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Abstract: This paper presents an up-to-date review of data-driven condition monitoring of industrial
equipment with the focus on three commonly used equipment: motors, pumps, and bearings.
Firstly, the general framework of data-driven condition monitoring is discussed and the utilized
mathematical and statistical approaches are introduced. The utilized techniques in recent literature
are discussed. Then, fault detection, diagnosis, and prognosis on the three types of equipment are
highlighted using a variety of popular shallow and deep learning models. Applications of these
techniques in recent literature are summarized. Finally, some potential future challenges and research
directions are presented.
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1. Introduction

With the continuous improvement of the industrialization level, the design and man-
ufacturing technologies of the equipment have also advanced swiftly, making the equip-
ment’s safety and reliability increasingly significant [1]. Equipment in operation is con-
stantly exposed to various environmental forces (such as cutting forces, friction, ambient
temperature, and vibration), and is susceptible to wear and tear, rusting of parts, dete-
rioration of components, and other problems, leading to frequent abnormalities in the
equipment, resulting in a gradual decline in its efficiency and life, and even catastrophic
failures. To address these issues, condition monitoring of equipment has attracted tremen-
dous research attention to ensure the safety and reliability of production [2–7]. Based on
online monitoring of time-series data, the failure process can be separated into two stages
for most of the equipment, as depicted in Figure 1. The first phase is the normal operating
phase, which begins with the installation and commissioning of the system and ends with
the appearance of abnormalities. During this phase, the monitored data is relatively steady
and has no discernible pattern of change. The second stage is the progression from the
appearance of anomalies to the degradation and eventual failure of the equipment. If the
abnormalities discovered in this phase lead directly to equipment failure, a fault detection
and diagnostic model is constructed based on the monitored data to determine the fault
type, severity, and location. If the data observed during this phase reveals a tendency of
degradation that is not severe enough to impede the normal operation of the equipment, a
model can be constructed to predict the failure and estimate the remaining useful life of the
equipment based on the degradation trend. There are three steps in equipment condition
monitoring: (1). data collection; (2). data processing; and (3). Fault detection, diagnosis,
and prediction. Data collection refers to the real-time monitoring of parameters or signals
relevant to the performance state of the equipment using various types of sensors, and the
aggregation of the collected data. Data processing refers to the pre-processing of signals or
data obtained by sensors, including noise reduction, reconstruction, and feature extraction.
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Features include time-domain features, frequency-domain features, time-frequency-domain
features, and features autonomously learnt by deep learning models. Lastly, for the de-
tected deviations from normal operation, intelligent fault diagnosis algorithms are used
to determine the specific fault type of the equipment, and for equipment exhibiting signs
of degradation or failure, prediction algorithms are used to predict the future trend of the
equipment’s performance state and its remaining useful life.
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Figure 1. Process of equipment failure and steps of condition monitoring.

In general, the method to condition monitoring has undergone three stages of de-
velopment, with the first relying on manual monitoring and diagnosis by specialized
engineers. The second development stage produces the data-driven condition monitoring
based on the continuous growth of sensor technology, more and more novel sensors are
installed or integrated in the equipment to gather real-time monitoring information of the
equipment, and a large number of signal analysis techniques are suggested and imple-
mented in the monitoring sector, realizing the contemporary fault diagnosis technology
with fault mechanism, sensor monitoring, and signal analysis as the co-main technologies.
The most renowned of these are mathematics and statistics-based techniques, including
Fourier Transform (FT), Wavelet Transform (WT), and Empirical Modal Decomposition
(EMD) [8–10]. The third stage of development is artificial intelligence-based condition mon-
itoring, where artificial intelligence techniques, mainly represented by machine learning,
have been quickly developed. In the field of intelligent condition monitoring of equipment,
machine learning algorithms are used in conjunction with techniques such as fault mecha-
nism and signal analysis. The most common approaches are shallow learning algorithms
represented by artificial neural networks (ANN), support vector machines (SVM) and
extreme learning machines (ELM) [11–13], and deep learning algorithms represented by
deep belief networks (DBN), convolutional neural networks (CNN) and recurrent neural
networks (RNN) [14–16]. Motors, pumps, and bearings, as key components of industrial
systems and applications, are essential equipment in the contemporary industrial sector.
These essential pieces of equipment must work with reliability and safety [17–20]. There-
fore, the main objective of this paper is to review the condition monitoring of equipment,
particularly for motors, pumps, and bearings, based on the data-driven methods.

The remaining parts of the paper are organized as follows. Data-driven condition
monitoring approaches for motors, pumps and bearings are presented in Section 2. Dif-
ferent data processing methods and their applications in the monitoring of industrial



Algorithms 2023, 16, 9 3 of 42

equipment are discussed. Then, data-driven fault detection techniques and their applica-
tions to industrial equipment are presented. Finally, Section 3 discusses challenges and
future trends.

2. Data-Driven Condition Monitoring of Industrial Equipment

Data-driven condition monitoring technology relies on various sources and types of
monitoring data collected during the operation of the equipment and employs various
data mining techniques to extract the useful information implied therein, thereby enabling
condition monitoring and fault diagnosis of the equipment [21–23]. As mentioned pre-
viously, the deployment of this technology consists of three steps: data collection; data
processing; and fault detection, diagnosis and prediction. The methods and applications of
data processing and condition monitoring and prediction are reviewed next in this section.

2.1. Data Processing Methods

Feature extraction and feature selection are the most critical parts of data processing
techniques. Features extraction is the process of obtaining sensitive features from the
original signal that effectively highlight variations between the various operation conditions
of the equipment. Time-domain feature extraction, frequency-domain feature extraction,
and time-frequency feature extraction are the primary feature extraction methods, with
the kind and physical relevance of the derived characteristics dictating which approach
is utilized. The method for selecting a sensitive, highly differentiated, and moderately
dimensional collection of features from the initial defect feature set is known as feature
selection [24,25].

Fourier Transform, Wavelet Transform, and Empirical Model Decomposition are the
primary approaches. Figure 2 shows a simple flow chart for applying these three techniques.
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2.1.1. The Fourier Transform Approach

The FT approach can be used to extract time-varying signal information in the fre-
quency domain and compare it to the characteristics of the normal state for condition
monitoring. Although the Fourier transform links the time and frequency domain prop-
erties of a signal, allowing for analysis and diagnosis of the signal state in the frequency
domain, it is impossible to establish the time of occurrence of any frequency in the signal
spectrum in the time domain. Frequently, the test signal at the time of failure coincides to an
abrupt shift in frequency. Based on the Fourier transform, the Short-time Fourier transform
(STFT) method is presented to analyze the frequency information of a time-varying signal
at a certain time interval or instant.
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The STFT for any signal x(t) is defined as:

Sx(t, ω) =

+∞∫
−∞

[x(τ)g(t− τ)]e−jωτdτ (1)

where τ is the time shift parameter, x(τ) is the time-domain signal, and g(t − τ) represent
the time window, which represents a function that is constantly equal to 0 or quickly
converges to 0 outside a finite interval, in which the centre is located at time τ. Although
STFT is capable of handling non-stationary signals, it is better suited for the analysis
of quasi-stationary signals, particularly long-period quasi-stationary signals, but not for
the analysis of local time-frequency characteristics of non-stationary signals, as it is a
Fourier transform on local intervals. Currently, STFT is mostly utilized for equipment
condition monitoring.

STFT has been successfully applied to equipment signal analysis and feature ex-
traction in previous research because its benefits in dealing with non-stationary random
signals [26–30]. Therefore, extensive study has been conducted on condition monitoring
strategies that combine this method with other methodologies. For example, in [31], the
discrete Fourier transform (DFT) is used to analyse the voltage signal waveform of the
Brushless DC motor to detect if a fault has occurred and to determine the number of turns
shorted. Then, frequency domain analysis of the integrated voltage characteristic waveform
is performed by STFT to determine the index of the faulty phase. Finally, an independent
adaptive neuro-fuzzy inference system (ANFIS) is used to implement detection and diagno-
sis of stator interturn short circuit faults. Aimer et al. [32] analyzed the current signal of an
induction motor with a broken rotor bar fault using STFT. On the produced time-frequency
diagram of the current signal, several harmonics were noted, and the sideband frequencies
were computed, allowing for the detection and diagnosis of the fault. In [33], STFT is
used to analyse the vibration signals of rolling element bearing under different states and
obtained the time-frequency distribution (TFD) characterizing the local faults. Then, the
TFDs of nine different bearing faults (e.g., inner race fault, ball fault and outer race fault)
were extracted, clustered, and identified by non-negative matrix decomposition (NMF).
The results show that the fault identification accuracy of the method can reach 99.3%,
which is much higher than the accuracy of 75.8% of ANN. He et al. [34] converted the raw
bearing time-domain acoustic emission sensor signals into frequency domain signals by
STFT, which resulted in a spectrum matrix. The sub-modes generated from the spectrum
matrix are then used to train the LSMSTAR network model for bearing fault diagnosis,
which achieves accurate classification of various bearing faults under different operating
conditions. Similarly, Zhao et al. [35] used the STFT to decompose multiple eigenmode
functions (IMFs) of the plunger pump’s vibration signal obtained by complete empirical
mode decomposition (CEMD). After that, the time-frequency matrices of the signals in
different operating states of the plunger pump were obtained, and the time-frequency
entropy of each state was calculated once to extract the features. The obtained feature
matrices are then dimensionally reduced by using principal component analysis (PCA).
Finally, the processed signal features are used to train a support vector machine (SVM)
classifier for the diagnosis of swash plate and rotor wear faults. In addition, STFT has also
been applied to signal dimensional conversion. For example, Chao et al. [36] converted
the one-dimensional vibration signal of an axial piston pump into a two-dimensional spec-
trogram by STFT, and effectively improved the accuracy of the STFT spectrogram feature
map by a denoising method, which was used as the input to a LeNet-5 convolutional
neural network to effectively improve the ability to identify cavitation conditions in noisy
environments. Tao et al. [37] also used STFT to transform the 1D time-domain vibration
signals of bearings into 2D time-frequency maps, and the multiple time-frequency maps
obtained by adjusting the length of the STFT window were used as input to a classification
generative adversarial network (CatGAN), which was trained to obtain a CatGAN model
for diagnosing inner race and outer race faults.
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The corresponding references for the FT methods reviewed in this section are sum-
marised in Tables 1–3.

Table 1. Motor condition monitoring using Fourier transform.

References Application Type of
Equipment Signal Fault Type

[26] Fault
diagnosis

Servo
motor

Current
signal

Axis misalignment (right and left axis with
different amplitude)

[30] Fault
diagnosis

Induction
motor

Current
signal Rotor and bearing fault

[31] Fault
diagnosis Brushless DC motor Voltage

signal Stator interturn short circuits

[32] Fault
diagnosis

Induction
motor

Current
signal Broken rotor bar fault (One or several bars broken)

[38] Fault
diagnosis Asynchronous motor Vibration

signal

Built-in rotor imbalance, stator winding faults,
built-in faulted bearing, built-in bowed rotor,

built-in broken rotor bars,
voltage imbalance and single phasing

Table 2. Pump condition monitoring using Fourier transform.

