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Abstract: The classical buck converter is a very common DC–DC converter, which reduces an higher
input supply voltage to a lower output load voltage. Replacing the inductor and the capacitor
by a transmission line, we obtain a distributed buck converter, which can be described by partial
differential equations. Therefore, we obtain a completely new class of model. This new topology
can be used if the load is operated at some spatial distance from the power supply, where the power
supply line is directly used as a reactive network element of the converter. In addition to the analysis
and simulation we will also investigate the control of such a converter. In this contribution, we
employ a discrepancy-based control technique. Approximating the theoretically derived feedback
law yields an easy to implement sliding mode control scheme. The controller design is based on an
ideal circuit model and verified by numerical simulation.

Keywords: buck converter; distributed model; transmission line; discrepancy-based control; sliding
mode control

MSC: 37N35; 93C05; 93C20; 93C95; 94C99

1. Introduction

The buck converter is a DC–DC converter transforming an input voltage into a lower
output voltage [1,2]. The classical topology consists of an inductor and a capacitor combined
with a diode and a transistor. Here, the diode and transistor resemble an ideal switch for the
input voltage. Applying a pulse-width modulated signal to this switch results in a reduced
apparent voltage, where the duty cycle, i.e., the ratio between closed switch position time
and the period of the signal, determines the apparent output voltage level. The low pass
character of the passive network of inductance and capacitance then results in a smoothing
of the switching voltage.

Switched converters are a field of active research in power electronics [3]. DC–DC
converters are used for consumer electronics, mobile devices, and photovoltaic appli-
cations [4,5]. For energy technology applications, the research focus is on multi-level
three-phase converters [6]. Important goals are the design of converters are costs, energy
efficiency, reliability, as well as the suppression of overshoots and higher harmonics. To
achieve these goals, control has a special role to play [2,6,7].

In contrast to the described classical configuration, a new topology replacing the
passive elements, i.e., the inductor and the capacitor, with a transmission line has been
proposed in [8] and investigated further in [9–11]. This has been motivated by the trans-
mission line model, which itself consists of distributed inductance and capacitor. The main
advantage of this configuration lies in the reduced number of required elements, i.e., no
inductor nor capacitor are required. If the load has a spatial distance from the power supply,
a cable is needed anyway. We use this cable to replace the reactive network elements of
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the classical buck converter. In some applications, the use of a transmission line may be
more advantageous than the use of an integrated inductor having a low inductance [12].
Disadvantages, however, are the significantly increased switching frequencies, due to the
small capacitance and inductance values in conventional wires, and increased system
complexity, due to the distributed nature of the transmission line. The connection of a boost
converter to the load via a transmission line is investigated in [13]. Similarly, the connection
of power converters by transmission lines is discussed in [14]. Note that transmission line
models are also used in recent publications to model electric machines [15,16].

In the scientific literature there are a lot of works on the control of classical converter
topologies. There, many control strategies are discussed, such as linear control (P/PI
control, state feedback, output feedback [2]), as well as non-linear control (e.g., by exact
linearization [17], flatness-based control [18], sliding mode [19] etc.). The circuit models
of these converters use lumped elements. Unfortunately, the above mentioned control
strategies cannot directly be applied to our converter circuit.

While previous work has addressed the modeling, analysis, and design of the dis-
tributed buck converter, this paper also addresses controller design. More precisely, the
mathematical models for distributed buck converters under resistive and inductive load
were derived in [8,9], respectively. In [11], a practical circuit realization was suggested and
successfully tested. In this contribution, we will derive first control schemes taking into
account the distributed system nature. More precisely, we employ a discrepancy-based
control technique [20–22].

The paper is structured as follows: In Section 2 we derive models for the classical, as
well as the distributed buck converter. The open-loop simulation is discussed in Section 3.
To derive control laws for this model, the basic concepts of discrepancy-based control are
presented in Section 4. Several different control strategies are derived in Section 5. We will
discuss our results and suggest further directions of research in Section 6. In Section 7 we
give a short summary and will draw some conclusions.

