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Abstract: The dissolution kinetics of Portland cement is a critical factor in controlling the hydration
reaction and improving the performance of concrete. Tricalcium silicate (C3S), the primary phase in
Portland cement, is known to have complex dissolution mechanisms that involve multiple reactions
and changes to particle surfaces. As a result, current analytical models are unable to accurately
predict the dissolution kinetics of C3S in various solvents when it is undersaturated with respect
to the solvent. This paper employs the deep forest (DF) model to predict the dissolution rate of
C3S in the undersaturated solvent. The DF model takes into account several variables, including
the measurement method (i.e., reactor connected to inductive coupled plasma spectrometer and flow
chamber with vertical scanning interferometry), temperature, and physicochemical properties of solvents.
Next, the DF model evaluates the influence of each variable on the dissolution rate of C3S, and this
information is used to develop a closed-form analytical model that can predict the dissolution rate of
C3S. The coefficients and constant of the analytical model are optimized in two scenarios: generic and
alkaline solvents. The results show that both the DF and analytical models are able to produce reliable
predictions of the dissolution rate of C3S when it is undersaturated and far from equilibrium.

Keywords: tricalcium silicate; analytical model; ion activity; dissolution kinetics; deep forest

1. Introduction

Portland cement (PC) is the fundamental material for modern infrastructure, but its
production contributes significantly to global CO2 emissions, accounting for about 9% of
total emissions [1–3]. To improve the sustainability and performance of PC, it is important to
understand the hydration reaction of its primary component, tricalcium silicate (C3S). C3S
is the most abundant component in PC, making up more than 50% of its composition [4–6].
When C3S reacts with water, it undergoes a series of chemical reactions that result in
the dissolution of calcium and silicate ions, followed by the formation of calcium silicate
hydrate and portlandite [4]. While the phase transformations that occur at later stages of
the hydration are well documented [4,7], the dissolution kinetics of C3S at early stages
remains a controversial subject. However, it is important to understand the dissolution
kinetics of C3S when it is undersaturated with respect to solvent. The undersaturation
of C3S solution presents the initial and induction periods of cement hydration [4,6]. The
dissolution mechanisms of C3S are different when the solution is in undersaturation and
saturation (i.e., hydration products form) [6,8]. By studying the dissolution behaviors of
C3S, we can gain a better understanding of the factors that affect the hydration kinetics of
cement. This knowledge can be used to develop novel cement formulations and improve
cement performance.
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Despite many studies that have sought to uncover the mechanisms (e.g., protective
phase [9–11] and double layer theory [12]) behind the dissolution of C3S and minerals in
recent decades, a definitive rate-controlling mechanism remains elusive due to the complex
interaction of physicochemical parameters between solids and aqueous solvents. The
most widely accepted theory to explain the dissolution kinetics of C3S and minerals is the
inverse crystal nucleation theory [6,13,14]. This theory posits that, similar to the process
of crystal growth, the dissolution of C3S and minerals is primarily determined by the
density of pre-existing steps on the surface of minerals [14]. These steps are formed by
dislocation defects and the nucleation of two-dimensional vacancy islands at impurities
or homogenous sites. The growth of vacancy islands on a surface is determined by the
Gibbs–Thomson effect, a thermodynamic principle that dictates their critical size [15,16]. If
a vacancy exceeds this critical size, it will continue to grow. At the critical size, the free
energy change reaches a maximum, creating an energy barrier that must be overcome for
vacancy growth to continue. The energy barriers that must be overcome by the vacancy
islands have a proportional relationship with the interfacial energy, but an inverse relation-
ship with the degree of undersaturation [15,16]. While the solution is near the equilibrium,
the density of steps of the solid is dominated by dislocation defects, as the energy barriers
are too high for vacancy islands to overcome.

Except for surface defects, other experimental parameters—for example, solvent chem-
istry [8,17], surface geometry [18–23], and mineral composition [24–26]—also substantially
influence the dissolution kinetics of C3S and minerals. By incorporating these parameters
into analytical models, it is possible to reveal underlying structures between dissolution
kinetics and physicochemical properties of minerals and solvents. The following review
focuses on existing analytical models (shown in Table 1) that have been used to predict
the dissolution kinetics of C3S and minerals. Some of these models have been successful
in accurately predicting the dissolution kinetics of minerals. The symbols used in these
models are defined as follows: ∆Gr is the Gibbs free energy of the overall reaction; T is the
temperature; R is the gas constant; A is the effective surface area of material; ai is the ion
activity of species i; Ea is the activation energy; n, ni, k, and ki are constants; and g(I) is the
function of ionic strength.