References Application Type of
Equipment Signal Fault Type

[27] Feature
extraction

Centrifugal
pump

Vibration
signal Cavitation

[35] Fault
diagnosis

Plunger
pump

Vibration
signal Swash plate wear and rotor wear

[36] Fault
diagnosis

Axial pistonv
pumps

Vibration
signal Cavitation (different severity)

[39] Fault
detection

Centrifugal
pump

Vibration
signal Cavitation

[40] Fault
detection

Centrifugal
pump

Vibration
signal

Cracks and imbalances in impellers of varying degrees
are simulated manually by making port dramas and

hammer blows. (Impeller damage due to corrosion in
the fluid and external solids materials)

[41] Fault
detection

Gear
pump

Vibration
signal Abrupt changes in the behaviour caused by cavitation

[42] Fault
classification

Motor
pump

Vibration
signal Misalignment unbalance rubbing accelerometer fault

Table 3. Bearing condition monitoring using Fourier transform.

References Application Type of
Equipment Signal Fault Type

[28] Feature
extraction

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[29] Fault
diagnosis

Rolling
bearing

Vibration
signal Roller, inner race, and outer race faults

[33] Feature
extraction

Rolling
bearing

Vibration
signal

9 kinds of bearings with various faults, i.e., inner race
fault, ball fault and outer race fault with

3 diameters status

[34] Feature
extraction

Rolling
bearing

Vibration
signal Inner race, outer race, cage, and ball faults

[37] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults
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2.1.2. The Wavelet Transform Approach

The WT approach can be used to decompose the signal at multiple scales and obtain
local features in the time-frequency domain through a series of wavelet basis functions and
is one of the most important tools in the time-frequency analysis of non-stationary signals.

Let Ψ(t) ∈ L2(R) (where L2(R) is the square integrable real number space), then the
Fourier transform of Ψ(t) is when the following admissibility condition is met:

CΨ =

+∞∫
−∞

|Ψ̂(ω)|2
|ω| dω < +∞ (2)

where Ψ̂(ω = 0) = 0.
Ψ(t) represents the mother function, which can be shifted, stretched, or compressed to

give a wavelet sequence (sub wavelet) after the transformation as follow.

Ψa,b(t) =
1√
a

Ψ
(

t− b
a

)
a, b ∈ R, a 6= 0 (3)

where the role of a is to scale the mother function Ψ(t), known as the scale factor, and the
role of b is to temporally localize the mother wavelet, known as the shift factor.

The WT inherits and expands upon the concept of STFT localization, resolving the
issue that the window size in STFT does not change with frequency by providing a time-
frequency window that fluctuates with frequency. Therefore, the WT can be utilized for
condition monitoring by analyzing changes in the signal’s mutation value and frequency
structure, as well as by utilizing the WT to denoise and extract waveform information
from the signal [30,43,44]. In [45], Siddiqui and Giri used WT to decompose the stator
current signal of an induction motor and extract low frequency features to represent the
fault information. All the useful information of the fault is obtained by superimposing the
waveforms, distinguishing the healthy and faulty states of the motor, and achieving the
detection of broken rotor bar faults. In addition, many variants of the WT have also been
successfully applied to equipment condition monitoring. These include continuous wavelet
transform (CWT) [46,47], discrete wavelet transforms (DWT) [48–51], and empirical wavelet
transform (EWT) [52]. CWT is often used to extract and analyse the wavelet features of a
signal. Muralidharan and Sugumaran [53] used CWT to analyze the Monoblock centrifugal
pump vibration signals and obtained feature sets consisting of different wavelets and used
them as inputs to a classifier to obtain the maximum fault identification capability for the
system. Finally, the diagnosis of single and hybrid faults of the pump bearing was achieved
by combining the decision tree approach. In addition, CWT is also used to convert time
series signals into time-frequency images. For example, Xu et al. [54] converted the bearing
vibration signal into a time-frequency image by a series of CWT and used it as the input
to a convolutional neural network. After training the network with multilayer pooling,
unique features corresponding to faults can be captured from the original CWT images,
which are then used as inputs to the gcForest model for fault classification. The results
show that the hybrid model achieves high accuracy in detecting and diagnosing multiple
bearing faults for datasets of different sizes. Tang et al. [55] used CWT to convert time
series of vibration, pressure, and sound signals of hydraulic axial piston pumps under
different operating conditions into two-dimensional time-frequency images and developed
a convolutional neural network fault diagnosis model based on an adaptive learning rate
strategy for each signal. The results showed that the average accuracy of fault diagnosis
using different signals was 97.33%, 99.48% and 98.77%. In [56], Kamiel et al. used the DWT
with multi-resolution analysis (MRA) to perform a five-level wavelet decomposition of the
original pump vibration signal to obtain the low and high frequency features of the signal.
Subsequently, a principal component analysis (PCA) model was constructed from the low
frequency features obtained under normal operating conditions to accurately detect single
and multiple faults (cavitation, impeller faults and combinations of cavitation and impeller
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faults) in centrifugal pumps, and analysis of the principal component scores and load
maps enabled fault identification. Al Tobi et al. [57] also used DWT to perform a six-level
decomposition of the vibration signal of a centrifugal pump, extracting 60 approximate
and detailed features for different mother wavelet functions, and applied them to train a
multilayer perceptron-based backpropagation neural network and support vector machine
model. It was found that with the use of rbio1.5 mother wavelet decomposition, not only
fewer feature parameters could be obtained, but also the accuracy of the fault detection and
diagnosis model could be achieved at 100%. In [58], the EWT was used to extract the modes
of the bearing vibration signals of the motor and their corresponding envelope spectra, and
the corresponding fault eigenfrequencies obtained were used to implement fault detection.
By comparing and analyzing the effectiveness of EWT with empirical mode decomposition
(EMD) using simulated and real data, it was found that EWT has better performance in
weak feature detection and composite fault detection, while EMD can only extract one
temporal frequency of the fault feature frequencies and cannot detect faults under strong
noise interference. Eren et al. [59] applied EWT to analyze the Fourier spectrum segments
of motor vibration signals extracted by Fast Fourier Transform (FFT). The time domain
contribution of the corresponding spectral bands was also obtained by inverse Fourier
transform and finally the root mean square value of the time domain signal was calculated
to achieve motor bearing fault detection.

The corresponding references for the WT methods reviewed in this section are sum-
marized in Tables 4–6 below.

Table 4. Motor condition monitoring using wavelet transform.

References Application Type of
Equipment Signal Fault Type

[30] Fault
diagnosis

Induction
motor

Current
signal Rotor and bearing fault

[43] Fault
detection

Induction
motor

Current
signal Air gap eccentricity fault

[45] Fault
detection

Induction
motor

Current
signal Broken rotor bar fault

[48] Fault
diagnosis

Induction
motor

Vibration
signal Rotor and bearing faults

[49] Fault
diagnosis

Permanent magnet
synchronous motor

Current
signal Broken magnet and eccentricity faults

[59] Fault
detection

Induction
motor

Vibration
signal Bearing fault

[60] Fault
diagnosis

Permanent magnet
synchronous

motor

Current,
voltage and

speed
signal

Static and dynamic eccentricity fault

Table 5. Pump condition monitoring using wavelet transform.

References Application Type of
Equipment Signal Fault Type

[51] Fault feature
identification

Reactor coolant
pump

Vibration
signal Rotor crack faults

[52] Feature
extraction Hydraulic pump Vibration

signal Loose slipper fault

[53]
Feature

extraction and fault
diagnosis

Monoblock
centrifugal pump

Vibration
signal

Bearing fault, impeller defect, bearing,
and impeller defect together

and cavitation

[55] Fault
diagnosis Hydraulic pump Vibration, pressure,

and sound signal
Swash plate wear, loose slipper, slipper

wear, and central spring wear
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Table 5. Cont.

References Application Type of
Equipment Signal Fault Type

[56] Feature
extraction Hydraulic pump Vibration

signal Slipper fault

[57] Fault
diagnosis Centrifugal pump Vibration

signal

Five mechanical faults (bearing, misalignment,
unbalance, impeller, and looseness), and a

hydraulic fault (cavitation)

[61] Fault
diagnosis Centrifugal pump Vibration

signal Suction flow blockages and casing cavitation

[62] Fault
diagnosis Hydraulic pump Vibration

signal Slipper loosing and Valve plate wear fault

Table 6. Bearing condition monitoring using wavelet transform.

References Application Type of
Equipment Signal Fault Type

[44] Fault
diagnosis

Rolling
bearings

Vibration
signal Roller, inner race, and outer race faults

[46] Fault
detection

Rolling
bearings

Vibration
signal Bearing faults

[47] Fault
diagnosis

Rolling
bearings

Vibration
signal Inner race and outer race faults

[50] Fault detection
and diagnosis

Rolling
bearings

Voltage and current
signals Partially and heavily damaged bearing fault

[54] Fault
diagnosis

Rolling
bearings

Vibration
signal Ball, inner race, and outer race faults

[58] Fault
detection

Rolling
bearings

Vibration
signal

Motor bearing with outer race weak defect
(spalling fault in the outer race of generator

bearing in this wind turbine)

[63] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and roller faults

[64] Fault
diagnosis

Spindle
bearing

Vibration
signal Inner race, outer race, and ball faults

2.1.3. The Empirical Model Decomposition Approach

The EMD approach is an adaptive decomposition method for non-stationary signals
proposed by Huang et al. [10]. in 1998. Using an iterative screening process, the approach
decomposes the original non-stationary signal with poor performance and contaminants
into a sequence of new, improved sequence of signals representing the oscillatory part of
the original signal, which is also called the intrinsic mode functions (IMF). By layer-by-layer
deconstructing the components of different feature scales in the signal, it is easier to extract
the distinctive information parameters of the condition monitoring signal, which has gained
significant attention in equipment fault diagnosis. The steps of EMD are as follows:

(a) After calculating all local extremes of the original signal x(t), a cubic spline function is
used to link all local maxima as the upper envelope e+(t), followed by a cubic spline
function to connect all local minima as the lower envelope e−(t). The mean envelope
e(t) is then determined between the upper and lower envelopes. Next, subtract e(t)
from the original signal x(t) to obtain a new signal m1(t).

m1(t)= x(t) − e(t) (4)

(b) If m1(t) satisfies the IMF criteria [65], it is recorded as c1(t) as the first order IMF. If not,
continue step a using m1(t) as the original signal x(t) until, after k times computations,
mk(t) meets the IMF criteria then mk(t) is the desired first order IMF.

c1(t)= mk(t) (5)
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(c) Subtract c1(t) from the original signal x(t) to obtain the new signal r1(t) as:

r1(t)= x(t) − c1(t) (6)

As r1(t) still contains some IMF, it is treated as a new original input signal and steps
a–c are repeated to find the n components until the iterative process stops when rn is a
monotonic function or a constant.

r1(t)= x(t)−c1(t)
r2(t)= r1(t)−c2(t)

...
rn(t)= rn−1(t)−cn(t)

(7)

where c1(t), c2(t), · · · , cn(t) represent the information of the signal from high to low
frequencies. This completes the entire EMD process, where the original signal x is split into
several components and a sum of residual functions.

x(t) =
n

∑
i=1

ci(t)+rn(t) (8)

The various order components characterize the different frequency components of the
signal and the residual function represents the average trend of the signal.