2. Physical Modeling
2.1. Classical Buck Converter

The schematics of a conventional buck converter is sketched in Figure 1 (left). The
converter consists of two semiconductor elements (transistor, diode) and two reactive
elements (inductor, capacitor). In this paper, the load is ohmic, i.e., a resistor with the
resistance Z. The associated network model of the converter is shown in Figure 1 (right).
The transistor with the freewheeling diode is modeled by an ideal switch with two positions
d ∈ {0, 1}. Therefore, the buck converter is a switching converter. The ohmic losses of the
inductor and the capacitor are modeled by a resistance R and a conductance G, respectively.
In Figure 1 (right), the resulting passive network to model the non-ideal reactive elements
is drawn in blue color.

L d = 1

d = 0
Z

i(t)

v(t)

L R

C GEE d ZC

Figure 1. Classical buck converter: circuit diagram (left), network model (right), where the passive
part is drawn in blue color.

Based on the network model we can derive the circuits equations

L d i(t)
d t + R i(t) + v(t) = E d(t), (1a)

C d v(t)
d t + G v(t) + 1

Z v(t) = i(t). (1b)

These equations form a system of first order ordinary differential equations (ODEs).
In the model-theoretic context, system (1) is a lumped parameter model [23]. With the state
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vector x = (x1, x2)
T = (i, u)T , we can rewrite the implicit system of ordinary differential

equations as a two-dimensional state-space model

ẋ(t) = A x(t) + b d(t), (2a)

where the system matrix A and the input vector b are given by

A =

(
− R

L − 1
L

1
C −G+1/Z

C

)
, b =

( E
L

0

)
. (2b)

The circuit Equation (1) can be transformed from time to frequency domain using
Laplace transform (

sL + R 1
−1 sC + G + 1

Z

)
︸ ︷︷ ︸

M(s)

(
I(s)
V(s)

)
=

(
E
0

)
D(s),

where we use capital letters for the transformed signals. The characteristic polynomial of
this system

det M(s) = LC s2 +
(

LG + RC + L
Z

)
s + 1 + R

(
G + 1

Z

)
is a second order polynomial. For meaningful physical parameter values (i.e., L, C, Z > 0
and R, G ≥ 0), it is a Hurwitz polynomial corresponding to a damped harmonic oscillator.
In the lossless case, i.e., R = 0 and G = 0, the characteristic polynomial simplifies to

det M(s) = LC s2 + L
Z s + 1. (3)

This polynomial has real roots if, and only if, 4CZ2 ≤ L.
For a converter described by (2), one may consider three types of models [1,18,24,25].

In the switched model, the input signal d ∈ {0, 1} takes discrete values corresponding to
the positions of the switch. In practice, the system is excited via pulse-width modulation
(PWM) with a fixed switching period T. If the average of all signals is taken over one
switching period, one obtains the averaged model. The averaged model has the same
structure as the original system (2). The averaged input signal d is called duty ratio or duty
cycle with values from the interval d ∈ [0, 1]. For T → 0 the averaged model is transformed
into the continuous model. In our simulations we will use the switched model with PWM
excitation.

To compute the equilibrium x0 = (i0, u0)T of the averaged model, we set ẋ ≡ 0.
From (2) we obtain

x0 = −A−1b d =
E

GRZ + Z + R

(
GZ + 1

Z

)
d→

( E
Z
E

)
d

for the lossless case with R = 0 and G = 0. With d ∈ [0, 1] and u0 = E d, the operating
point of the output voltage lies in the range between 0 and E, i.e., the buck converter can
reduce the input voltage E to an average output voltage 0 ≤ u0 ≤ E.