The analytical model developed by Burch et al. [27] is based on the transition state
theory and the Burton–Cabrera–Frank theory. It shows that the dissolution rate of a min-
eral depends exponentially on the Gibbs free energy of the overall dissolution and the
temperature. However, this model cannot accurately predict the dissolution kinetics of
a solid–solvent system that is near the equilibrium. This is because the model does not
account for the transition from step retreat to dislocation-controlled dissolution. The model
developed by Lasaga et al. [28] accounts for various factors such as surface area, tempera-
ture, ionic strength, H+ concentration in the solvent, and the change in Gibbs free energy
related to dissolution. This model is widely used in the cement community to predict the
dissolution kinetics of C3S [6]. In addition to modeling from a thermodynamic perspective,
several studies [29–33] have explained the dissolution kinetics of minerals using the ion
leaching theory. Strachan’s model [29] accounts for both H+ and OH− in the leaching
process, as these ions leach species from mineral surfaces with different activation energies.
Other studies [32–36] have found that cations (excluding H+) in solvents can also contribute
to mineral surface leaching. Oelkers et al. [32] have emphasized the role of the ion activity
ratio of H+ to cations in mineral dissolution kinetics. This model divides the process into
two scenarios: if the ion activity ratio is small, a large number of cations remain on the
material surface, which dominates the leaching and dissolution processes; if the ratio is
large, the dissolution rate is independent of cations. This model has been used to predict
the dissolution kinetics of various minerals [33].
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Table 1. Summary of current dissolution kinetics models for C3S and minerals.
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Although previous studies have proposed various models for predicting dissolution
kinetics of minerals based on disparate theories, none of these models can predict the
dissolution kinetics of C3S in a high-fidelity manner with a coefficient of determination (R2)
above 0.90. This is because there are several knowledge gaps in the state-of-the-art analytical
models. First, it is not possible to account for all the influential variables (e.g., ions in the
solvent; physicochemical properties of C3S particles; temperature; etc.) in a single analytical
model. Moreover, it is difficult to incorporate a variable into analytical models without
a clear understanding of its role in the dissolution process. Next, coefficients are not generic,
thus requiring additional calibration while applying the model to a new C3S-solvent
systems. Lastly, some parameters (e.g., ion activity; Gibbs free energy; activation energy;
etc.) are obtained from additional quantitative and qualitative analyses of experimental
results, which makes the model difficult to use and increases the likelihood of human error.

Measuring the dissolution rate of C3S is a challenge because the solubility of calcium
silicate hydrate is much lower than that of C3S, which means calcium silicate hydrate will
precipitate before C3S completely dissolves, unless a very small amount of C3S is used.
As a result, only a few studies have attempted to measure the C3S dissolution rate. Those
studies have applied two different methods to measure the dissolution rate of C3S: reactor
connected to inductive coupled plasma (ICP) spectrometer [37,38]; and flow chamber with vertical
scanning interferometry (VSI) [39]. In the first method, C3S particles dissolve into the solvent
in a reactor, and the ICP spectrometer measures ion concentrations of the solution for the
first couple of minutes to determine the dissolution rate. The change in C3S surface area
can be ignored because of the short measurement duration. In the second method, the
solvent is flushed over the surface of the C3S bulk for a period of time, and the VSI is
used to measure the leaching depth and determine the dissolution rate. Because these
two methods are based on different experimental principles and use different parameters,
a single analytical model cannot be used to predict the dissolution rate from both methods.

Machine learning (ML), a data-driven framework, has been employed in many stud-
ies [40–50] to predict properties for multi-component systems (e.g., cement, glass, and
biomaterials) in a high-fidelity manner. ML models acquire knowledge of underlying input-
output correlations (all possible correlations can be included) from a training dataset, and
subsequently utilize such knowledge to produce predictions for new mixture designs, with-
out requiring an understanding of the mechanisms behind the materials. Elçiçek et al. [49]
have successfully employed an artificial neural network to discover the underlying struc-
ture between the dissolution kinetics of colemanite, a type of boron mineral, in complex
dissolution environments. A decision-tree-based ensemble model has demonstrated re-
markable performance, in terms of R2 ≈ 0.98, on predictions of dissolution rate for bioactive
glasses in various pH environments [40]. ML models incorporating topological constraints
of glasses have been employed to predict and extrapolate dissolution kinetics of silicate
glasses without violating fundamental material laws [43]. Although extensive studies have
applied ML methods to predictions of material dissolution kinetics, there is currently no
literature that shows that an ML model is a valid approach to predict the dissolution rate of
C3S when it is undersaturated with respect to the solvent.



