A Symbolic Method for Solving a Class of Convolution-Type Volterra–Fredholm–Hammerstein Integro-Differential Equations under Nonlocal Boundary Conditions
Abstract
:1. Introduction
2. Formulation and Solution of Nonlinear VFIDEs
3. Solution of Linear VFIDEs
4. Volterra Integro-Differential Operators of Convolution Type
5. Examples
5.1. Example 1
- (i)
- Initial condition
- (ii)
- Two-point boundary condition
- (iii)
- Multipoint and integral boundary condition
- (i)
- (ii)
- (iii)
5.2. Example 2
5.3. Example 3
5.4. Example 4
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wazwaz, A.M. Volterra-Fredholm Integro-Differential Equations. In Linear and Nonlinear Integral Equations; Springer: Berlin/Heidelberg, Germany, 2011; pp. 285–309. [Google Scholar] [CrossRef]
- Rahman, M.; Jackiewicz, Z.; Welfert, B.D. Stochastic approximations of perturbed Fredholm Volterra integro-differential equation arising in mathematical neurosciences. Appl. Math. Comput. 2007, 186, 1173–1182. [Google Scholar] [CrossRef]
- Amin, R.; Nazir, S.; García-Magariño, I. A collocation method for numerical solution of nonlinear delay integro-differential equations for wireless sensor network and internet of things. Sensors 2020, 20, 1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Providas, E. On the exact solution of nonlocal Euler–Bernoulli beam equations via a direct approach for Volterra-Fredholm integro-differential equations. AppliedMath 2022, 2, 269–283. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. rigorous power series expansion technique High-order nonlinear Volterra–Fredholm-Hammerstein integro-differential equations and their effective computation. Appl. Math. Comput. 2014, 247, 410–416. [Google Scholar] [CrossRef]
- Cherruault, Y. A reliable method for obtaining approximate solutions of linear and nonlinear Volterra-Fredholm integro-differential equations. Kybernetes 2005, 34, 1034–1048. [Google Scholar] [CrossRef]
- Hamoud, A.A.; Ghadle, K.P. Existence and uniqueness of the solution for Volterra-Fredholm integro-differential equations. J. Sib. Fed. Univ. Math. Phys. 2018, 11, 692–701. [Google Scholar]
- Yalçinbaş, S.; Sezer, M. The approximate solution of high-order linear Volterra–Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math. Comput. 2000, 112, 291–308. [Google Scholar] [CrossRef]
- Maleknejad, K.; Mahmoudi, Y. Taylor polynomial solution of high-order nonlinear Volterra–Fredholm integro-differential equations. Appl. Math. Comput. 2003, 145, 641–653. [Google Scholar] [CrossRef]
- Darania, P.; Ivaz, K. Numerical solution of nonlinear Volterra–Fredholm integro-differential equations. Comput. Math. Appl. 2008, 56, 2197–2209. [Google Scholar] [CrossRef] [Green Version]
- Sohaib, M.; Haq, S. An efficient wavelet-based method for numerical solution of nonlinear integral and integro-differential equations. Math. Methods Appl. Sci. 2020, 1–15. [Google Scholar] [CrossRef]
- Maleknejad, K.; Basirat, B.; Hashemizadeh, E. Hybrid Legendre polynomials and Block-Pulse functions approach for nonlinear Volterra–Fredholm integro-differential equations. Comput. Math. Appl. 2011, 61, 2821–2828. [Google Scholar] [CrossRef] [Green Version]
- Căruntu, B.; Paşca, M.S. Approximate Solutions for a Class of Nonlinear Fredholm and Volterra Integro-Differential Equations Using the Polynomial Least Squares Method. Mathematics 2021, 9, 2692. [Google Scholar] [CrossRef]
- Asgari, M.; Mesforush, A.; Nazemi, A. The numerical method for solving Volterra–Fredholm integro-differential equations of the second kind based on the meshless method. Asian-Eur. J. Math. 2022, 15, 2250002. [Google Scholar] [CrossRef]
- Shahmorad, S. Numerical solution of the general form linear Fredholm–Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 2005, 167, 1418–1429. [Google Scholar] [CrossRef]
- Momani, S.; Arqub, O.A.; Hayat, T.; Al-Sulami, H. A computational method for solving periodic boundary value problems for integro-differential equations of Fredholm–Volterra type. Appl. Math. Comput. 2014, 240, 229–239. [Google Scholar] [CrossRef]
- Babolian, E.; Masouri, Z.; Hatamzadeh-Varmazyar, S. Numerical solution of nonlinear Volterra–Fredholm integro-differential equations via direct method using triangular functions. Comput. Math. Appl. 2009, 58, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, M.I.; Gámez, D.; López Linares, A.J. Fixed-Point Iterative Algorithm for the Linear Fredholm-Volterra Integro-Differential Equation. J. Appl. Math. 2012, 2012, 370894. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, M.I.; Gámez, D.; López Linares, A.J. Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm–Volterra integro-differential equation. J. Comput. Appl. Math. 2013, 252, 52–61. [Google Scholar] [CrossRef]
- Touati, S.; Lemita, S.; Ghiat, M.; Aissaoui, M.Z. Solving a nonlinear Volterra-Fredholm integro-differential equation with weakly singular kernels. Fasc. Math. 2019, 62, 155–168. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L. SCW method for solving the fractional integro-differential equations with a weakly singular kernel. Appl. Math. Comput. 2016, 275, 72–80. [Google Scholar] [CrossRef]