2.2. Distributed Buck Converter

The passive elements of the classical buck converter network model drawn in Figure 1
(right) with blue color can be interpreted as a lumped parameter model of a transmission
line. Replacing these elements by a transmission line results in the distributed buck
converter shown in Figure 2, see [8,11]. On the left side of the transmission line, we have
the electronic switch (single pole changeover). The ohmic load is on the right side of the
transmission line.
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E

d = 1

d = 0

i(0, t) i(l, t)

v(l, t)Z

z = lz = 0

Figure 2. Distributed buck converter with a transmission line.

The transmission line can be modeled by the telegrapher’s equations [26,27]:

∂

∂z
v(z, t) + L′

∂

∂t
i(z, t) + R′i(z, t) = 0, (4a)

∂

∂z
i(z, t) + C′

∂

∂t
v(z, t) + G′v(z, t) = 0. (4b)

The current i and the voltage u do not only depend on the time, but also on the spatial
position z ∈ (0, l), where l denotes the length of the transmission line (see Figure 2). In this
model, the lumped parameters L, C, R, and G are replaced by distributed parameters L′,
C′, R′, G′ that describe inductance, capacitance, resistance, and conductance per length,
respectively. These equations form a system of first order partial differential equations
(PDEs). In a control-theoretic context, this system is also called a distributed parameter
model [23,28].

The dynamics of the transmission line is influenced by the boundary conditions.
On the left boundary, i.e., at z = 0, we have the switched input voltage E d(t). On the
right boundary, i.e., at z = l, we have the ohmic load Z. This leads to the Dirichlet
boundary conditions

v(0, t) = E d(t), (4c)

v(l, t)− Z i(l, t) = 0. (4d)

Overall, Equation (4) constitute a boundary value problem.
Next, we want to transform the PDE model of the transmission line into frequency

domain. Applying the Laplace transform w.r.t. time t to Equation (4a,b) yields

∂
∂z V(z, s) + (sL′ + R′)I(z, s) = 0, (5a)
∂
∂z I(z, s) + (sC′ + G′)V(z, s) = 0. (5b)

where we assume vanishing initial values, i.e., i(·, 0) = 0 and v(·, 0) = 0. With this
transformation, the PDEs are transformed into a system of first order linear homogeneous
ODEs. Using an exponential function eλz (Euler ansatz), system (5) is associated with the
system matrix

M =

(
sL′ + R′ λ

λ sC′ + G′

)
having the characteristic equation

det(M) = (sL′ + R′)(sC′ + G′)− λ2 = 0.

In the lossless case, i.e., R′ = 0 and G′ = 0, the characteristic equation simplifies to

det(M) = L′C′s2 − λ2 = 0 with λ1,2 = ±s
√

L′C′. (6)

The transmission line can then also be described by the characteristic impedance
Z0 =

√
L′/C′ and the propagation delay τ =

√
L′C′.
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Remark 1. The characteristic polynomials (3) and (6) are both second order polynomials, but
have a different structure. Although the reactive elements of the classical converter are assumed to
be lossless, we have a damping term in (3) resulting from the load resistance. The characteristic
polynomial (6) resulting from the lossless transmission line has no damping term at all, because the
damping due to the load is not part of the PDE itself but of the boundary condition (4d).

Remark 2. In our modeling, we considered ohmic losses of the reactive elements and the transmis-
sion line, respectively. However, we assumed that the switching is ideal. In practice, the switch is
usually implemented by a transistor together with a freewheeling diode, but could also be realized
with two transistors. In Figure 1 (left), we used a MOSFET as an active element. Alternatively,
one could also use an insulated-gate bipolar transistor (IGBT) or a gate turn-off thyristor (GTO).
We assume that the transistor is operated as a switch. When the transistor is on, we model it as
a short circuit. We model a switched-off transistor as an open circuit. In electronics, we neither
have zero nor infinite resistance. This behavior can be taken into account with additional resistive
elements in the model. The switching speed, characterized by the rise and fall times, can be modeled
with additional capacitances. These effects of non-ideal behavior can be easily simulated with a
circuit simulator. On the other hand, a highly detailed simulation model is often to complicated
for controller design. Therefore, controller design is usually carried out with a much simplified or
idealized model, e.g., [2,17–19,29]. The deviations of the actual system from the simplified nominal
model can be taken into account in a robust controller design by means of uncertainty models [30].