Algorithms 2023, 16, 7 4 of 15

In this study, a deep forest (DF) model is trained using a heterogenous database of C3S
dissolution rate measured by the reactor connected to ICP spectrometer and flow chamber with
VSI methods. The rigorously trained model produces high-fidelity, a priori predictions of
the C3S dissolution rate. It is notable that ML models can predict the hydration kinetics of
PC at any given age, which has been shown in our previous studies [51–53]. This study
only focuses on the dissolution kinetics at the initial period (i.e., undersaturated solution)
because the hydration products precipitate and cause the solution to reach saturation after
a short time of the dissolution of C3S. Then, the influence of each input variable on the
dissolution rate is evaluated, and this knowledge is used to develop a simple, closed-form
analytical model based on fundamental thermodynamic and kinetic frameworks, such as
ion activity, ion strength, and ion activity product (IAP). The analytical model reveals fun-
damental correlations behind the C3S dissolution process, which are the critical information
that cannot be provided by ML models due to their “black-box” nature. Furthermore, the
analytical model can be used by all end users, regardless of their background or of their
access to ML models. Overall, this study is the first to develop an ML model to predict
with high fidelity the dissolution kinetics of C3S dissolved in various solvents when it is
undersaturated and far from equilibrium.

2. Database Collection

The C3S dissolution database used in this study consists of 292 data records, which
were consolidated from Nicoleau et al. [37,38] and Juilland and Gallucci [39]. However,
these data records are not compatible with our database due to differences in experimental
parameters. For example, Bellmann et al. [54] measured the dissolution rate of C3S at
the induction period and later ages; Damidot et al. [55] and Barret et al. [56] used the
filter dissolution technique; and Robin et al. [57] used the face-specific dissolution method
to measure the dissolution rate of C3S. The database used in this study contains 11 in-
put parameters: temperature (◦C); specific surface area (SSA) of C3S (m2/g); flow rate
(mL/min/mm2) initial concentration of Na, Cl, Ca, Si, Cs, K, and SO4 (mM); and initial pH
(unitless). The output is the dissolution rate of C3S (umol/m2/s). There are 92 data-records
from Nicoleau et al. [37,38] measured by the reactor connected to ICP spectrometer method.
Since the flow rate is not applicable in this method, it was set as 0. Several solvents with
different ions were utilized in the reactor connected to ICP spectrometer method. There were
200 data records from Juilland and Gallucci [39] measured with the flow chamber with VSI
method. Moreover, since the SSA of C3S is not applicable in this method, it was set as
0. The solvents only contained calcium ions at different concentration levels. Four statis-
tical parameters associated with inputs and output of the C3S dissolution database are
summarized in Table 2.

Table 2. Four statistical parameters pertaining to the 12 parameters (11 inputs and 1 output in bold)
of the C3S dissolution database. The database consists of 292 unique data records.

Attribute Unit Min. Max. Mean Std. Dev.

Temperature ◦C 10 60 21.07 5.437
SSA of C3S m2/g 0 0.400 0.112 0.171
Flow Rate mL/min/mm2 0 1273 79.22 201.8

Initial Na Concentration mM 0 1000 29.19 101.5
Initial Cl Concentration mM 0 1000 18.74 113.6
Initial Ca Concentration mM 0 20 5.824 6.561
Initial Si Concentration mM 0 0.876 0.006 0.062
Initial Cs Concentration mM 0 1000 5.513 65.45
Initial K Concentration mM 0 1000 5.513 65.45

Initial SO4 Concentration mM 0 200 8.904 34.95
Initial pH Unitless 6.516 13.09 10.69 2.316

C3S Dissolution rate umol/m2/s 0.3800 154.6 27.92 32.61
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The ML model was trained by 219 randomly selected data records from the original
database. The remaining 73 data records were used to validate the performance of the
model. The prediction performance was evaluated by five statistical parameters: mean
absolute error (MAE); coefficient of determination (R2); mean absolute percentage error
(MAPE); Pearson correlation coefficient (R); and root mean square error (RMSE).

