Computation of the Hausdorff Distance between Two Compact Convex Sets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Notation
2.2. MM Algorithms
2.3. Support Functions and Supporting Sets
2.4. Derivation of the Algorithms
Algorithm 1 Computation of by Projected Gradient Ascent |
|
2.5. A Homotopy Method
Algorithm 2 Minkowski Set Projection |
|
Algorithm 3 Homotopy Modification of Projected Gradient Ascent |
|
2.6. Convergence
3. Results
4. Discussion
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Proofs
Appendix A.2. Julia Computer Code
References
- Aubin, J.-P. Applied Abstract Analysis; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Munkres, J. Topology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Conci, A.; Kubrusly, C.S. Distance between sets: A survey. Adv. Math. Sci. Appl. 2017, 26, 1–18. [Google Scholar]
- Ortigosa, R.; Martínez-Frutos, J.; Mora-Corral, C.; Pedregal, P.; Periago, F. Optimal control of soft materials using a Hausdorff distance functional. SIAM J. Control. Optim. 2021, 59, 393–416. [Google Scholar] [CrossRef]
- Sendov, B. Some questions of the theory of approximations of functions and sets in the Hausdorff metric. Russ. Math. Surv. 1969, 24, 143–183. [Google Scholar] [CrossRef]
- Cornean, H.D.; Purice, R. On the regularity of the Hausdorff distance between spectra of perturbed magnetic Hamiltonians. In Spectral Analysis of Quantum Hamiltonians: Spectral Days 2010; Springer: Berlin/Heidelberg, Germany, 2012; pp. 55–66. [Google Scholar]
- Kumar, K.S.; Manigandan, T.; Chitra, D.; Murali, L. Object recognition using Hausdorff distance for multimedia applications. Multimed. Tools Appl. 2020, 79, 4099–4114. [Google Scholar] [CrossRef]
- Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 850–863. [Google Scholar] [CrossRef]
- Lertchuwongsa, N.; Gouiffes, M.; Zavidovique, B. Enhancing a disparity map by color segmentation. Integr.-Comput.-Aided Eng. 2012, 19, 381–397. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Massopust, P.; Strickl, H.; Sloan, A.D. Fractal modeling of biological structures. Ann. N. Y. Acad. Sci. 1987, 504, 179–194. [Google Scholar] [CrossRef]
- Aulbach, B.; Rasmussen, M.; Siegmund, S. Approximation of attractors of nonautonomous dynamical systems. Discret. Contin. Dyn. Syst. Ser. B 2005, 5, 215–238. [Google Scholar]
- Dubuisson, M.-P.; Jain, A.K. A modified Hausdorff distance for object matching. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 566–568. [Google Scholar]
- Kim, I.-S.; McLean, W. Computing the Hausdorff distance between two sets of parametric curves. Commun. Korean Math. Soc. 2013, 28, 833–850. [Google Scholar] [CrossRef]
- Rote, G. Computing the minimum Hausdorff distance between two point sets on a line under translation. Inf. Process. Lett. 1991, 38, 123–127. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 2153–2163. [Google Scholar] [CrossRef]
- Zhang, D.; He, F.; Han, S.; Zou, L.; Wu, Y.; Chen, Y. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integr. Comput.-Aided Eng. 2017, 24, 261–277. [Google Scholar] [CrossRef]
- Atallah, M.J. A linear time algorithm for the Hausdorff distance between convex polygons. Inf. Process. Lett. 1983, 17, 207–209. [Google Scholar] [CrossRef]
- Belogay, E.; Cabrelli, C.; Molter, U.; Shonkwiler, R. Calculating the Hausdorff distance between curves. Inf. Process. Lett. 1997, 64, 17–22. [Google Scholar] [CrossRef]
- Elber, G.; Grandine, T. Hausdorff and minimal distances between parametric freeforms in R2 and R3. In Proceedings of the International Conference on Geometric Modeling and Processing, Hangzhou, China, 23–25 April 2008; pp. 191–204. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Beck, A. First-Order Methods in Optimization; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Keys, K.L.; Zhou, H.; Lange, K. Proximal distance algorithms: Theory and practice. J. Mach. Learn. Res. 2019, 20, 2384–2421. [Google Scholar]
- Lange, K. MM Optimization Algorithms; SIAM: Philadelphia, PA, USA, 2016. [Google Scholar]
- Bauer, H. Minimalstellen von funktionen und extremalpunkte. Arch. Math. 1958, 9, 389–393. [Google Scholar] [CrossRef]