3. Open-Loop Simulation
3.1. Simulation Setup

For the distributed converter we used the same setup as in [11]. In particular, the
transmission line consists of l = 6 m coaxial cable RG 58 C/U [31]. Figure 3 shows the
cross-section of the coaxial cable. The inner and outer conductors are made of copper. Since
copper is a very good conductor, we assume the lossless case with R′ = 0Ω/m. For the
insulation (dielectric), polyethylene is used. Assuming perfect insulation we set G′ = 0 S/m.
Based on the geometry, capacitance and inductance per length can be computed by

C′ = 2πε
1

ln D
d

and L′ =
µ

2π
ln

D
d

,

where ε is the permittivity and µ is the permeability. Note that polyethylene has a relative
permittivity εr ≈ 2.3 and a relative permeability µr ≈ 1. The numerical values of the
relevant parameters of the coaxial cable are listed in Table 1.

Table 1. Parameters of the coaxial cable RG 58 C/U [11,31].

Parameter Value

length l 6 m
diameter of the inner conductor d 0.9± 0.01 mm
diameter of the outer conductor D 2.95± 0.05 mm
capacitance per length C′ 100 pF/m
inductance per length L′ 241 nH/m
characteristic impedance Z0 50Ω
propagation delay τ 5 ns/m

To simulate the distributed buck converter, we used the method of lines (MOL) to
discretize Equation (4a,b) w.r.t. the spatial direction [32–34]. The line between z = 0 m and
z = 6 m was divided into 100 equidistant points. This discretization of the spatial voltage
and the current distribution results in a 200-dimensional state-space system. The numerical
simulation was carried out with the open source tool GNU Octave [35] using the function
ode45. This ODE solver employs the explicit Dormand–Prince method, which is a special
Runge–Kutta method of order (4, 5).
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d
D

ε, µ
outer conductor

insulator

inner conductor

Figure 3. Cross-section of a coaxial cable.

We also want to compare the behavior of the distributed converter with the classical
buck converter. There, we also assumed the lossless case, i.e., R = 0Ω and G = 0 S. For
the reactive lumped elements we used the overall capacitance C = l · C′ = 600 pF and the
inductance L = l · L′ = 1446 nH. For the simulation, the state-space system (2) was also
solved with the function ode45.

3.2. Transient Motion into the Steady-State

We excite the converters with a constant input voltage E = 12 V setting d ≡ 1. The
setup is shown in Figure 4. All initial values were set to zero. The results of the numerical
simulations are shown in Figure 5. For the distributed converter, the wave propagation
of the voltage v(z, t) w.r.t. time and space is shown in Figure 5 (left). The output voltage
v(l, t) on the right boundary of the distributed converter and output voltage v(t) of the
classical converter are shown in Figure 5 (right). In theory, the output voltage should be
a piecewise constant function resulting from the superposition of travelling waves. The
oscillations between different voltage levels are a well-known artefact occurring in the
numerical solution of hyperbolic PDEs [32] resulting from the approximation of spatial
derivatives. These oscillations could be reduced with more sophisticated difference schemes
schemes [36,37].

E Z

z = 0 z = l

v(l, t)v(t)C Z

L

E

Figure 4. Setup for the transient simulation of both converters with d ≡ 1: passive network of the
classical buck converter (left), transmission line of the distributed buck converter (right).

The voltage of the classical buck converter increases at once and converges continu-
ously to the steady-state value of 12 V. For the distributed converter, we see no reaction in
the voltage until the propagating wave reaches the right boundary at t = τl ≈ 30 ns. The
voltage increases with each reflected wave and converges also to the steady-state value of
12 V. Although the numerical simulation of both converters yields approximately the same
signal values, the output curves are qualitatively different.
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Figure 5. Transient voltages for constant input voltage E with d ≡ 1: wave propagation of the voltage
in the transmission line w.r.t. time and space (left), output voltage v(l, t) on the right boundary of the
distributed converter and output voltage v(t) of the classical converter (right).