3. Deep Forest Model

In this study, a DF model was utilized to predict C3S dissolution kinetics based on
the physicochemical properties of C3S and solvents. The DF model was developed based
on the modified classification-and-regression tree (CART) model with a combination of
bagging and random selection techniques [58,59]. The DF model grows a large number of
independent trees through a recursive binary split at each node [58]. To be specific, the
root node receives information from a bootstrap extracted from the training dataset, and
then splits to create two child nodes. This process is repeated until the homogeneity of the
child nodes cannot be improved. The tree can grow as deep as it can because none of the
usual pruning or smoothing algorithms are applied. This allows the DF model to maintain
diversity among trees. The DF model usually contains hundreds of independent trees.
Usually, a large-size forest is required to produce reliable predictions while the database
contains thousands of data-records. When a testing dataset is applied to a trained DF model,
trees produce independent outputs, and subsequently a bagging algorithm averages them
to derive the final output. A unique feature (i.e., two-stage randomization) allows the DF
model to reduce the variance and bias errors in predictions. The first randomization is
that the bootstrap randomly selects data records from the parent database. Second, at each
split, several randomly selected variables, instead of all variables, are used to determine
the optimal split. The randomization features ensure the decorrelation between trees.
Furthermore, due to the growth of a large number of trees, errors from generalization
and the likelihood of overfitting are minimized. Owing to those unique features, the DF
model can effectively learn input–output correlations from complex databases. Overall, the
architecture of the DF can be summarized in the following steps:

N bootstrap samples are randomly selected from the training dataset. N is equal to
the number of trees. In this study, N was 200. Each bootstrap can contain ~66% [60–62] of
the data records of the training dataset. The remaining data records are “out-of-bag” (OOB)
data [58].

• Each bootstrap iteration in the DF model grows a single tree. At each split, a subset of
input variables is randomly selected and used to determine the optimal split scenario.
The number of leaves, or the subset size, was set to five in this study. The cost function
(i.e., MAE) is used to evaluate all split scenarios, and the scenario with the minimum
cost is selected. Unlike other models, the DF model allows trees to grow to their
maximum size without pruning or smoothing.

• Next, the DF model produces predictions for OOB data. The DF model aggregates
and averages these predictions to produce an overall OOB prediction and OOB error
rate. This OOB error rate can be used to evaluate the importance of each variable in
influencing the model’s output.

• Lastly, at the testing stage, the DF model averages outcomes from trees to produce
predictions for a new data domain.

4. Predictions from Deep Forest Model

To optimize the DF model’s performance on new data records, it is crucial to meet
the following criteria. First, the model requires sufficient and diverse data records to
learn adequate input–output correlations (e.g., pH–dissolution rate). Second, outliers
should be included in the database to ensure that the DF model comprehensively learns
input–output correlations [63,64]. Herein, the outliers indicated that one or more data-
records—although measured and reported properly—did not fit into the trends exhibited
by the majority of the data records in the neighborhood because of some underlying
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(chemical, or kinetic, or thermodynamic) mechanism. Third, it is important to avoid both
underfitting and overfitting to datasets. Underfitting occurs when the model is unable
to learn the underlying correlations in the data, often due to a small training dataset that
does not contain enough information for the model to learn from. On the other hand,
overfitting occurs when the model learns local trends instead of global ones from highly
similar data, resulting in poor performance on the testing dataset. To address this issue, the
hyperparameters of the DF model were the 10-fold cross-validation (CV) [41,65] and grid-
search methods [48,52]. These methods can help to prevent underfitting and overfitting
by evaluating the model’s performance on multiple splits of the training data and using
a range of different hyperparameter settings, respectively. Predictions of C3S dissolution
rate (from training and testing datasets), as produced by the DF model, are demonstrated
in Figure 1. The five statistical parameters listed in Table 3 provide further evidence of the
model’s performance and accuracy. Overall, by meeting the aforementioned criteria, the
DF model can be trained to make highly accurate predictions on new data records.
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Figure 1. DF model’s predictions of C3S dissolution rate against experimental measurements of
training and testing datasets. Coefficient of determination (R2) is shown in the legend, providing
a measure of the prediction performance. The dashed line represents the ideal prediction.

