equations (7)–(10).

po =
TP + TN

TP + TN + FP + FN
(7)
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pe = probability o f Positive + probability o f Negative (8)

Here,

Probability o f Positive =
TP + FP

TP + TN + FP + FN
× TP + FN

TP + TN + FP + FN
(9)

and
Probability o f Negative =

FP + TN
TP + TN + FP + FN

× FN + TN
TP + TN + FP + FN

(10)

Cohen’s Kappa is always between 0 and 1, with 0 indicating no agreement as well as
1 showing full agreement between the 2 raters. All models CK is almost full agreement
between the actual and predictors. Table 3, shows the performance of the CCIC dataset,
and Table 7 shows the performance metrics of the external dataset.

5. Discussion

Noticeable research has been done for detecting concrete surface cracks and researchers
concluded different solutions. In this segment, we discuss and liken our presented model
to the existing similar study.

Table 8 shows the summary of several publications for cracks detection using CNN.
SegNet and MobileNet achieve 99% and 99.59% accuracy, respectively. Other mentioned
papers achieve less than 99% accuracy except for our proposed TL AlexNet model, which
obtains 1st position by achieving an accuracy of 99.90%. That is why our proposed transfer
learning (TL) approach to the AlexNet model is an excellent candidate for concrete surface
cracks detection.

Table 8. Summary of publications using CNN-based transfer learning techniques for cracks detection.

SN Reference Base Model or Method Accuracy Dataset

01 [14] VGG16 90% Beam, column, wall and joint brace images of a building
02 [16] FF-BLS 96.72% CCIC dataset
03 [17] VGG16 94%, 98% Fatigue cracks in gusset plate joints in steel bridges

04 [12] SegNet 99% Concrete pavement, asphalt pavement, and bridge deck
cracks images

05 [18] VGG16 92.27% Concrete surfaces dataset collected from the Danish
Technological Institute

06 [21] DCNN model 97.70% CCIC dataset
07 [23] ResNet18 98.80% Roads and bridges crack images

08 [24] GoogLeNet Inception V3 97.30% Wall images at college of environmental resources of
Fuzhou University

09 [13] MobileNet 99.59% Wall, pavements, bridge deck images
10 [26] YOLOv5 88.10% Asphalt crack pavement images
11 Proposed AlexNet 99.90% CCIC dataset

6. Conclusions

In this paper, we applied a deep convolutional neural network based on transfer
learning models to detect crack images using a popular crack dataset named Concrete
Crack Images for Classification (CCIC). We utilized four transfer learning models for
the experimental setup containing VGG16, ResNet18, DenseNet161, and AlexNet. As a
performance metric, we used four terms named accuracy, recall, precision, and f1-score.
Among the utilized models, AlexNet outperforms all the cases of performance metrics by
achieving the accuracy of 99.90%, P of 99.92%, R of 99.80%, and F1-score of 99.86%. We also
showed the training duration per epoch of all models. In this case, AlexNet achieves the
first position in less time. In future work, we will conduct further research to provide a
robust description of changing knowledge in our model.
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