3.3. Transient Motion under Pulse-Width Modulation

Now, we excite the converters with a PWM signal. We use E = 12 V and a duty ratio
d = 0.5, which should result in an average output voltage of E d = 6 V. For the PWM
switching period T we used integer multiples of the delay time τl ≈ 30 ns. The simulation
results are shown in Figure 6. The output voltage v(t) of the classical converter oscillates
around 6 V. For smaller PWM switching times (i.e., higher switching frequencies) the
voltage ripples become smaller. Among the simulation scenarios, the best result is obtained
with T = τl.
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Figure 6. Transient voltages for PWM duty ratio d = 0.5 and different switching periods T: output
voltage v(t) of the classical converter (green), output voltage v(l, t) on the right boundary of the
distributed converter (blue), PWM input voltage (red).
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The situation is different in case of the distributed converter. For T = τl and T = 2 τl,
the output voltage sweeps the full range from 0 V to 12 V. For a switching period with
a greater multiple of the delay time τl, we obtain smaller voltage ripples. The smallest
voltage ripples occur with T = 4 τl, where the travelling waves partially compensate each
other. This is consistent with the findings reported in [11]. In contrast to the classical
converter, the voltage ripples cannot be arbitrarily reduced.

4. Discrepancy-Based Control

Discrepancy-based control [22] is a control approach for distributed parameter systems.
The main idea is the investigation of the control problem in a generalized stability setting,
stability with respect to two discrepancies [20,21]. In the following, the main concepts
according to [22] are presented.

Consider a dynamical system with a solution ϕ(·, t) and an equilibrium at zero ϕ0 = 0.
The discrepancy ρ(ϕ(·, t), t) is than the generalized distance between the solution ϕ(·, t)
and the equilibrium ϕ0.

Definition 1 (Discrepancy [21]). A discrepancy is a real valued functional ρ = ρ(ϕ(·, t), t) with
the following properties

1. ρ(ϕ, t) ≥ 0,
2. ρ(0, t) = 0,
3. For an arbitrary process ϕ = ϕ(·, t) the real valued functional ρ(ϕ(·, t), t) is continuous with

respect to t.

Obviously, the discrepancy is a generalization of more traditional distance measures
as the Lp- and the L∞- norm.

To account for deviations of the initial state ϕ(., 0) from the equilibrium ϕ0, a second
time independent discrepancy ρ0 fulfilling some continuity condition can be used. Stability
with respect to two discrepancies can then be defined as follows.

Definition 2 (Stability with respect to two discrepancies ρ and ρ0 [21]). The equilibrium
ϕ0 = 0 is stable in the sense of Lyapunov with respect to the two discrepancies ρ and ρ0 for all
t ≥ t0 if for every ε > 0 and t0 ≥ 0 there exists a δ = δ(ε, t0) > 0, such that for every process
ϕ(·, t) with ρ0 < δ(ε, t0) it follows that ρ < ε for all t ≥ t0. If in addition limt→∞ ρ = 0, then
the equilibrium ϕ0 is called asymptotically stable in the sense of Lyapunov with respect to the two
discrepancies ρ and ρ0.

To introduce an according Lyapunov functional the notion of positive definiteness
with respect to a discrepancy has to be introduced.

Definition 3 (Positive definiteness with respect to a discrepancy ρ [21]). A functional
V = V[ϕ, t] is positive definite with respect to a discrepancy ρ, if V ≥ 0 and V[0, t] = 0 for
all ϕ with ρ(ϕ, t) < ∞ and for every ε > 0 there exists a δ = δ(ε) > 0, such that V ≥ δ(ε) for all
ϕ with ρ[ϕ, t] ≥ ε.

The basis for the discrepancy-based control design, is given by the following theorem
providing a connection between (asymptotic) stability with respect to two discrepancies
and the existence of an according Lyapunov functional V.