Table 3. R, R2, MAE, MAPE, and RMSE evaluating prediction accuracy of the DF model against the
testing dataset.

Model Name R R2 MAE MAPE RMSE

DF
Unitless Unitless µmol/m2/s % µmol/m2/s

0.9672 0.9354 5.297 47.33 9.373

The predicted results from the DF model for the dissolution rate of C3S, as shown in
Figure 1 and Table 3, demonstrate the model’s accuracy and reliability. The R2 and RMSE
values for the dissolution rate predictions were 0.94 and 9.4 µmol/m2/s, respectively,
indicating a strong correlation between the predicted and measured values. In Figure 1,
the predictions show a larger deviation at low dissolution rates than at high dissolution
rates, but this is largely due to the use of a logarithmic scale on the y-axis. The prediction
errors, as measured by the mean absolute error (MAE), were 2.01 µmol/m2/s for low
dissolution rates (below 20 µmol/m2/s) and 8.67 µ mol/m2/s for high dissolution rates,
indicating that the DF model is able to produce reliable predictions of the dissolution rate
of C3S, regardless of the experimental method. This is a significant improvement over
analytical models, which typically have a prediction accuracy of only 0.78 in terms of R2 for
silicate compounds [66]. The capability of the DF model to yield reliable predictions of C3S
dissolution rate is largely due to its inherent architecture [59,60,62]. First, by growing a large
number (more than 100) of independent trees without smoothing or pruning, the model is
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able to significantly reduce the variance error in its output. Next, bias error is minimized by
adopting the randomization at bootstrap and feature selections [59], which ensures that the
output of one tree does not interfere with that of others. Lastly, the utilization of the 10-fold
cross-validation method [65] and grid-search method [48,67] autonomously optimized the
hyper-parameters so as to establish optimal input–output correlations as well as account
for outliers.

The DF model can estimate the influence (in terms of importance) of input variables
on the dissolution rate of C3S. The results of this analysis are shown in Figure 2, which is
organized in descending order based on the magnitude of variables’ influence. This rank
is also utilized as a guide for feature selection in the development of the analytical model
in Section 5.
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the left side have more influence.

As can be seen in Figure 2, the initial pH, Ca concentration, SSA of C3S, and flow
rate—ranked from high to low—exhibited the strongest influences on the dissolution rate
of C3S. This is expected because the Ca and OH ions (in terms of pH value) are known
to be the main factors that affect the dissolution reaction according to IAP (described in
Section 5) of C3S dissolution, where a high concentration of these ions significantly reduces
the dissolution rate. The SSA of C3S is the third important variable because an increase
in the interface between C3S particles and solvent leads to a monotonical increase of the
dissolution rate [20]. Similarly, the flow rate in the flow chamber with VSI method plays
a significant role, as it determines the speed at which ions are leached from the surface
of the C3S particles, with higher flow rates leading to an increase in the leaching speed.
Temperature is also an important variable, as previous research [27] has shown that the
dissolution rate of minerals increases exponentially with an increase in temperature. Other
ions in the solvent contribute less significantly to the dissolution rate. This is not a surprise,
because no literature has found direct correlations between C3S dissolution rate and those
ions. Interestingly, the Si ion, one of the major ions that affect the dissolution rate of
C3S, was ranked much lower in terms of importance. This is likely because there are
only three solvents in the database that contain Si ions, and the dissolution rates for these
systems show little variation. As a result, the Si ions are less important than they would
be in a larger and more diverse dataset. It should be noted that the importance of input
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variables can vary depending on the dataset used. Some variables may be found to be more
important in one dataset, while being less significant in another. In this study, only a few
variables were found to have a strong influence on the dissolution rate of C3S. However, in
a different dataset, different variables may exhibit a greater importance.

5. Analytical Model Development

The abovementioned results demonstrate that the DF model can produce predictions
of the dissolution rate of C3S in a high-fidelity manner. However, the use of machine
learning (ML) techniques can have some limitations, such as the “black-box” issue, where
the underlying input–output correlations learned by the model are difficult to interpret.
Additionally, ML models may not be accessible to end users who do not have a program-
ming background. To address these issues, this section introduces an original, closed-form
analytical model that has been distilled from the DF model. This model can be used to
predict the dissolution rate of C3S and provide a better understanding of the input–output
correlations involved.