EMD is also a popular method for time-frequency domain signal analysis. Compared
to wavelet transform techniques, it overcomes the problem of non-adaptive basis functions
and eliminates the requirement for pre-determined basis functions, making it more adaptive
to non-linear and non-stationary signals. This has won the approach a great deal of attention
in the field of equipment condition monitoring [66–73]. In [74], the envelope analysis of the
IMF obtained by EMD decomposition of the vibration signal of the hydraulic pump casing
was carried out to derive the envelope spectrum of the first three IMFs containing the
main information about the fault and used to implement fault diagnosis. The experiments
show that the method can effectively diagnose the slipper loosing, swashplate wearing
and valve plate wearing faults of hydraulic pump. In [75], EMD is used to extract the IMFs
of the different frequency bands of the induction motor current. The dominating IMF is
obtained for the analysis of motor faults by decomposing the current signals in different
motor operating modes. The results show that the diagnosis of broken rotor bars faults in
induction motors can be accurately done by evaluating the variation of the amplitude of
the IMF oscillation, under varied loads. Sadeghi et al. [76], used EMD to decompose the
stator current of an induction motor into multiple IMFs with specific frequency bands, and
the IMF in the first row with the fastest response to the fault was used for the detection of
motor stator faults. Subsequently, to distinguish between motor current fluctuations caused
by normal operation and those caused by fault conditions, the instantaneous frequency (IF)
variation of the IMFs is used as a criterion for fault detection. Through different simulations
and experiments, this method outperforms the WT and FT methods overall in terms of
efficiency and accuracy of fault detection. However, as the acquired equipment signals are
typically combined with noise or unknown intermittent signals, this may lead to model
confusion when utilizing EMD for signal decomposition due to repeated jumps in the
local extremes in a short time interval. To tackle this difficulty, improved EMD algorithms
have been brought into the field of equipment condition monitoring, such as ensemble
EMD (EEMD) [77–81] and complete ensemble EMD (CEEMD) [82,83]. In [84], the collected
aviation hydraulic pump pressure signals were decomposed into several IMFs using EEMD
to reflect the fault characteristics in the time, frequency, and time-frequency domains to
define the severity of the faults. Using PCA to scale down the defect characteristics, a
support vector regression (SVR) model was then developed to predict the remaining life
of the pump. It is demonstrated that the multi-domain fault characteristics retrieved by
EEMD can more precisely reflect the severity of the loose piston defect and the remaining
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useful life of pump can be estimated by the SVR model. Zhao et al. [85] propose a new
method for extracting fault features. Initially, the fault vibration signals of the inner ring,
outer ring, and rolling element of the bearing are decomposed into IMFs with different
physical significance by EEMD. Then, the IMFs with the highest correlation coefficients are
chosen to characterize the original fault signals using the correlation coefficient analysis
method. The obtained IMF multi-scale fuzzy entropy values are then used to generate a
feature vector for the training and construction of the SVM classifier. Several experiments
demonstrate that the approach can accurately detect and diagnose the type and severity
of bearing faults under varying motor loads and bearing fault severity levels. CEEMD
was suggested in [86] to increase algorithm efficiency and reduce computing costs, and
it has been successfully used to condition monitoring. In [87], Delgado-Arredondo et al.
used CEEMD to decompose microphone-recorded induction motor acoustic sound signals.
The CEEMD was utilized to temporally decompose motor sound signals acquired under
normal and fault operating conditions, and the corresponding spectrum of IMFs obtained
by time-frequency distribution of Gabor (TFDG) was used to select specific IMFs containing
fault information for fault diagnosis. It is shown that the diagnosis of unbalance condition,
bearing faults, and broken rotor bar defects can be accomplished by comparing the spectra
of IMFs of sound signals under normal and faulty operating conditions, and that the validity
of the results can be verified by analyzing vibration signals. A defect feature extraction
optimization approach is proposed in [88] for CEEMD. A genetic algorithm is used to
optimize the white noise amplitude of the CEEMD so that the decomposition produces the
least mean value of mutual information between the IMFs, thereby suppressing the model
mixing phenomena. The method is used to the diagnosis of bearing faults, and the results
indicate that the optimized method can adaptively analyze diverse signals and provide
more sensitive diagnostic results than the empirically chosen white noise approach.

The corresponding references for the EMD methods reviewed in this section are
summarized in Tables 7–9 below.

Table 7. Motor condition monitoring using empirical model decomposition.

References Application Type of
Equipment Signal Fault Type

[66] Fault
diagnosis Synchronous motor Current

signal Broken damper bars with different asymmetry

[71] Fault
detection

Induction
motor

Current
signal Rotor bar fault

[75] Fault
diagnosis

Induction
motor

Current
signal Broken rotor bars (one or several bars)

[76] Fault
detection

Induction
motor

Current
signal Stator short circuit faults (stator winding fault)

[87] Fault
diagnosis

Induction
motor

Sound and
vibration signal

Unbalance condition, bearing faults and broken
rotor bars

[89] Fault detection
and diagnosis

Induction
motor

Current
signal Bearing fault (Outer race and inner race)

[90] Fault
diagnosis

Permanent magnet
Brushless DC motor

Current and
vibration signal Stator and rotor faults

Table 8. Pump condition monitoring using empirical model decomposition.

References Application Type of
Equipment Signal Fault Type

[35] Fault
diagnosis

Plunger
pump

Vibration
signal Swash plate wear and rotor wear

[67] Fault
diagnosis

Hydraulic
piston pump

Discharge
pressure signal

Swashplate wear fault, piston shoe loose fault,
and piston shoe wear fault
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Table 8. Cont.

References Application Type of
Equipment Signal Fault Type

[68] Fault
diagnosis

Airborne
fuel pump

Vibration and
pressure signal

Blade damage, diffusion tube damage, leakage,
diffusion tube impeller rub, and bearing wear

[72] Feature
extraction

Nuclear
main pump

Vibration
signal Rolling bearing fault

[74] Fault
diagnosis Hydraulic pump Vibration

signal
Slipper losing fault, swashplate wearing faut and

valve plate wearing fault

[77] Fault
diagnosis

Gear
pump

Vibration
signal

Tooth face wear, cavitation, oil pollution, and
wear of internal surface sleeve

[81] Fault
prognosis

Reactor
coolant pump

Shaft seal
leakage flow Seal leakage fault

[82] Fault
diagnosis

Vacuum
pump

Acoustic
emission signal

Overload fault (an overload fault was realized by
changing the suction load conditions and
extracting the atmosphere at full power is

considered an overload fault and extracting the
pressure vessel through the aperture is

considered normal.)

[84] Fault
detection

Aviation
piston pump

Discharge
pressure signal loose piston defect

[91] Fault
diagnosis Hydraulic pump Vibration

signal
Single slipper wear, single slipper loose, and

center spring wear faults

[92] Fault
diagnosis

Reciprocating
pump

Vibration
signal

Piston wear, bearing wear, and valve disc
wear faults

Table 9. Bearing condition monitoring using empirical model decomposition.

References Application Type of
Equipment Signal Fault Type

[69] Fault
diagnosis

Rolling
bearing

Vibration
signal Outer race, inner race, and ball faults

[70] Fault
diagnosis

Rolling
bearing

Vibration
signal Outer race, inner race, and ball faults

[73] Fault detection
and diagnosis

Bearing in main
coolant pump and
feed water pump

Vibration
signal Inner race, outer race, and ball faults

[78] Fault
diagnosis

Locomotive roller
bearing

Vibration
signal

Slight rub fault in the outer race
Serious flaking fault in the outer race, slight rub
fault in the inner race, roller rub fault, compound

faults in the outer and inner races, compound
faults in the outer race and rollers, compound
faults in the inner race and rollers, compound
faults in the outer and inner races and rollers

[79] Fault
diagnosis

Rolling
bearing

Vibration
signal Outer race, inner race, and ball faults

[80] Fault
diagnosis

Rolling
bearing

Vibration
signal Outer race fault and ball faults

[83] Fault diagnosis
and prognosis

Rolling
bearing

Vibration
signal Outer race, inner race, and ball faults

[85] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race and rolling element faults

[88] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race faults

2.2. Fault Diagnosis and Prediction
2.2.1. Method Based on Shallow Machine Learning

Most machine learning approaches have a shallow structure, often including one
hidden layer, with strong self-learning capabilities, nonlinear mapping abilities, and high
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resilience for feature extraction and pattern analysis. Artificial neural networks (ANN), sup-
port vector machines (SVM), and extreme learning machines (ELM) are common shallow
machine learning techniques. A typical neural network structure is shown in Figure 3.
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The Artificial Neural Networks Approach

ANN is a data processing model like the human nervous system, which includes
neuron nodes and weights. The nodes are the basic processing units and are arranged into
layers. Neurons in the input layer receive inputs from the outside world and neurons in
the output layer give out the neural network processing results. The layers between the
input and output layers are called hidden layers and the neurons in these layers are known
as hidden neurons. The neurons in the adjacent layers are connected and the weights
indicate the strength of the connections between the nodes. It abstracts the human nervous
system from the perspective of data processing by building individual neuron models and
forming various types of networks according to different connections and weights. ANNs
mimic the human nervous system in that they can learn from example data by changing
their structure and connection weights so that they can learn the relationship between
the input and output variables. Common ANNs include back propagation (BP) neural
networks, radial basis function (RBF) neural networks, self-organizing competitive (SC)
neural networks, etc. This paper only introduces BP neural networks in detail as they are
the most widely used.

A BP neural network is a multi-layer feed-forward neural network consisting of non-
linear units with an input layer, implicit (hidden) layers, and an output layer, with full
connectivity between the adjacent layers and no interconnection between units in the
same layer. A typical 3-layer BP neural network structure is given in Figure 3. The BP
algorithm is the fundamental approach for training ANNs, which is simply a problem
of finding the minimum of the error function and allows for the weight modification of
a multi-layer feed-forward neural network. The BP network training process contains
two stages: the forward propagation of information and the backward propagation of
error. Forward propagation means that the neurons in the input layer receive incoming
stimuli and transfer them, after interacting with the weights and biases, to the neurons
in the hidden layer, which in turn process the received information and then pass to the
output layer neurons through the connection weights. The calculated network outputs are
compared with the corresponding target values to work out the neural network prediction
errors. The neural network prediction errors are then processed backwards layer by layer to
retrieve the deviation of each layer’s weights and biases, which are subsequently modified.
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The whole procedure consists of alternating forward propagation of information and
backward propagation of error until the output errors are sufficiently small.

Take the BP neural network layout with a single hidden layer as an example and
suppose that n is the number of neurons in the input layer (i is the index number of
neurons), l is the number of neurons in the hidden layer (j is the index number of neurons),
and m is the number of neurons in the output layer (k is the index number of neurons). Wij
represents the weight between the input layer and the hidden layer neurons, whereas Wjk
represents the weight between the hidden layer and the output layer neurons. bj represents
the bias of neurons in the hidden layer, whereas bk represents the bias of neurons in the
output layer. The forward propagation of information is represented as follow:

yj= f

(
n

∑
i=1

Wijxi+bj

)
(9)

zk= f

(
l

∑
j=1

Wjkyj+bk

)
(10)

where x = (x 1, x2, · · · , xn) represents the input vector of the input layer, y = (y 1, y2, · · · , yl)
represents the output vector of the hidden layer, and z = (z 1, z2, · · · , zm) represents the
output vector of the output layer. Let z∗= (z ∗1 , z∗2 , · · · , z∗m

)
be the desired output vector,

E represents the error function which is typically half of the sum of squared errors, and
η represents the learning rate in BP neural networks. The standard BP neural network
modifies the weights and bias according to the negative gradient of the error function, and
the backward propagation process of the errors is represented as follow:

E =
1
2

m

∑
k=1

(z∗k−zk)
2 (11)

∆Wjk= −η
∂E

∂Wjk
= η(z∗k−zk)yjf

′
(

l

∑
j=1

Wjkyj−bk

)
(12)

∆bk= −η
∂E
∂bk

= η(zk−z∗k)f
′
(

l

∑
j=1

Wjkyj−bk

)
(13)

∆Wij= −η
∂E

∂Wij
= ηxif

′
(

n

∑
i=1

Wijxi−bj

)
m

∑
k=1

Wjkf′
(

l

∑
j=1

Wjkyj−bk

)
(z∗k−zk) (14)

∆bj= −η
∂E
∂bj

= ηf′
(

n

∑
i=1

Wijxi−bj

)
m

∑
k=1

Wjkf′
(

l

∑
j=1

Wjkyj−bk

)
(zk−z∗k) (15)

Once the adjustments for the weights and bias are found, the network weights and bias
can be updated, and then the process of forward propagation of information, backward
propagation of errors, and adjustments of weights and bias calculated again until the
iteration termination condition is met.