- Rahimkhani, P.; Ordokhani, Y.; Babolian, E. Fractional-order Bernoulli functions and their applications in solving fractional Fredholem–Volterra integro-differential equations. Appl. Numer. Math. 2017, 122, 66–81. [Google Scholar] [CrossRef]
- Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Combination of Lucas wavelets with Legendre–Gauss quadrature for fractional Fredholm–Volterra integro-differential equations. J. Comput. Appl. Math. 2021, 382, 113070. [Google Scholar] [CrossRef]
- Yüzbaşı, S.; Sezer, M.; Kemancı, B. Numerical solutions of integro-differential equations and application of a population model with an improved Legendre method. Appl. Math. Model. 2013, 37, 2086–2101. [Google Scholar] [CrossRef]
- Rohaninasab, N.; Maleknejad, K.; Ezzati, R. Numerical solution of high-order Volterra–Fredholm integro-differential equations by using Legendre collocation method. Appl. Math. Comput. 2018, 328, 171–188. [Google Scholar] [CrossRef]
- Acar, N.I.; Daşcıoğlu, A. A projection method for linear Fredholm–Volterra integro-differential equations. J. Taibah Univ. Sci. 2019, 13, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Hesameddini, E.; Shahbazi, M. Solving multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type using Bernstein polynomials method. Appl. Numer. Math. 2019, 136, 122–138. [Google Scholar] [CrossRef]
- Reutskiy, S.Y. The backward substitution method for multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type. J. Comput. Appl. Math. 2016, 296, 724–738. [Google Scholar] [CrossRef]
- Aida-zade, K.R.; Abdullaev, V.M. On the numerical solution of loaded systems of ordinary differential equations with nonseparated multipoint and integral conditions. Numer. Analys. Appl. 2014, 7, 1–14. [Google Scholar] [CrossRef]
- Sidorov, N.A.; Sidorov, D.N. Nonlinear Volterra Equations with Loads and Bifurcation Parameters: Existence Theorems and Construction of Solutions. Diff. Equat. 2021, 57, 1640–1651. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Manzhirov, A.V. Handbook of Integral Equations, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Baiburin, M.M.; Providas, E. Exact Solution to Systems of Linear First-Order Integro-Differential Equations with Multipoint and Integral Conditions. In Mathematical Analysis and Applications; Springer Optimization and Its Applications; Rassias, T.M., Pardalos, P.M., Eds.; Springer: Cham, Switzerland, 2019; Volume 154, pp. 1–16. [Google Scholar] [CrossRef]
- Providas, E. An Algorithm for the Closed-Form Solution of Certain Classes of Volterra–Fredholm Integral Equations of Convolution Type. Algorithms 2022, 15, 203. [Google Scholar] [CrossRef]
- Providas, E. Closed-Form Solution of the Bending Two-Phase Integral Model of Euler-Bernoulli Nanobeams. Algorithms 2022, 15, 151. [Google Scholar] [CrossRef]
- Parasidis, I.N.; Providas, E. Extension Operator Method for the Exact Solution of Integro-Differential Equations. In Contributions in Mathematics and Engineering; Pardalos, P., Rassias, T., Eds.; Springer: Cham, Switzerland, 2016; pp. 473–496. [Google Scholar] [CrossRef]
- Kreyszig, E. Advanced Engineering Mathematics, 7th ed.; John Wiley & Sons. Inv.: Singapore, 1993. [Google Scholar]
- Rezaei, H.; Jung, S.M.; Rassias, T.M. Laplace transform and Hyers–Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Ma, J.; Brunner, H. A posteriori error estimates of discontinuous Galerkin methods for non-standard Volterra integro-differential equations. IMA J. Numer. Anal. 2006, 26, 78–95. [Google Scholar] [CrossRef]
- Hale, N. An ultraspherical spectral method for linear Fredholm and Volterra integro-differential equations of convolution type. IMA J. Numer. Anal. 2019, 39, 1727–1746. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Providas, E.; Parasidis, I.N. A Symbolic Method for Solving a Class of Convolution-Type Volterra–Fredholm–Hammerstein Integro-Differential Equations under Nonlocal Boundary Conditions. Algorithms 2023, 16, 36. https://doi.org/10.3390/a16010036
Providas E, Parasidis IN. A Symbolic Method for Solving a Class of Convolution-Type Volterra–Fredholm–Hammerstein Integro-Differential Equations under Nonlocal Boundary Conditions. Algorithms. 2023; 16(1):36. https://doi.org/10.3390/a16010036
Chicago/Turabian StyleProvidas, Efthimios, and Ioannis Nestorios Parasidis. 2023. "A Symbolic Method for Solving a Class of Convolution-Type Volterra–Fredholm–Hammerstein Integro-Differential Equations under Nonlocal Boundary Conditions" Algorithms 16, no. 1: 36. https://doi.org/10.3390/a16010036
APA StyleProvidas, E., & Parasidis, I. N. (2023). A Symbolic Method for Solving a Class of Convolution-Type Volterra–Fredholm–Hammerstein Integro-Differential Equations under Nonlocal Boundary Conditions. Algorithms, 16(1), 36. https://doi.org/10.3390/a16010036