The development of a reliable analytical model involves a wise selection of input
variables. The inclusion of influential variables is vital to enhance the performance of
the analytical model. Simultaneously, the exclusion of inconsequential variables reduces
the complexity of the model. The new analytical model is developed based on Lasaga’s
model [28], and some new input variables are added to it. We selected Lasaga’s model
as the baseline model because it is the most used model to predict C3S dissolution ki-
netics. This model accounts for the SSA of C3S, solvent pH, temperature, and ions in
solvents. The feature importance, shown in Figure 2, also confirms that those parameters
dominated the dissolution rate of the C3S. It is worth pointing out that only data from
Nicoleau et al. [37,38] was employed to develop the analytical model. This is because the
SSA of C3S is not applicable in Juilland and Gallucci [39].

In the baseline model, the Gibbs free energy of the overall reaction is one of the major
influential variables. To properly quantify this variable, it is important to understand
the dissolution mechanism of C3S. The dissolution process of C3S can be considered as
an inverse nucleation process [13], which is controlled by two major factors: interfacial
properties and the driving force. The interfacial properties include chemical composition,
chemical bond, surface defects, and impurities in crystals. Generally, the dissolution
process can be divided into three steps: (1) horizontal movement at the atomic scale to
form a 2D vacancy; (2) etch pit formation at dislocation; and (3) step retreat at pre-existing
roughness [6,19]. The driving force of the C3S dissolution reaction is defined as the energy
to overcome the activation energy barriers for the first two steps of the dissolution process.
The equation to calculate the driving force is shown in Equation (1) [6,68]:

σ =
∆µ

kT
=

∆G∗

RT
= ln

(
IAP
KSP

)
(1)

Here, σ is the undersaturation coefficient; ∆µ is the difference in chemical potential;
k is the Boltzmann constant; T is the temperature; ∆G∗ is the free energy difference between
the undersaturated solution and the solution in equilibrium; R is the gas constant; IAP
is the ion activity product to reactant species; and KSP is the mineral solubility products.
The dissolution reaction of C3S is expressed in Equation (2) [8], and the IAP is defined in
Equation (3). ai is the ion activity of species i. The chemical equilibrium constant (KSP) for
C3S dissolution has been estimated as 10−17.65 [8,69].

(CaO)3SiO2 + 3H2O→ 3Ca2+ + H2SiO2−
4 + 4OH− (2)

IAP = a3
Ca2+ ·a4

OH− ·aH2SO2−
4

(3)

Equation (3) suggests that the value of IAP is solely determined by calcium and
hydroxide ion activity. Thus, a high calcium ion activity leads to an equilibrium for the
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C3S dissolution, resulting in a slower dissolution rate compared to a solvent without
calcium ions [6,70]. Similarly, a basic solvent significantly decreases the dissolution rate
of C3S by containing a large amount of hydroxide ions. In this study, only H2SiO4

2− was
considered in the IAP calculation because H4SiO4 and H3SiO4

− can deprotonate to form
H2SiO4

2− [71,72]. To clearly observe the influence of IAP on dissolution rate, Figure 3 shows
the correlation between the degree of undersaturation (IAP/Ksp) and the dissolution rate
of C3S. The general trend of the correlation and order of magnitude of changes in the
dissolution rate observed herein are in good agreement with previous studies [6,28]. It is
not surprising that the dissolution rate of C3S decreases as the degree of undersaturation
increases, as a high degree of undersaturation indicates that the solution is approaching
an equilibrium, which reduces the driving force for dissolution.
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As previously discussed in the introduction, Strachan [29] has demonstrated that H+

and OH− leach mineral surfaces in different activation energies. Since Lasaga’s model only
accounts for the H+, the new model includes the ion activities of both H+ and OH− in order
to interpret the leaching process. Moreover, especially for C3S dissolution, OH− is one of
the main products of the dissolution reaction, as shown in Equation (2).