Neural networks have received increasing interest from academics and have been
used in the field of equipment condition monitoring as artificial intelligence algorithms
have advanced. The condition information of a device is the carrier of condition diagnosis,
and different types of condition information respond to different degrees of the device’s
condition, so to achieve condition monitoring, scholars have tried to train ANN models
with different condition information, which can be vibration, noise, temperature, pressure,
acoustic emission, and so on [93–102]. Vibration signals are used more frequently. In [103],
Patel et al. used the wavelet packet transform to extract statistical features from the
original bearing vibration signal and developed a bearing damage index (BID) to select
the dominant wavelet packet transform to further extract statistical features from the
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vibration signal features and used the extracted features as inputs to an ANN model. The
results show that ANN is more effective in fault detection and prediction than features
extracted from the original signal when data from higher BDI vibration signals are selected.
Jami et al. [40] decomposed the vibration signal of a centrifugal pump impeller using time
analysis (TA), frequency analysis (FA) and wavelet packet transform (WPT) respectively to
obtain the time domain statistical parameters, frequency domain peaks and time frequency
domain wavelet packet energy presented as feature datasets. ANN fault diagnosis models
were established for each of these three data sets. After adjusting the network nodes and
transfer functions, the results show that the feature datasets obtained after WPT analysis
can better represent the fault information and have higher diagnostic performance for
pump impellers under different operating conditions. In [41], a non-linear auto-regression
(NLAR) model was developed based on the time series of pump casing vibration signals
under non-fault conditions, with a multilayer neural network as the non-linear estimator.
Compared to the Fast Fourier Transform (FFT) based diagnostic method, the ANN based
NLAR model can effectively detect faults at the early stage and is successfully applied
to pump cavitation fault detection. Sharma et al. [104] obtained the frequency domain
characteristics of the vibration signals of three-phase asynchronous induction motor ball
bearings under different conditions by frequency domain analysis. These features were
used to train an ANN classifier model, which ultimately enabled fault diagnosis of defects
in the inner and outer rings of the bearings. In addition to the use of vibration signals,
current signals and temperature signals are often used as state information for the training
of ANN models. In [89], Refaat et al. decomposed the stator current signal of a three-
phase motor into an intrinsic mode function (IMF) containing the main amplitude and
frequency information by means of the empirical mode decomposition (EMD) method. The
IMFs were then applied to the Wigner-Ville distribution (WVD) to obtain WVD contour
patterns to characterize the characteristic frequencies of bearing defects. The contour
pattern is then pattern recognized using an ANN, which can effectively detect outer ring
defects in bearings. Sheikh et al. [105] transformed the induction motor current signal
into a two-dimensional park vector (PV) pattern image by the park vector analysis (PVA)
method. The different features of the pattern image (Area of PV pattern; Circumference
of the pattern; width of the pattern; resultant of the centroid) were then used as inputs
to the ANN and the motor bearing state as output from the ANN, enabling the detection
and diagnosis of faults caused by mis-mounted bearings. This enables the detection and
diagnosis of defects caused by incorrectly mounted bearings. Bangalore and Tjernberg [106]
constructed the detected average temperature signals of the wind turbine gearbox bearings
into bearing behaviour patterns via the SCADA system. The alarm and warning feature
data from the SCADA system were then used to train the ANN model. The results show
that the method can efficiently and accurately detect failures due to spalled or damaged
bearings. Additionally, in addition to employing a single signal as state information,
multiple signals are often used in combination to train ANN-based state detection models.
For instance, in [107], Verma et al. transformed the sample entropy (SampEn) into the
multiscale entropy of the current and vibration signals of an induction motor into a time
series and used it as input to an ANN for misalignment fault detection of induction
motors. This approach not only reduces the number of sensors, but also avoids the need for
extensive calculations in the frequency domain analysis. Sharma et al. [108] used the data
set of electric submersible pump (ESP) system variables obtained from real-time sensor
monitoring and the corresponding combination of variables calculated (e.g., temperature,
pressure, etc.) as input to an ANN, with the input weights of the variables determined by
the severity of their impact on the system. Afterwards, the inputs are compared with the
operating ranges corresponding to the ESP components in the hidden layer, and finally the
output layer determines whether the input conditions will lead to an ESP failure or predict
the trend leading to an ESP failure. In [90], the current signal is analyzed by performing a
third harmonic analysis to extract the amplitude and frequency features of the fault, and
the vibration signal is decomposed into intrinsic mode functions (IMFs) using complete
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ensemble empirical mode decomposition (CEEMD) to extract the signal features with the
best IMFs in the time and frequency domains. Afterwards, the features of the current
and vibration signals that are most relevant to the health indicators are combined and
reduced to two-dimensional primary metric space data using a PCA model. This dataset
was used to train the ANN model and achieved a diagnostic accuracy of 99% on the test
data obtained under stator fault of a brushless DC motor.

Figure 4 shows the basic processes for condition monitoring using the ANN model,
and the methods described next in this paper have the similar process to this method.
The relevant references for the ANN methods discussed in this section are summarized in
Tables 10–12.
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Table 10. Motor condition monitoring using artificial neural networks.

References Application Type of
Equipment Signal Fault Type

[89] Fault detection
and diagnosis

Induction
motor

Current
signal Bearing fault (inner and outer race)

[90] Fault
diagnosis

Permanent magnet
Brushless DC motor

Current and
vibration signal Stator and rotor faults

[93] Fault
diagnosis

Induction
motor

Current and
vibration signal

Various types of motor faults such as bearing,
stator, rotor, and eccentricity

[94]

Condition
diagnosing and

remaining
useful life
predicting

Induction
motor

Current and
voltage signal

Turn-to-turn short circuit in one phase,
turn-to-turn short circuit in two phases, missing

phase, and two phases

[95] Fault
detection

Induction
motor

Vibration
signal Unbalance

[101] Fault
detection

Induction
motor

Current
signal

Stator inter turn short circuit fault and unbalance
supply voltage fault

[105] Fault
diagnosis

Induction
motor

Current
signal

Defective due to misalignment of bearing
installation (misalignment, shaft deflect, outer

race damage, and inner race damage)

[107] Fault
detection

Induction
motor

Current and
vibration signal Misalignment faults

Table 11. Pump condition monitoring using artificial neural networks.

References Application Type of
Equipment Signal Fault Type

[39] Fault
detection Centrifugal pump Vibration

signals

Cavitation
Vans tip fault

Impeller crack fault

[40] Fault
detection Centrifugal pump Impeller

vibration signal

Cracks and imbalances in impellers of varying degrees
are simulated manually by making port dramas and

hammer blows. (Impeller damage due to corrosion in the
fluid and external solids materials)

[41] Fault
detection

Gear
pump

Pump casing
vibration signal Abrupt changes in the behavior caused by cavitation

[68] Fault
diagnosis

Airborne
fuel pump

Vibration and
pressure signal

Blade damage, diffusion tube damage, leakage, diffusion
tube impeller rub, bearing wear

[96] Malfunction
detection

Shimizu
PS-128BT water pump

Vibration
signal (bearing,
impeller, and

capacitor)

Broken capacitor, broken impeller, broken bearing, broken
capacitor & impeller, and broken capacitor & bearing

[100] Fault
diagnosis

Reactor
coolant pump

Vibration
signal

Bearing wear; rotor mass eccentricity; impeller mass
eccentricity; wear ring abrasion

[102] Fault
detection

Circulating
water pump

Bearing
temperature

signal

Broken bearings, damaged bearings, high cooling water
temperatures, noisy equipment, etc.

[108] Predict
failure

Real-time data collected
over a period of operation

of electric submersible
pumps (containing the

information from surface
and downhole data)

Pump
discharge

temperature,
pump

intake pressure,
pump

discharge
pressure and so

on.

Higher Flow rates, low pump intake pressures.
Gas production, gas to oil ratio, leading to decrease in

pump throughput.
High Fluid Viscosity leading to pump failures.
Pump being used outside its operating range.

Corrosion and depositions leading to blockages in pump,
debris in pump, shaft failures due to broken shafts,

change in downhole pressure, blockage at perforations
and pump intake.
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Table 12. Bearing condition monitoring using artificial neural networks.

References Application Type of
Equipment Signal Fault Type

[47] Fault
diagnosis

Rolling
bearings

Vibration
signal Inner race and outer race faults

[78] Fault
diagnosis

Locomotive roller
bearing

Vibration
signal

Slight rub fault in the outer race,
Serious flaking fault in the outer race,

Slight rub fault in the inner race,
Roller rubs fault,

Compound faults in the outer and inner races, compound
faults in the outer race and rollers, compound faults in the
inner race and rollers, compound faults in the outer and

inner races and rollers

[97]
Remaining
useful life
prediction

Rolling
bearing

Vibration
signals Inner race, ball, and outer race fault

[98] Fault
diagnosis

Rolling
bearing

Vibration
signal Local spalls fault and Pits or distributed surface wear fault

[99] Fault
prognosis

Rolling
bearing

Vibration
signal Inner race, ball, and outer race fault

[103]
Fault

detection and
prognosis

Rolling
bearing

Bearing
vibration

signal
Inner race, ball, and outer race fault

[104] Fault
diagnosis

Rolling
bearing

Bearing
vibration

signal
Inner race and outer race faults

[106] Fault
detection

Rolling
bearing

Temperature
measurement

for five
bearings

Damaged due to spalling in the bearing.

The Support Vector Machine (SVM) Approach

The initial objective of SVM theory was to devise a method for dealing with classifica-
tion issues by locating an optimum classification hyperplane that meets the classification
requirements, and by maximizing the blank area on both sides of the hyperplane. Theo-
retically, SVM is capable of obtaining optimum classification for two-dimensional linearly
divisible data.

Consider the classification of two data types as an example, given a training sample
set Di = (xi, yi), i = 1, 2, · · · , l, x ∈ Rn, y ∈ {±1}, where x is the input sample, y is the
category value, and (ω·x)+b = 0 (ω ∈ Rn, b ∈ R) is the hyperplane, in order for the
classification plane to accurately classify all samples and have a classification interval, it is
important to verify that the hyperplane meets the constraint yi[(ωx i +b)] ≥ 1, i = 1, 2, · · · l.
Therefore, the task of generating the optimal hyperplane becomes the problem of obtaining
the minimal value within the restrictions.

min
1
2
‖ω‖2 (16)

The Lagrange function is introduced to resolve this restricted optimization issue.