Theorem 1 (Lyapunov functional [21]). The process ϕ with the equilibrium ϕ0 = 0 is stable
with respect to the two discrepancies ρ and ρ0 if, and only if, there exists a functional V = V[ϕ, t]
positive definite with respect to the discrepancy ρ, continuous at time t = t0 with respect to ρ0 at
ρ0 = 0 and not increasing along the process ϕ, i.e., V̇ ≤ 0. The process is asymptotically stable if in
addition lim

t→∞
V = 0.
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As will be shown in the next section, the main step for a discrepancy-based control
design is to define an appropriate discrepancy, which allows for a simple Lyapunov-based
control design and incorporates process knowledge.

5. Closed-Loop Control of the Distributed Buck Converter
5.1. Continuous Control Mode

In the following it will be assumed that the voltage at the beginning of the transmission
line can be continuously actuated and will hence serve as a control handle. In order to
design an appropriate control law, the mean current deviation from the desired current
distribution id(z, t) will be used as an error measure.

e =
∫ l

0
(id − i)d z (7)

This results in the following discrepancy ρ with the according quadratic control-
Lyapunov functional V.

V = ρ =
1
2

e2 (8)

To derive a control law stabilizing the buck converter in continuous voltage control
mode the time derivative of the control-Lyapunov functional V along the system trajectory
is taken:

V̇ =
∫ l

0
(id − i)d z ·

∫ l

0

[
∂id
∂t

+
1
L′

(
∂v
∂z

+ R′i
)]

d z (9a)

=
∫ l

0
(id − i)d z ·

[∫ l

0

∂id
∂t

d z +
1
L′

v
∣∣∣∣l
0
+

R′

L′

∫ l

0
i d z

]
(9b)

=
∫ l

0
(id − i)d z ·

[∫ l

0

∂id
∂t

d z +
R′

L′

∫ l

0
i d z +

1
L′
(v(l, t)− v(0, t))

]
. (9c)

Here, the input voltage v(0, t) on the left boundary has to be chosen such that the time
derivative of the control-Lyapunov functional V is negative definite in order to achieve a
stable closed-loop system. One possible choice is the following compensating control law

v(0, t) = v(l, t) + L′
∫ l

0

∂id
∂t

d z + R′
∫ l

0
i d z + K · L′

∫ l

0
(id − i)d z. (10)

The first term on the right hand side of Equation (10) is the output voltage on the right
boundary. The second and third term describe the voltage drop along the line resulting from
the inductance and resistance distribution with regard to the current deviation. The fourth
term is the correction term with the control gain K > 0. Applying the control law (10)
then results in an exponential converging Lyapunov functional V and, thus, achieves
exponential stability with respect to the discrepancy ρ:

V̇ = −K
(∫ l

0
(id − i)d z

)2

= −2KV. (11)

Now, we assume that the desired current id is constant. In addition, we consider a
lossless transmission line, i.e., R′ = 0. However, we can set this control signal in relation to
the constant input voltage to obtain the duty ratio

d(t) =
1
E

[
v(l, t) + K · L′

∫ l

0
(id − i)d z

]
, (12)

which imposes the digital PWM signal to the distributed buck converter via the boundary
condition (4c).
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5.2. Discontinuous Control Mode

As has been described before, the actuation for the buck converter is achieved via a
switching element. The described continuous operation modes can be seen as a certain
approximation assuming high switching frequencies. However, for a practical application
it is preferable to actuate the switch directly. A simple switching control law based on the
sign of the mean current deviation along the transmission line can be derived from the time
derivative (9) of the control-Lyapunov functional (8):

d(t) =

{
1 if

∫ l
0 (id − i)d z > 0,

0 if
∫ l

0 (id − i)d z ≤ 0.
(13)