Previous studies [32–36] have also shown that the concentration of major cations
(excluding H+) in the solvent can influence the dissolution rate, and this is supported by
the data shown in Figure 2, which highlights the importance of Ca concentration in the
analytical model. However, previous studies have not explored the relationship between
the activity of Ca2+ and the dissolution rate of C3S. Using data from Nicoleau et al. [37,38],
we show this relationship in Figure 4, which plots the natural logarithm of the dissolution
rate of C3S against the initial activity of Ca2+. The correlation is observed as linear (shown
as the red line). This means the relationship between C3S dissolution rate and Ca2+ activity
is exponential. Some outliers can be seen in the Figure, which may be due to the influence
of other parameters, such as temperature and the specific surface area of C3S, on the
dissolution rate. If all other parameters are kept constant, a more ideal linear relationship
should be observed. After embodying OH− and Ca2+, the new analytical model, with
seven input variables, is formed as Equation (4). Here, Ci is the coefficient for each attribute;
T is Temperature (◦C); A is the specific surface area of C3S (m2/g); ai,j is ion activity of
i species at initial/final state (unitless); I is ion strength of initial state (mM); IAP is ion
activity product of final state (unitless); Ksp is C3S solubility product (≈10−17.65 [8,69]).

rate = eC0 ∗ e
C1
T ∗ AC2 ∗ eC3aCa,inital ∗ aC4

OH,inital ∗ aC5
H,inital ∗ IC6 ∗

(
IAP
Ksp

)C7

(4)
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ln(rate) = C0 +
C1
T +C2 ln(A) + C3aCa,inital + C4 ln(aOH,inital) + C5 ln(aH,inital)

+C6 ln(I) + C7 ln
(

IAP
Ksp

) (5)
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Phreeqc version 3, a geochemical modeling package, was used to simulate chemical
reactions and ion transportations in natural and polluted water for laboratory and indus-
trial purposes. The program is based on the equilibrium chemistry of aqueous solutions
interacting with other components, including mineral, gas, solid solution, and sorption
surface. The model can produce the concentration of an element, molarity of a compound,
activity of aqueous species, pH, and phase transformation to achieve equilibrium based
on reversible and irreversible chemical reactions [73–75]. In this study, the geochemical
Phreeqc code was employed to calculate ion activity and ion strength of ions in solutions.
Thermodynamic data were obtained from the specific ion interaction theory database to
account for the non-ideality of aqueous solutions and used to calculate the speciation and
saturation index [73,76]. Temperature and concentration of the species are given as initial
conditions with pH as charge balance to calculate the pH, ion strength and ion activity of
Na+, Cl−, OH−, Ca2+, H2SiO4

2−, Cs+, K+, and SO4
2−.

There are seven coefficients and one constant (i.e., Ci) that ought to be optimized.
Two scenarios are considered to optimize the coefficients: (1) C3S dissolves in generic
solvent (pH ≈ 7–13) with a pH range of approximately 7–13, where both H+ and OH− can
leach the surface of C3S; and (2) C3S dissolves in alkaline solvent (pH ≈ 11–13) with a pH
range of approximately 11–13, where OH− is the primary leaching ion. An independent
optimization for the alkaline scenario was performed in order to improve the prediction
accuracy. The optimal values of coefficients were derived from a nonlinear, gradient-descent
scheme [40,42,52,77–79] and Nelder–Mead multi-dimensional simplex algorithm [80,81].

Table 4 shows the optimal coefficients of the analytical model for the generic solvent
scenario. Predicted results of the C3S dissolution rate as produced by the analytical model
based on the coefficient in Table 4 are demonstrated in Figure 5a. Five statistical parameters
pertaining to the predicted results are listed in Table 5. As demonstrated in Figure 5a and
Table 5, the accuracy for predictions made by generic solvent scenario was moderate in terms
of R2 ≈ 0.69 and RMSE ≈ 32.9 µ mol/m2/s. This is expected, because the analytical model
cannot account for all influential factors (e.g., other ions in solvents and some processing
parameters) compared to the DF model. Furthermore, a large deviation of H+ concentration
in neutral and alkaline solvents increases the difficulty of optimizing the simple-structure
analytical model.
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Table 4. Seven coefficients and one constant (for seven input variables corresponding to the
physicochemical properties of C3S and solvents) optimized for the analytical model of the generic
solvent scenario.

C0 59.7404 C1 −17.0531 C2 −0.3166

C3 −231.8133 C4 1.7087 C5 1.7798

C6 0.0256 C7 −0.0646
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Figure 5. The analytical model’s predictions of C3S dissolution rate against experimental measure-
ments for (a) generic solvent and (b) alkaline solvent. Coefficient of determination (R2) is shown
in the legend, providing a measure of the prediction performance. The dashed line represents the
ideal prediction.