(ω, b,α) =
1
2
‖ω‖2 −

l

∑
i=1
αi(yi(ωxi+b)−1) (17)

where, αi > 0 is the Lagrange multiplier for each sample. Letting the partial derivatives of
Equation (18) be zero for b andω respectively, it can be derived that:

ω =
l

∑
i=1
αiyixi (18)
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l

∑
i=1
αiyi= 0 (19)

The solution vector’s expansion consists of a subset of training sample vectors, none of
which have zero Lagrange multipliers, i.e., the support vector. A sample vector with zero
Lagrange multipliers contributes zero and is irrelevant for selecting a classification hyper-
plane. Therefore, a decision function describing the optimal classification hyperplane, also
known as a support vector machine, is obtained from the training set, and its classification
function is determined by the support vector.

f(x)= sgn

(
m

∑
i=1
αiyi(x·xi)+b

)
(20)

In the field of condition monitoring SVM is mainly used for classification prob-
lems [109–117]. Compared to ANN, SVM is more suitable for small sample classification
and is more efficient and accurate. In [118], when the current and vibration signals of
the induction motor have been gathered, statistical characteristics are derived from their
respective time domain data. Afterwards, the most effective features and the optimal
SVM model parameters for fault diagnosis were chosen using a wraparound model and
a grid search technique. Through fault diagnosis and prediction for diverse operating
conditions of induction motors at different speeds and loads, a high level of precision can
be achieved. The performance of diagnosis at an intermediate speed and load (which reflect
the scenario of limited data) is also encouraging. Panda et al. [119] classified statistical
characteristics taken from a centrifugal pump’s time-domain vibration data using SVM.
Experiments were undertaken to identify two kinds of faults: flow obstructions and pump
cavitation, each with a different fault severity and conditions. The results indicate that
the SVM model gives more accuracy in predicting the beginning of cavitation events than
the multi-class fault classification for different degrees of blockages. In [120], the time
and frequency domain features of the bearing vibration signal are used to train an SVM
model. The trained classifier can be used for real-time detection of inner race, outer race
and rolling element faults in bearings. The Root mean square of vibration signal (RMS)
features in the time domain are used for fault detection, while the energy content and
energy deviation features in the frequency domain are used for fault classification. The
experimental results show an accuracy of 86% and 96% for the detection of inner and outer
race faults respectively. There are also modifications of the SVM, and optimized algorithms
applied to the condition detection of equipment. For instance, in [60], Ebrahimi et al. used
a fuzzy support vector machine (FSVM) to increase sensitivity to data and model general-
ization for the assessment of static and dynamic eccentricity fault severity in permanent
magnet synchronous motors. The wavelet transform analysis of stator current features was
used as training and testing data for the FSVM classifier, and it was determined that the
model could accurately identify the type and degree of eccentricity and had a classification
accuracy of 100% even in the presence of high noise. Since SVM can only perform bi-
nary classification, Gangsar et al. [121] have employed multiclass support vector machines
(MSVM) to effectively diagnose and predict a broad variety of mechanical and electrical
faults in induction motors. The time domain statistical features extracted from the current
and vibration signals of the induction motor were then used to train the MSVM classifier.
Several experiments demonstrate that the model can accurately predict all mechanical
and electrical problems under varying loads. Some researchers also optimize the SVM
parameters to achieve improved classification results. In [61], the frequency domain and
wavelet analysis features of the vibration signals were extracted from various fault con-
ditions of the pump under various operating conditions. These features serve as inputs
to the SVM classifier to classify pump pipe blockage and cavitation faults. In addition,
three optimization algorithms were used to determine the SVM classifier’s parameters for
fault classification accuracy at higher pump speeds. The relevant references for the SVM
methods discussed in this section are summarized in Tables 13–15.
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Table 13. Motor condition monitoring using support vector machine.

References Application Type of
Equipment Signal Fault Type

[60] Fault
diagnosis

Permanent
magnet

synchronous
motor

Current,
voltage signal

and speed
signal

Static and dynamic eccentricity fault

[109] Fault
diagnosis

Induction
motor

Current and
voltage signal Inter-turn short-circuits, rotor, and bearing faults

[118] Fault
diagnosis

Induction
motor

Current and
vibration signal Stator winding faults

[121] Fault
prognosis

Induction
motor

Vibration and
current signal

Bearing fault, unbalanced rotor fault, bowed rotor fault,
rotor misalignment fault, broken-rotor bar fault, phase

unbalance and single phasing fault with high resistance,
phase unbalance and single phasing fault with low

resistance, stator winding fault with high resistance and
stator winding fault with low resistance

Table 14. Pump condition monitoring using support vector machine.

References Application Type of
Equipment Signal Fault Type

[35] Fault
diagnosis

Plunger
pump

Vibration
signal Swash plate wear and rotor wear

[57] Fault
diagnosis

Centrifugal
pump

Vibration
signal

Five mechanical faults (bearing, misalignment,
unbalance, impeller, and looseness), and a hydraulic

fault (cavitation)

[61] Fault
diagnosis

Centrifugal
pump

Vibration
signal

Suction flow blockages
cavitations

[84] Fault
diagnosis

Aviation piston
pump

Discharge
pressure signal loose piston defect

[110] Fault
diagnosis

Oil rig motor
pump

Vibration
signal

Misalignment, structural looseness, unbalance,
hydrodynamic, mechanical looseness, rolling bearing

[111] Fault
diagnosis

Centrifugal
pump

Vibration
signal

Cavitation and impeller unbalance, cavitation and
shaft misalignment, impeller unbalance and shaft

misalignment

[112] Fault
diagnosis

Centrifugal
pump

Vibration
signal

Mechanical seal and
Impeller faults

[115] Condition
evaluation

Canned motor
pump

Performance
parameters and the

structure parameters
of pump (flow, power
consumption, stator

temperature, winding
insulation)

Severe or moderate degradation and normal or
good condition

[116] Condition
prediction

Reactor coolant
pump

Measurement
variables Variables out of control after a fault occurred

[117] Fault
diagnosis

Feed water
pump

Vibration
signal

Initial imbalance, rotor misalignment, rotor axial
rubbing, thrust bearing damage, bearing looseness,

bearing stiffness vary, foundation resonance,
coupling damage

[119] Fault
prognosis

Centrifugal
pump

Vibration
signal Flow blockages and cavitation
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Table 15. Bearing condition monitoring using support vector machine.

References Application Type of
Equipment Signal Fault Type

[46] Fault
detection

Rolling
bearing

Vibration
signal Bearing faults

[73] Fault detection
and diagnosis

Bearing in main coolant
pump and feed water

pump

Vibration
signal Inner race; outer race and ball faults

[79] Fault
diagnosis

Rolling
bearing

Vibration
signal Outer race, inner race, and ball faults

[83]
Fault

diagnosis and
prognosis

Rolling
bearing

Vibration
signal Outer race, inner race, and ball faults

[113] Fault
diagnosis

Bearing form induction
motor

Vibration
signal Ball, Inner race, and Outer race faults

[114] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, Inner race, and Outer race faults

[120] Early fault
detection

A run-to-failure test
conducted by

Intelligent Maintenance
Systems, University of

Cincinnati, USA

Vibration
signal Roller, Inner race, and Outer race faults

The Extreme Learning Machine Approach

In traditional neural network training algorithms, many iterations of training are
involved. This parameter adjustment process is not only time-consuming, but also compu-
tationally intensive, resulting in low network training efficiency. In the implementation of
the algorithm, it is easy to generate local minima and has poor applicability. To address
the above problems, Huang et al. [13]. proposed the ELM neural network. In contrast
to previous single-hidden-layer feedforward neural networks, the ELM randomly selects
weights and biases in the hidden layer, and then calculates the weights in the output layer
by a regularized linear regression method.

The number of neurons in the input, hidden and output layers are n, l, m, respectively.
Let the connection weights between the input layer to the hidden layer and the hidden
layer to the output layer be w and v respectively:

w =


w1
w2
· · ·
wl

 =


w11 w12 · · · w1n
w21 w22 · · · w2n

· · · · · · . . .
...

wl1 wl2 · · · wln


l×n

(21)

v =


v1
v2
· · ·
vl

 =


v v12 · · · v1n

v21 v22 · · · v2n

· · · · · · . . .
...

vl1 vl2 · · · vlm


l×m

(22)

The hidden layer bias is given as:

b =


b1
b2
· · ·
bl

 (23)
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The activation function is g(x), then for an output Y with N samples can be ex-
pressed as:

Y = Hv (24)

where, H is the hidden layer output matrix:

H =


g(w1·x1+b1) g(w2·x2+b2) · · · g(wl·x1+bl)
g(w1·x2+b1) g(w2·x2+b2) · · · g(w1·x2+bl)

· · · · · · . . .
...

g(w1·xN+b1) g(w2·xN+b2) · · · g(w1·xN+bl)


N×l

(25)

The following theorem was proposed by Huang et al.:
Given a single hidden layer forward neural network (SLFN) with N hidden

layer neurons, N distinct samples (x i, yi), where xi= [x i1, xi2, · · · , xin]
T ∈ Rn

and yi= [y i1, yi2, · · · , yim]T ∈ Rm, and an infinitely differentiable function g(x), then
for any assignment wi ∈ Rn and bi ∈ R, there is a hidden layer output matrix H that is
invertible and satisfies ‖Hv− Y‖ = 0.

Given N distinct samples (x i, yi), where xi= [x i1, xi2, · · · , xin]
T ∈ Rn and

yi= [y i1, yi2, · · · , yim]T ∈ Rm, and an infinitely differentiable function g(x). Given any
small error ε(ε > 0), there exists a SLFN with M (M ≤ N) hidden layer neurons that
has a hidden layer output matrix H that is invertible and satisfies ‖Hv− Y ‖ < ε for any
assignment wi ∈ Rn and bi ∈ R.

From the above two theorems, if the number of hidden layer neurons l and the number
of training samples N are equal, then the network can approximate the samples with zero
error for any w, b. Thus, training for the SLFN model is also equivalent to solving the
Equation (25) for the least-and-multiply solution v̂.

‖H
(

ŵ1, · · · , ŵM, b̂1, · · · , b̂M

)
v̂− Y‖ = min

v
‖H(w1, · · · , wM, b1, · · · , bM)v− Y‖ (26)

However, when N is large, an excessive number of hidden layers implies a larger
computational effort, so the size of the hidden layers can be reduced to M so that the
training error can be approximated by an arbitrarily small ε. In this case, the Moore-
Penrose generalized inverse matrix H+ of H can be used to solve for Equation (26).

v̂ = H+Y (27)

The most common method currently used to solve the generalized inverse matrix H+

is the singular value decomposition method, regardless of whether HTH is a singular or
non-singular matrix, which is solved by the following equation.

v̂ =
(

HTH
)−1

HTY (28)

In contrast to traditional single hidden layer feedforward neural networks, ELM ran-
domly selects weights and biases in the hidden layer and then calculates the weights of
the output layer by a regularized linear regression method. Even though the weights of
the hidden layer are randomly generated, ELM maintains the universal approximation
capability of SLFN. Therefore, from the perspective of learning efficiency, ELM networks
are not only simple to operate, but also learn faster and have better global search capa-
bility, which can overcome the problem of traditional neural networks falling into local
optima, without generating overfitting or inappropriate learning rates, and have better
generalization capability.