In Equation (13), d ∈ {0, 1} is the switch signal depicted in Figure 2, i.e., d = 0
switch open and d = 1 closed switch. The according voltage at the receiving end of the
transmission line hence becomes

v(0, t) =

{
E if

∫ l
0 (id − i)d z > 0,

0 if
∫ l

0 (id − i)d z ≤ 0,
(14)

where the reference current id is assumed to be constant as in Section 5.1.
To prove the closed-loop stability applying the control law (14), the time derivative (9)

of the control-Lyapunov functional (8) is investigated for two cases: positive and negative
including zero mean current deviation. In case of a positive mean current deviation, i.e.,∫ l

0 (id − i)d z > 0, the switch is closed and the input voltage E is applied to the sending end
of the transmission line v(0, t) = E. Assuming that the input voltage is sufficiently high
to compensate for the transmission losses, which is an obvious design requirement, the
following inequality holds:

v(l, t) + L′
∫ l

0

∂id
∂t

d z + R′
∫ l

0
i d z ≤ E (15)

Due to this inequality (15) the time derivative (9) of the control-Lyapunov functional (8)
is in case of a positive mean current deviation less or equal than zero:

V̇ =
∫ l

0
(id − i)d z

1
L′

[
v(l, t) + R′

∫ l

0
i d z− E

]
≤ 0. (16)

For a negative or vanishing mean current deviation
∫ l

0 (id − i)d z ≤ 0, the switch is
open and no input voltage is applied v(0, t) = 0. As both current and voltage are assumed
to be non-negative the following inequality results:

v(l, t) + R′
∫ l

0
i d z ≥ 0. (17)

Therefore, the time derivative (9) of the control-Lyapunov functional (8) is again less
or equal than zero:

V̇ =
∫ l

0
(id − i)d z

1
L′

[
v(l, t) + R′

∫ l

0
i d z

]
≤ 0, (18)

which proves stability in the sense of Lyapunov with respect to the discrepancy ρ.

5.3. Implementation by Approximation

Both control laws (12) and (13) derived in Sections 5.1 and 5.2 contain the integral

∫ l

0
(id − i)d z (19)
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which is defined on a spatially distributed signal. The integral (19) is essentially the mean
current deviation along the transmission line. In practice, it is not feasible to measure
the current distribution along the transmission line. To overcome this problem three very
simple approximations, which can be applied to approximate this integral, are: the left, the
midpoint, and the right rectangular approximations.

∫ l

0
(id − i(z, t))d z ≈


(id − i(0, t)) · l (left rectangular approximation)

(id − i(l/2, t)) · l (midpoint rectangular approximation)
(id − i(l, t)) · l (right rectangular approximation)

(20)

Using the left rectangular approximation would only require the signal value i(0, t)
on the left boundary of the transmission line, where the semiconductor switch and the
controller are located. Other approximations, such as the midpoint and the right rect-
angular approximation, as well as trapezoidal or Simpson’s rule would require current
measurements with a spatial distance from the controller. Therefore, the left rectangular ap-
proximation is preferable and will be used in the following. Since l > 0, the left rectangular
approximation applied to (13) yields the control law

d(t) =

{
1 if (id(0)− i(0, t)) > 0,
0 if (id(0)− i(0, t)) ≤ 0.

(21)

To simulated the controlled system we use the parameters as discussed in Section 3.
The desired output voltage is set to vd = 6 V. This corresponds to a desired current

id =
ud
Z

=
6 V

10Ω
= 0.6 A

required by the control law (21). The simulation results are shown in Figure 7, where the
initial (discretized) voltage and current distribution were set to zero. In the beginning, the
current i(0, t) on the left boundary is less then the desired current id. In particular, we have

i(0, t) =
E
Z0

=
12 V
50Ω

= 0.24 A for t < 2 τl ≈ 60 ns

until the reflected wave reaches the left boundary. According to (21), the switch is in the
position d = 1, see Figure 7 (top left). When the current exceeds the desired current at
t ≈ 0.12 µs, the switch changes between the positions d = 0 and d = 1 at a very high
frequency as shown in Figure 7 (bottom left). After the transients, we have very small
voltage ripples in the output voltage v(l, t), see Figure 7 (top right).