Table 5. R, R2, MAE, MAPE, and RMSE evaluating the prediction performance of the analytical
model for generic and alkaline solvent scenarios against experimental measurements.

Model
Name R R2 MAE MAPE RMSE

Unitless Unitless µmol/m2/s % µmol/m2/s

Generic Solvent Analytical model 0.8277 0.6851 13.76 55.05 32.90
Alkaline Solvent Analytical model 0.9566 0.9151 4.921 39.77 9.545

Table 6 shows the optimal coefficients of the analytical model for alkaline solvent
scenario. Predicted results of the C3S dissolution rate, as produced by the analytical
model based on the coefficient in Table 6, are demonstrated in Figure 5b. Five statistical
parameters pertaining to the results are listed in Table 5. As shown in Figure 5b and Table 6,
predictions for the dissolution rate of C3S were high-fidelity, with R2 of 0.92 and RMSE of
9.545 µmol/m2/s, respectively. The predictions of the alkaline solvent scenario are superior,
in terms of R2, to those from generic solvent scenario. The high-quality prediction is
expected because the alkaline solvent scenario minimizes the effect from H+; in other words,
the input–output correlations become simpler due to the reduction of the influence of H+.
Therefore, the trend for the simple system can be captured by the analytical model exactly.
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Table 6. Seven coefficients and one constant (for seven input variables corresponding to the
physicochemical properties of C3S and solvents) optimized for the analytical model of the alka-
line solvent scenario.

C0 −1160.8543 C1 −1476.3562 C2 −0.6632

C3 −256.4132 C4 −37.9113 C5 −37.9089

C6 −0.3445 C7 −0.0978

6. Conclusions

In this study, the DF and analytical models were demonstrated to predict the dissolu-
tion rate of C3S. The DF model was used to predict the dissolution rate of C3S in relation to
temperature, ion concentration in solvent, and pH, which can be directly obtained from
experimental measurements. To the best of the authors’ knowledge, this is the first study to
employ ML to predict the dissolution rate of C3S when it is undersaturated with respect
to a wide range of solvents. Another novel point of this study is the leveraging of the DF
model for evaluating the influence of input variables and using such knowledge to develop
an analytical model.

The database was collected from two distinct experimental setups: reactor connected to
ICP spectrometer and flow chamber with VSI. The DF model was rigorously trained by 75% of
the parent database that consisted of 292 data records. Subsequently, the model was tested
against the remaining 25% of the data records to evaluate prediction performance. The
results demonstrated that the DF model was able to yield reliable predictions, with an R2

value of approximately 0.97, of C3S dissolution rate in the undersaturated solution. The
DF model allows researchers to acquire the dissolution rate of C3S by simply knowing the
ion concentration and temperature of solvents without the cumbersome dissolution experi-
ments. The DF model was also employed to evaluate the influence of input variables on the
dissolution rate of C3S. It was found that the pH value of solvents and the concentration of
Ca2+ exerted significant influences on the dissolution process, while the concentration of
silicate ions had little influence.

The analytical model (only using data from the reactor connected to ICP spectrometer
method) was classified into two scenarios: generic solvent and alkaline solvent. The co-
efficients of the generic solvent and alkaline solvent scenarios were optimized by 92 data
records and 75 data records, respectively. The physiochemical properties—which were
used as inputs for both scenarios—comprised SSA of C3S, temperature, ion activity of Ca2+,
OH−, and H+, ionic strength of solvent, and degree of undersaturation. The results showed
that the analytical model was able to produce reliable predictions of generic solvent with
R ≈ 0.83 and alkaline solvent with R ≈ 0.96 when all coefficients were rigorously opti-
mized. Unlike ML, the analytical model can quantitively interpret aqueous chemistry-
dissolution correlations.

Overall, the DF model is an apposite platform that can be used in the future to study
the dissolution kinetics of cementitious materials. A large volume and diverse database
can further enhance prediction accuracy. By incorporating a wide range of data, the model
can better capture the complex dissolution behavior of cementitious materials. This can
improve the reliability of the model’s predictions, allowing it to be used more effectively
in the design of cementitious materials. Overall, the DF model has the potential to be
a valuable tool for studying the dissolution kinetics of cementitious materials.
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