Compared to standard ANN and SVM algorithms, the rapid training speed and ex-
cellent learning efficiency of ELM have brought it into focus for equipment condition
monitoring [62,91,122–125]. In [126], the RMS values of the voltage and current characteris-
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tics of the three-phase induction motor are used as ELM model inputs. Six external faults
of the three-phase induction motor were discovered, with ELM providing faster results and
reducing the computational load more effectively than SVM and MLP. In [42], the Fourier
spectrum features of eight manually collected motor pump vibration signals are utilized
as input to an ELM model to categorize motor pump faults such as misalignment, unbal-
ance, and rubbing. When compared to other statistical classifiers (K-Nearest-Neighbor,
SVM, etc.), the generalization and classification accuracy of the ELM were shown to be
better to those of the statistical classifiers. In [127], Lan et al. extracted information from
the vibration signal of a faulty hydraulic pump using three different signal processing
techniques. The retrieved signal features that are most sensitive to the fault are utilized
to train the classifier model. Comparing ELM, BP, and SVM classifiers revealed that ELM
has benefits in terms of training speed and generalization and is easier in terms of model
construction and parameter selection than the other two approaches. In the sphere of
condition monitoring, the combination of ELM and signal pre-processing techniques has
also garnered considerable interest. By integrating ELM with a depth wavelet autoencoder
in [128], ELM was able to classify bearing faults with better accuracy. Multiple wavelet
auto-encoders were utilized to create a depth wavelet autoencoder that efficiently captures
the vibration signal’s features. The recorded features are then fed into an ELM model to
identify various bearing faults. The experimental results demonstrated that the suggested
technique achieves over 95% accuracy, which is much greater than classic ELM, wavelet
neural network, BP neural network, and SVM.

The relevant references for the ELM methods discussed in this section are summarized
in Table 16.

Table 16. Equipment condition monitoring using extreme learning machine.

Equipment References Application Type of
Equipment Signal Fault Type

Motor [126] Fault
classification Induction motor Voltage and

current signal
External faults (Mechanical,

environmental, and electrical faults)

Pump

[62] Fault
diagnosis Hydraulic pump Vibration

signal
Slipper loosing and

Valve plate wear fault

[122] Fault
diagnosis Hydraulic pump Sound

signal

Single slipper wear, single slipper
loose, swash plate wear, and

combined faults

[91] Fault
diagnosis Hydraulic pump Vibration

signal
Single slipper wear, single slipper

loose, and center spring wear faults

[42] Fault
classification

Motor
pump

Vibration
signal

Misalignment unbalance rubbing
accelerometer fault

[127] Fault
detection Hydraulic pump Vibration

signal Slipper abrasion

Bearing

[123] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[124] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[125] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[128] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

2.2.2. Method Based on Deep Learning

As an extension and evolution of machine learning, deep learning is based on neural
networks but is distinct from them. It solves the inherent problems of traditional neural
networks by learning the data representation layer by layer through a multi-hidden layer
network structure. It has been widely implemented in the fields of image processing and
text recognition, but industrial equipment condition monitoring is still in the research
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phase. Deep belief networks (DBN), convolutional neural networks (CNN), and recurrent
neural networks (RNN) are the most common deep learning models at present.

The Deep Belief Network Approach

As shown in Figure 5, a DBN is multi-hidden layer probabilistic generative model
consisting of multiple restricted Boltzmann machines (RBM) and one output layer (usually
a classification layer) combined to build a joint distribution between observed data and
labels by training layer by layer. Unlike the directed/unidirectional connectivity of the
hidden layers in DBNs, RBMs are multi-hidden Boltzmann networks in which the hidden
layers both convey information and allow for top-down feedback adjustment.
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The RBM can derive potential feature representations from the training data distri-
bution. It is assumed that the activation conditions of each hidden unit are independent
for a given input data again, and conversely, the activation conditions of the visible units
are independent for a given hidden unit state. The model structure of the RBM consists
of the weight matrix W of size m × n, each element wij in this matrix is associated with
the corresponding visible layer neuron state vector vi and hidden layer neuron state vector
hj. Also, each layer has a corresponding offset coefficient ai (for visible units) and bj (for
hidden units). When given the model parameters θ = [ω, a, b], the energy function of the
RBM can be written as:

E(v, h; θ)= −
m

∑
i

n

∑
j

wijvihj −
m

∑
i=1

aivi −
n

∑
j=1

bjhj (29)

where m and n represent the number of visible units and hidden units respectively.
The joint distribution of all units can be obtained from the calculation of the energy

function E:

p(v, h; θ) =
exp(−E(v, h; θ))

Z
(30)

where, Z =∑h,v exp(−E(v, h; θ)) is the normalization factor.
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From the above it follows that the conditional probability of a hidden layer neuron
being activated is:

p
(
hj|v; θ

)
= δ

(
bj +

m

∑
i=1

wijvi

)
(31)

Since it is a bidirectional connection, the explicit layer neuron can be equally activated
by the implicit layer neuron with the conditional probability of:

p(vi|h; θ )= δ

ai +
n

∑
i

j=1

wijhj

 (32)

A deep belief network can be formed by stacking multiple RBMs, as shown in
Figure 5b, where the outputs of layer i (the hidden layer) are used as inputs to layer
i + 1 (the visible layer). The joint distribution between the observed data and the labels
is established by training layer by layer, the DBN can learn a deep representation of the
training data.

Tamilselvan et al. [129] introduced DBN to the field of defect diagnostics after the
deep learning theory was developed. First, a pre-set health status is created, followed by
the pre-processing of the acquired sensor data. The health states were then categorized
using a DBN classifier, and the method’s validity was validated using two datasets, a
power transformer and an aviation engine. In various fields, such as motors, pumps,
and bearings, study and application of DBN-based condition monitoring techniques are
expanding [130,131]. In [132], a DBN-based fault diagnostic approach for induction motors
is proposed. The motor vibration signal is used as input for feature learning by the DBN
classifier. The acquired features are then utilized to train a BP neural network for fault
identification. The results were verified using time-domain analysis and wavelet transform,
which revealed that the DBN-learned features attained the maximum classification accuracy
of 95.8%. Wang et al. [133] implemented a DBN for axial piston pump fault diagnosis.
First, the time-domain, frequency-domain, and time-frequency-domain data indicators
of the original vibration signals of the faults were computed. The data metrics are then
used as training samples and input to the DBN, which is trained layer by layer to achieve
classification and detection of multiple faults. By comparison with SVM and ANN, it was
determined that the fault features automatically learnt by DBN could reach a classification
accuracy of 97.4%. In [134], DBN is used to improve rolling bearing fault diagnosis. The
DBN classifier was trained and evaluated using time-domain characteristics of vibration
signals from multiple kinds of faults. The results indicate that a diagnostic accuracy of
97.5% is achieved using the multi-signal fusion technique, as opposed to employing a single
fault signal. Moreover, compared to SVM, KNN, and BP neural networks, DBN has the
highest average classification accuracy at 93.17%. In the present day, DBNs have been suc-
cessfully used to fault classification and diagnostic problems [135,136], and in recent years,
DBNs have been utilized by combining them with other approaches. For example, in [137],
Shao et al. proposed a combination of adaptive DBNs and dual-tree complex wavelet
packets (DTCWPT). DTCWPT was used to decompose the original bearing vibration signal
into eight distinct frequency band components, from which nine statistical features were
recovered to generate a feature set. A 5-layer adaptive DBN is then trained these features to
classify faults. Comparing the method to other traditional machine learning methods using
the same data revealed that the method had the highest average accuracy, 94.38%. Chen
and Li [138] also propose a method for fault diagnosis of bearings using a combination of
sparse autoencoder (SAE) network and DBN. First, statistical features are derived from
the time and frequency domains of various vibration signals. Multiple two-level sparse
self-encoders (SAEs) are then fed these features to learn higher-level features. Based on the
fused feature vectors, DBN is then utilized to identify bearing faults. Recent research has
begun to improve the diagnostic and predictive performance of DBN models by optimizing
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parameters and adjusting internal structure of the model [139–142]. Li et al. [143] proposed
a Bispectrum entropy and DBN-based method for enhancing the performance of fault
prognosis for hydraulic pumps. First, a Bispectrum analysis of the pump vibration signal
was carried out to extract 15 Bispectrum entropies in distinct frequency bands as predictive
features. The normalized features are then utilized as training data for a 3-layer DBN net-
work to learn features. Using the quantum particle swarm optimization (QPSO) approach,
the DBN model parameters are optimized to increase prediction accuracy. In conclusion,
a comparison with conventional approaches (SVM and ANN models) demonstrates that
the method can reliably anticipate trends and random fluctuations in hydraulic pump
performance deterioration with good generality and prediction accuracy. To increase the
accuracy of continuous data modelling, Yu et al. [144] proposed a DBN model consisting
of improved condition restrict Boltzmann Machines (ICRBMs) to predict the remaining
useful life of a hydraulic pump. Adding timing linkage factors and constraint variables
to nodes on the same layer enhanced the original RBM. Following Bispectral analysis,
the normalized data of the vibration signal’s features were utilized for the training and
testing of the DBN model. Comparative experiments show that the improved DBN model
can achieves more prediction accuracy than the original DBN, BP neural network, and
SVM models.

The relevant references for the DBN methods discussed in this section are summarized
in Table 17.

Table 17. Equipment condition monitoring using deep belief network.

Equipment References Application Type of
Equipment Signal Fault Type

Motor

[130] Fault
diagnosis Induction motor Vibration

signal
Stator winding defect, unbalanced rotor,

defective bearing, broken bar, and bowed rotor

[132] Feature
extraction Induction motor Vibration

signal
Broken bar, broken rotor, defective bearing,
stator winding defect and unbalanced rotor

[135] Fault
diagnosis

Traction
motor

Vibration
signal Bearing fault

Pump

[133] Fault
diagnosis Axial piston pump Vibration

signal

Bearing fault, wear in three pistons, blocked
support hole in static pressure slippers, wear
in shaft shoulder, and cylinder block with a

pitting defect

[143] Fault
prognosis Hydraulic pump Vibration

signal Loose slipper

[144] Remaining
useful life Hydraulic pump Vibration

signal Loose slipper

Bearing

[134] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[136] Fault
detection

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[137] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[138] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race and outer race

[139] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[140] Fault
diagnosis

Electric locomotive
bearing

Vibration
signal

Outer race, inner race, roller, and
compound faults

[141] Fault
diagnosis

Rolling
bearing

Vibration
signal

Inner ring faults, outer ring faults, rolling
element faults, rotor imbalance faults, and the

coupling of these faults

[142] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

The Convolutional Neural Network Approach

A convolutional neural network is a typical supervised feed-forward neural network
whose training goal is to learn abstract features by alternating and superimposing convolu-
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tional kernels and pooling operations. It is structured with an input layer, a convolutional
layer, a pooling layer kernel, a fully connected layer, and an output layer.

The CNN model is a supervised learning model that requires learning with sample
labels. Therefore, the input consists of sample X and the corresponding label Y. For example,
for a classification problem, the inputs to the model are as follows:

{X, Y} = {xi, yi}
N (33)

where N denotes the number of samples, xi denotes the ith input sample and yi denotes the
category label corresponding to the ith input sample.