Remark 3. The (discontinuous) two-point control laws (13) and (21) can be regarded as sliding
mode control [19,38] or, more specifically, as discrepancy-based sliding mode control [39]. As a
matter of fact, sliding mode is a common approach to control power converters [17,19,29]. In a
classical sliding mode control, we would have a (theoretically) infinite switching frequency when the
sliding surface is reached. In practice, the switching is not perfect, resulting in a high-frequency
control action known as chattering [38,40]. When the control signal d given by (21) changes,
the voltage wave would travel forward an be reflected on the right boundary. When the backward
travelling wave reaches the left bound, the original control action may result in the next change of
the control signal. This consideration should result in the switching frequency f = 1/2 τl. Due to
numerical deviations from the exact solution we also see a high frequency control action for the time
between the reflected waves, see Figure 7 (bottom left) starting at t ≈ 0.12 µs. This behavior is also
expected in practice due to noise.
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Figure 7. Signals of the simulated distributed buck converter with the control feedback (21) for a
desired output voltage vd = 6 V.

6. Discussion

The current investigations on the control of the distributed buck converter can be seen
as a proof of concept, which, for several reasons, is not yet ready for a technical application.
For example, the coaxial cable used here is comparatively expensive and not suited for
power electronics. The short length of the transmission line results in a high switching
frequency. In a further realization, the coaxial cable could be replaced by twisted pair cable.
If the load is operated at a much larger distance from the power supply, such as in power
grid applications, we would obtain a significantly lower switching frequency.

The control law (21) used in the simulation is easy to implement and fulfills the con-
trol goal as shown in Figure 7. The control laws (12) and (13) require the spatial integral
of current deviation along the transmission line. These integrals can be computed in a
simulation, but not directly be obtained in a practical realization. On the one hand, one
could investigate how this integral can be estimated by means of observers, see [41,42].
On the other hand, it should be possible to replace the spatial integration by a time inte-
gration, because the solution of the telegrapher’s equation is a superposition of travelling
waves. In addition, a more advanced control strategy could include an identification of the
transmission lines parameters, cf. [43].

There are two main approaches to control distributed systems, namely early and late
lumping. In early lumping, the system is discretized first and the controller is designed
afterward for the (finite dimensional) approximation. This approach can lead to an unstable
control loop if important system properties are lost by the approximation. In the late-
lumping approach, the controller is designed for the (infinite dimensional) distributed
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system. Then, the controller is discretized for the implementation. The control strategy
suggested in Section 5.3 can be interpreted as late lumping approach.

In the article, the converter was examined exclusively with resistive load. For practical
applications, e.g., for electric drives or power grids, an inductive load with ohmic losses
should be investigated [9,10]. In particular, voltage ripples caused by switching converters
may reduce the durability of power grids and the attached electrical drives [15,16,44,45].

Further research could also be devoted to extend the concept of a (spatially) distributed
buck converter to other switched DC–DC converter topologies such as boost and buck-boost
converters, as well as to DC–AC, AC–DC, and three-phase power converters [1,2].

7. Summary and Conclusions

The power electronic part of a buck converter can already be realized with four
components, namely with two semiconductor elements and two passive components. If
you include the supply line between power supply and load, you can also spare the passive
components, coil and capacitor. However, this change in circuit topology also results in
qualitatively different behavior, both in open and closed loop. In this contribution, we
investigated the impact of the switching time on voltage ripples in more detail. To derive
an appropriate control algorithm, which allows for stabilization of a given set-point, a
discrepancy-based design procedure has been applied. Here, the main steps are: choice of
an appropriate generalized error measure (the discrepancy) and derivation of a stabilizing
control law, which guarantees stability in the sense of Lyapunov with respect to the chosen
discrepancy. For an implementation in a micro controller additional approximations of the
derived control algorithm have been proposed.
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