The convolutional layer is the core component of the CNN model. The idea of local
connectivity and weight sharing is achieved by means of convolutional kernels, which
slide vertically along the coordinate transverse kernels of the input feature map and
perform convolutional operations with the data in the receptive field, thereby extracting
the structural features hidden inside the data. The convolutional layers are organized
according to three dimensions: depth, width, and height, with width and height referring
to the width and height of the convolutional kernel respectively, i.e., the size of the local
receptive field. Depth is the number of convolution kernels. To extract different features on
the input feature map, the convolution layer performs a convolution operation by a certain
number of convolution kernels, each with a different weight, corresponding to a feature
extraction. The convolution operation extracts feature from the input feature map based on
the convolution kernel size, and shift compensation. The process of feature extraction by
convolution kernels is described as follows:

feaL
i,j = ∑Q

q=1 ∑J
j=1 wL

i,j∗feaL−1
M,q +bL

j

i =bM+2p−k
s c+1

(34)

where wL
i,j and bL

j denote the weight and bias of the jth convolutional kernel in the Lth

convolutional layer, respectively, J denotes the number of convolutional kernels, s is the
distance that convolutional kernel slides over the input feature map (step size), p denotes
the fill size, feaL−1

M,q represents the qth feature map of size M at the output of the (L− 1)th

layer, * denotes the discrete convolution operator, and feaL
i,j is the jth convolutional kernel

in the Lth convolutional layer extracted over the output feature map to generate feature
map of size i. Each convolution kernel finds a specific feature at each position in the feature
map, and the type of feature learned is determined dynamically by the algorithm.

The pooling layer Is the network layer that Implements the pooling operation. After
the features are extracted from the convolutional layer, direct use for classification can lead
to excessive computational effort and thus overfitting. Therefore, pooling of the feature
map is required to reduce the data dimensionality. The pooling operation is a process
of further abstraction of information, similar to the process of extracting features from a
convolutional layer, by sliding a sliding window over the feature map, taking the statistical
values of the local region corresponding to the sliding window as the sampled values of
that region, and then concatenating the values extracted from these local regions to form a
new feature map. The pooling operation preserves significant feature information while
reducing dimensionality, and its operation can be expressed as:

feaL
i′ ,j= f

(
feaL−1

i,j

)
i′ =

(
0, 1, 2, · · · , b i−d

s c
) (35)

where feaL−1
i,j denotes the jth feature map of size i input at layer L, f represents the method

of pooling processing. And d denotes the pooling function size, when d < i, it denotes
local pooling of the feature map, and when d = i, it represents pooling of the entire feature
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map. s denotes the pooling function move step, and feaL
i′ ,j is its corresponding output

feature map of size i′ after the pooling operation.
A fully connected layer is used to integrate local features extracted from a convolu-

tional or pooling layer, and it connects each neuron in the previous layer to each neuron in
the next layer, thus a fully connected structure. For a one-dimensional input x of length M,
the fully connected layer has N neurons, and the output of each neuron can be expressed as:

zL
j = ϕ

(
M

∑
i=1

zL−1
i wL

j,i+bL
j

)
, j = 1, 2, · · · , N (36)

where wL
j,i is the connection weight of the ith neuron in layer L− 1 to the jth neuron in

layer L, bL
j denotes the bias of the jth neuron in layer L, zL−1

i and zL
j are the input and

output of the jth neuron in layer L, M and N denote the number of neurons in layers L− 1
and L, respectively, and ϕ is the non-linear activation function. The output layer outputs
the recognition results of the model in the form of categories or probabilities through the
classifier and calculates the difference between the actual output and the ideal output.
The error back propagation algorithm then passes the error layer by layer and finally the
parameters of each layer are updated using gradient descent.

Initially, CNNs were mostly employed for two-dimensional image processing. How-
ever, because to its powerful feature learning and pattern recognition capabilities, it has
been recently used to equipment condition monitoring to enhance the analysis and di-
agnosis of non-linear, multi-source, high-dimensional data. Depending on the size of
the convolutional kernel, its condition monitoring applications can be divided into one-
dimensional convolutional models and two-dimensional convolutional models.

CNNs for condition monitoring were first primarily based on a two-dimensional
convolutional strategy [63,145–150]. Wen et al. [151] constructed a unique LeNet-5 based
CNN for fault diagnostics. The raw 1-dimensional device signal data is transformed into a
2-dimensional picture input, avoiding the need to manually choose features, and allowing
the CNN to classify the 2-dimensional images directly. The approach was verified on rolling
bearing, centrifugal pump, and hydraulic pump datasets, and the results indicated that the
achieved diagnostic accuracy are 99.79%, 99.481%, and 100%, respectively. Ding et al. [64]
combined wavelet packets with image-space reconstruction to reconstruct wavelet packet
energy (WPE) information in the frequency domain. The feature map is then fed into a
deep convolutional network (ConvNet) to learn distinguishable features, and ConvNet
will directly link the final convolutional layer as input to the multiscale layer to keep global
and local information. Experimentally, the strategy is shown to improve classification
accuracy for metaclassifier main bearing fault diagnosis feature clustering. Wang et al. [38]
utilized the short-time Fourier transform to transform a one-dimensional vibration signal
into a time-frequency domain picture. A CNN model comprised of four convolutional
layers, two pooling layers, and two fully connected layers was developed for image
classification-based health monitoring of asynchronous motor operating conditions. In
fact, CNNs have powerful signal processing and analysis capabilities. If a one-dimensional
signal is utilized directly as its input, it is possible to merge classical signal processing and
feature extraction techniques to accomplish the most direct fault diagnosis and optimize
the condition monitoring process. To incorporate a one-dimensional signal as input in a
CNN, the CNN network topology must be modified, and a one-dimensional convolution
kernel must be used. Many one-dimensional CNN models have been developed and
implemented in equipment condition monitoring at present [152–159]. Junior et al. [160]
employed vibration data derived from multiple sensors as input to a multi-headed one-
dimensional CNN model to diagnose faults in induction motors. The one-dimensional
CNN in each head consists of batch normalization, two convolutional layers, two pooling
layers, a fully connected layer, and a softmax layer, with each output corresponding to a
motor operating condition. The approach produces a diagnosis accuracy of 99.92% through
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experimentation and parameter optimization, and the network is quick to train and test.
Wang et al. [161] used raw vibration signals of each fault pattern to train a one-dimensional
CNN model to detect and recognize data features. The acquired features were then utilized
to train an HMM classifier for fault diagnosis. The classification results were compared with
CNN, SVM and BP neural networks and showed that the model gave accurate classification
for different bearing datasets. Liu et al. [162] suggested a multi-scale kernel residual CNN
(MK-ResCNN) for diagnosing motor faults. The vibration signals from various motor
running states were segmented into fragment samples to build the training and test sets
of the CNN model, enabling the distinction and classification of fault features. Residual
learning is included into the multi-scale kernel CNN to prevent degradation problems
in deep networks. The approach eliminates the requirement for converted data, and the
results demonstrate that reliable classification of noisy fault data can be performed under
non-stationary operating conditions by evaluating a normal motor and five faulty motors.

The relevant references for the CNN methods discussed in this section are summarized
in Tables 18–20.

Table 18. Motor condition monitoring using convolutional neural network.

References Application Type of
Equipment Signal Fault Type

[38] Fault
diagnosis Asynchronous motor Vibration

signal

Built-in rotor imbalance, stator winding faults,
built-in faulted bearing, built-in bowed rotor,

built-in broken rotor bars, and voltage
imbalance and single phasing

[152] Fault
detection

Induction
motor

Current
signal Bearing fault

[153] Fauld
diagnosis

Permanent magnet
synchronous motor

Current
signal Demagnetization fault and bearing fault

[160] Fault detection
and diagnosis

Induction
motor

Vibration
signal

Bent shaft, broken bar, misalignment,
mechanical looseness, bearing fault

and unbalance

[162] Fault
diagnosis

Induction
motor

Vibration
signal

Bowed rotor, broken rotor bar, faulty bearing,
high impedance and, unbalance rotor

Table 19. Pump condition monitoring using convolutional neural network.

References Application Type of
Equipment Signal Fault Type

[36] Fault
diagnosis Axial piston pump Vibration

signal Cavitation (different severity)

[55] Fault
diagnosis Hydraulic pump

Vibration,
pressure, and
sound signal

Swash plate wear,
Loose slipper,
Slipper wear,

Central spring wear

[150] Fault pattern
recognition

Water
pump

Vibration
signal Bearing wear, and rotor eccentricity faults

[156] Fault
diagnosis Centrifugal pump Vibration

signal
Cavitation, impeller unbalance, and

shaft misalignment

[157] Condition
monitoring Hydraulic pump Vibration

signal
High temperature influence on the

volumetric efficiency

[158] Fault
diagnosis Hydraulic pump Vibration

signal
Slipper failure, loose slipper, swash plate

wear, and central spring wear

[159] Fault
diagnosis Hydraulic pump Pressure

signal
Swash plate wear, loose slipper failure,
slipper wear, and central spring wear
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Table 20. Bearing condition monitoring using convolutional neural network.

References Application Type of
Equipment Signal Fault Type

[47] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race and outer race faults

[54] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[63] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and roller faults

[64] Fault
diagnosis

Spindle
bearing

Vibration
signal Inner race, outer race, and ball faults

[145] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[146] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[147] Fault
diagnosis

Plant
bearing

Vibration
signal Inner race, and outer race faults

[148] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[149] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[154] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[155] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race; outer race, and roller faults

[161] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

The Recurrent Neural Network Approach

Recurrent neural networks (RNN) are a framework for processing sequential data,
remembering the previous information through the connection structure between each
layer and using this information to influence the output of later nodes. RNNs can fully
exploit the temporal and semantic information in sequential data, and this approach is
more capable of deeper representation than full connected neural networks and CNNs
in processing temporal data. A typical recurrent neural network structure is shown in
Figure 6. For ease of understanding, the RNN structure in Figure 6 is expanded dutifully in
a time series as shown in Figure 7. It is worth noting that the nodes in the recurrent layer of
the RNN represent a hidden layer state rather than a neuron.
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In Figure 7, x represents the inputs, h represents the hidden layer output, and y
represents the output layer output. The right-hand side of Figure 7 is the form of an RNN
expanded on the time axis, where the input is a time series {· · · , xt−1, xt, xt+1, · · ·}, where
xt ∈ Rn and n is the number of neurons in the input layer. Correspondingly, the hidden
layer is {· · · , ht−1, h, ht+1, · · ·}, where ht ∈ Rm and m is the number of neurons in the
hidden layer. The output value y at the moment t is not only influenced by the input x at
the same moment, but also by the state of the hidden layer s at the previous moment. Such
feedback is called ‘memory’ or ‘state’ s in RNN and is at the heart of it. This leads to the
following computational process for the RNN model. The hidden layer calculation formula
can be expressed as:

ht= fh(st) (37)

where,
st= Wxt+Uht−1+bh (38)

fh represents the activation function of the hidden layer, bh represents the bias of the hidden
layer, W is the weight matrix from the input layer to the hidden layer, U is the weight
matrix from the hidden layer outputs at time t− 1 to the hidden layer outputs at time t,
st represent the state of the neuron at moments t, and ht−1 represents the output of the
hidden layer at the previous moment.

The RNN outputs are
{
· · · , yt−1, y, yt+1, · · ·

}
, where yt ∈ Rp with p being the number

of neurons in the output layer. The output layer is a fully connected layer, which means
that each neuron in the hidden layer is connected to all the neurons in the output layer, and
the output layer expression is:

yt= fo(Vht+bo) (39)

where V is the weight matrix from the hidden layer to the output layer, fo and bo represent
the output layer activation function and bias respectively.

As with traditional neural networks, the training of the network pattern parameters
is based on an error back-propagation algorithm. The difference is that the parameters
of the recurrent neurons in the RNN are shared from moment to moment, and thus the
calculation of the gradient relies on the gradient of all past moments. For this reason, the
error back propagation algorithm in RNNs is also known as the back propagation through
time (BPTT). In the following, the cross-entropy is considered as the loss function, the tan h
function is the hidden layer activation function and the final output of the RNN is y, the
state and output at time t are:

ht= tan h(st)= tan h(W) (40)

ŷt = softmax(Vst) (41)
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For sequence training the loss function is:

E(y, ŷ) =
T

∑
t=0

Et(yt, ŷt) = −
T

∑
t=0

yt log ŷt (42)

where yt and ŷt are the true output value and the model prediction at moment t respectively,
is and Et is the cross-entropy at moment t.

In recent years, there has been increasing interest in the use of RNNs for equipment
condition monitoring [163–167]. Abed et al. [168] have implemented RNN successfully to
the detection and classification of motor bearing faults. Using discrete wavelet transforms,
fault features are extracted from the current and vibration signals of induction motors. Us-
ing orthogonal fuzzy neighborhood discriminant analysis (OFDNA), these characteristics
are decreased further. OFDNA is then applied to acquire the most effective fault classifica-
tion features. The RNN classifier uses these features as training and test sets to provide fault
detection and diagnosis. The results shows that the RNN-based fault diagnosis approach
can detect and classify induction motor bearing faults under various operating conditions.
Li et al. predict the deterioration trend of rolling bearings by integrating RNN and rein-
forcement learning in [169]. The singular spectral entropy of the vibration signal is utilized
to characterize the deterioration condition of the bearing, and the degradation trend is split
into several stages by moving average noise reduction. The training and testing set for the
RNN model is comprised of these phases. Then, reinforcement learning is employed at
each stage to optimize the parameters of the RNN’s hidden layer. By comparing RNN with
reinforcement learning to ELM, SVM, and the original RNN model, the results indicate that
RNN with reinforcement learning surpasses the other approaches in terms of prediction
accuracy and convergence speed.

As seen in the previous paragraph, RNNs have already made progress in the applica-
tion of equipment condition monitoring. In practice, however, RNNs still have limits, most
notably the disappearance or expansion of gradients when dealing with lengthy sequence
issues. To solve this problem, a long short-term memory (LSTM) network structure con-
taining memory units is proposed in [170]. A typical LSTM neural network cell is shown in
Figure 8. Both LSTM and RNN are trained with similar parameters on the neural network
structure, with the main difference being on the recurrent neuron nodes.
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In Figure 8, ht is the hidden state, which represents short-term memory, and Ct is
the cell state, which represents long-term memory. Compared to the RNN basic recurrent
neurons, the LSTM has an additional state or memory for long-term storage and another for
short-term storage. The long-term state is updated slowly and mostly maintains long-term
dependent information, whereas the short-term state is updated more often and varies more
depending on the neuron’s current state. The LSTM additionally has three gated cyclic
units to regulate the updating and forgetting of memories, ensuring that vital information
is constantly remembered, and less significant information is discarded, hence permitting
the storage and flow of memories in the hidden layer units.

In the recent decade, LSTM has received a great deal of interest in the field of equip-
ment condition monitoring since it overcomes the limitations of RNNs in processing long
sequences [81,171–182]. Regarding fault detection and diagnosis, Luo et al. [183] imple-
mented fault detection for permanent magnet synchronous motor using LSTM. To train
the LSTM model, the three-phase current values and rotor position data at the moment
of continuous sampling are utilized as inputs, and the current value at the next sampling
moment is used as the desired output. Detection of faults is then accomplished by monitor-
ing the model’s prediction error. In [184], Xiao et al. propose a LSTM-based approach for
fault diagnosis in three-phase asynchronous motors. Each type of vibration signal is first
converted into a three-dimensional tensor sample matching to the current condition and
utilized as input to the LSTM classifier to establish the link between the vibration signal and
the fault condition. After testing the LSTM, linear regression (LR), SVM, multilayer neural
network, and original RNN on six asynchronous motors with various failure circumstances,
the LSTM demonstrated the highest classification accuracy at 98.28%. In [92], Bie et al.
presented a model based on complete ensemble empirical model decomposition (CEEMD)
and LSTM for fault diagnostics of reciprocating pumps. The vibration signal is processed
using CEEMD and singular spectral entropy to generate feature vectors for fault diagnostics
using an LSTM classifier. In comparison to traditional neural network approaches, the
LSTM has the best classification accuracy. Regarding fault prognosis and remaining useful
life (RUL) estimation, Lee et al. [185] utilized LSTM to estimate the RUL for gear pumps.
Using the temporal and frequency domain features of the vibration signal obtained by
signal analysis, the health index of the pump was characterized. The RUL estimate was
then done using a Kalman filter to combine the health index and pressure data. Through
training in a bi-directional LSTM model, it is able to predict the future of the RUL. Gate
recurrent units (GRUs) were introduced by Cho et al. [186] due to the varying contributions
of various gating to learning ability. By removing the gates with minor contributions and
their related weights, the model simplifies the structure of the LSTM network and enhances
the efficiency of learning. It consists of two gating units, the reset gate and the update gate.
This method has also been used to the monitoring of equipment condition [187–189]. The
reset gate acts similarly to the input gate of the LSTM unit, but the update gate implements
the forgetting gate and output gate. Zhao et al. [190] proposed a hybrid strategy for ma-
chine condition monitoring that combines manual feature creation with automatic feature
learning. First, time domain features are retrieved manually from the device signals and
utilized as input to an improved bidirectional GRU network. This is followed by learning
to represent faults using the GRU network’s produced local features. A supervised learning
layer is then employed to predict the machine condition. The research demonstrates the
efficacy and generalizability of the system through the prediction of tool wear, the diagnosis
of gearbox faults, and the detection of early bearing faults.

The relevant references for the RNN methods discussed in this section are summarized
in Tables 21–23.
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Table 21. Motor condition monitoring using recurrent neural network.

References Application Type of
Equipment Signal Fault Type

[163] Fault detection
and isolation

Induction
motor

Current
signal Stator and bearing fault

[168] Fault detection
and diagnosis

Brushless DC
motor

Current and
vibration signal

Bearing fault (Ball, inner race, and
outer race faults)

[171] Fault
diagnosis

Induction
motor Rotating sound signal Bearing fault (Ball, inner race, and

outer race faults)

[172] Fault diagnosis Induction
motor Vibration and current signal Unbalance fault with different severity

[183] Fault
detection

Permanent
Magnet

Synchronous
Motor

Three-phase current signal
and rotor
position

information

open and shot circuit fault
(instantaneous fault or gradual fault),

and winding resistance increase or
decrease (early faults)

[184] Fault
diagnosis

Three-phase
asynchronous

motor

Vibration
signal

Voltage imbalance, rotor imbalance,
faulty bearing, broken rotor bars, and

bowed rotor

[186]
Remaining
useful life
prediction

Induction
motor Current and voltage signal Bearing fault

Table 22. Pump condition monitoring using recurrent neural network.

References Application Type of
Equipment Signal Fault Type

[164] Modelling Heat
pump Temperature Clogging fault

[173] Fault
prognosis

Power
pump

Multiple
sensors

monitoring data
N/A

[174] Remaining
useful life

Electromagnetic
pump Vibration and pressure signal Cavitation

[175] Future state
prediction

Water injection
pump

Multiple
sensors

monitoring data (vibration,
temperature, flow, pressure, distance)

N/A

[92] Fault
diagnosis

Reciprocating
pump

Vibration
signal

Piston wear, bearing wear, and
valve disc wear faults

[185] Remaining
useful life

Hydraulic gear
pump Vibration, flow, and pressure signal Fuel contamination

[188] State trend
prediction

Aircraft
pump Accumulator pressure data N/A

[81] Fault
prognosis

Reactor coolant
pump

Shaft seal
leakage flow Seal leakage fault

[189] Condition
prediction

Main
pump Temperature and leakage flow Bearing wear fault

Table 23. Bearing condition monitoring using recurrent neural network.

References Application Type of
Equipment Signal Fault Type

[34] Feature
extraction

Rolling
bearing

Vibration
signal Inner race, outer race, cage and ball faults

[165] Fault
prognosis

Rolling
bearing

Vibration
signal Outer race fault

[169] State trend
prediction

Rolling
bearing

Vibration
signal Inner race fault
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Table 23. Cont.

References Application Type of
Equipment Signal Fault Type

[176] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[177] Fault
diagnosis

Rolling
bearing

Vibration
signal Ball, inner race, and outer race faults

[178] Fault
diagnosis

Rolling
bearing

Vibration
signal

Inner race, outer race and roller fault and
combination of outer race and roller faults

[179] Condition
monitoring

Rolling
bearing

Vibration
signal roller, inner race, and outer race fault

[180] Fault
prediction

Aero engine
bearing

Vibration
signal Inner race, outer race, and ball faults

[181] Remaining
useful life

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[187] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[190]
Prognosis and remaining

useful life
prediction

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[166] Fault
detection

Motor
bearing

Current and
vibration signal Air gap eccentricity and ball faults

[167] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

[182] Fault
diagnosis

Rolling
bearing

Vibration
signal Inner race, outer race, and ball faults

3. Conclusions

In this paper, we review the progress of the last 10 years of research into data-driven
condition monitoring applied to three types of commonly industrial equipment: motors,
pumps, and bearings. The structure and applications of data-driven condition monitoring
are investigated. The large number of reviewed works indicate that data-driven condition
monitoring of industrial equipment is gaining popularity. The reported data-driven equip-
ment condition monitoring approaches generally involve a feature extraction phase and
fault classification/prediction phase. The most widely used feature extraction techniques
include Fourier Transform (FT), Wavelet Transform (WT), and Empirical Modal Decom-
position (EMD). The most widely used classification and prediction techniques include
artificial neural networks (ANN), support vector machines (SVM) and extreme learning
machines (ELM), deep belief networks (DBN), convolutional neural networks (CNN) and
recurrent neural networks (RNN).

As a result of the literature assessment shown above, the following list of unsolved
critical future challenges is presented.

• Literature has focused on various types of faults, including rotor, stator winding,
bearing wear, unbalance faults, etc., in motors; cavitation, leakage, impeller faults, etc.,
in pumps; and inner race, outer race, ball, and roller faults in bearings. These faults
are often assessed individually in condition monitoring, however, multiple faults can
exist in a single component, so it is necessary to consider this situation carefully and
to achieve differentiation and resolution of multiple faults.

• As different types of equipment may have faults of varying severity in their operating
condition, it is essential to consider the state of development of faults to correctly
diagnose and detect them at the earliest stages of their occurrence, which is very rare
in research work.

• Another issue that cannot be disregarded is the imbalance of data categories, since
equipment always operates under normal conditions to collect normal data, resulting
in a small number of fault sample data. In addition, most AI-based monitoring systems
utilize historical or current databases. However, it is impossible to have a database for
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all machines operating under all conditions. Therefore, it is necessary to research how
to allow AI models to execute condition monitoring in the absence of training data or
under particular operating conditions that have not been trained.
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