- Clarke, F. Functional Analysis, Calculus of Variations and Optimal Control; Springer: New York, NY, USA, 2013. [Google Scholar]
- Frank, M.; Wolfe, P. An algorithm for quadratic programming. Nav. Res. Logist. Q. 1956, 3, 95–110. [Google Scholar] [CrossRef]
- Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, Georgia, 17–19 June 2013; pp. 427–435. [Google Scholar]
- Parikh, N.; Boyd, S. Proximal algorithms. Found. Trends Optim. 2014, 1, 127–239. [Google Scholar] [CrossRef]
- Zhou, H.; Lange, K. On the bumpy road to the dominant mode. Scand. J. Stat. 2009, 37, 612–631. [Google Scholar] [CrossRef]
- Hunter, D.R.; Lange, K. A tutorial on MM algorithms. Am. Stat. 2004, 58, 30–37. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Krishnan, T. The EM Algorithm and Extensions, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Marošević, T. The Hausdorff distance between some sets of points. Math. Commun. 2018, 23, 247–257. [Google Scholar]
- Won, J.-H.; Zu, J.; Lange, K. Projection onto Minkowski sums with application to constrained learning. In Proceedings of the 36th International Conference on Machine Learning 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 3642–3651. [Google Scholar]
- Garber, D.; Hazan, E. Faster rates for the Frank-Wolfe method over strongly-convex sets. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 541–549. [Google Scholar]
- Majeed, S.N. On strongly E-convex sets and strongly E-convex cone sets. J. AL-Qadisiyah Comput. Sci. Math. 2019, 11, 52–59. [Google Scholar]
- Beck, A. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB; SIAM: Philadelphia, PA, USA, 2014. [Google Scholar]
- Bertsekas, D.P. Nonlinear Programming, 2nd ed.; Athena Scientific: Belmont, MA, USA, 1999. [Google Scholar]
- Lacoste-Julien, S. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv 2016, arXiv:1607.00345. [Google Scholar]
- Lange, K. Closest Farthest Widest. 2023; unpublished. [Google Scholar]
- Lange, K.; Won, J.-H.; Landeros, A.; Zhou, H. Nonconvex optimization via MM algorithms: Convergence theory. In Wiley StatsRef: Statistics Reference Online; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 1–22. [Google Scholar]
- Bartoň, M.; Hanniel, I.; Elber, G.; Kim, M.-S. Precise Hausdorff distance computation between polygonal meshes. Comput. Aided Geom. Des. 2010, 27, 580–591. [Google Scholar] [CrossRef]
- Guthe, M.; Borodin, P.; Klein, R. Fast and accurate Hausdorff distance calculation between meshes. J. WSCG 2005, 13, 41–48. [Google Scholar]
- Shewchuk, J.R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry towards Geometric Engineering; Lin, M.C., Manocha, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 203–222. [Google Scholar]
- Aspert, N.; Santa-Cruz, D.; Ebrahimi, T. Mesh: Measuring errors between surfaces using the Hausdorff distance. In Proceedings of the IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland, 26–29 August 2002; Volume 1, pp. 705–708. [Google Scholar]
Set Pair | p | Method | Homotopy | Maximum | Mean | Std | Secs |
---|---|---|---|---|---|---|---|
(box, ball ∩ orthant) | 2 | proj grad | false | 1.8284 | 1.3314 | 0.40789 | 0.00163 |
(box, ball ∩ orthant) | 2 | proj grad | true | 1.8284 | 1.8284 | 0.0 | 0.00349 |
(box, ball ∩ orthant) | 2 | Frank-Wolfe | false | 0.41421 | 0.16569 | 0.20394 | 0.000564 |
(box, ball ∩ orthant) | 2 | Frank-Wolfe | true | 0.41421 | 0.41421 | 0.0 | 0.00101 |
(box, ball ∩ orthant) | 2 | point cloud | false | 1.8159 | 1.8159 | 0.0 | 0.625 |
(simplex, L1 ball) | 2 | proj grad | false | 1.4142 | 1.4142 | 0.0 | 0.001 |
(simplex, L1 ball) | 2 | proj grad | true | 1.4142 | 1.4142 | 0.0 | 0.00272 |
(simplex, L1 ball) | 2 | Frank-Wolfe | false | 1.4142 | 1.4142 | 0.0 | 0.000358 |
(simplex, L1 ball) | 2 | Frank-Wolfe | true | 1.4142 | 1.4142 | 0.0 | 0.0574 |
(simplex, L1 ball) | 2 | point cloud | false | 1.4142 | 1.4142 | 0.0 | 0.639 |
(box, ball ∩ orthant) | 3 | proj grad | false | 2.4641 | 1.6358 | 0.50531 | |
(box, ball ∩ orthant) | 3 | proj grad | true | 2.4641 | 2.4641 | 0.0 | 0.000605 |
(box, ball ∩ orthant) | 3 | Frank-Wolfe | false | 0.73205 | 0.31788 | 0.25266 | |
(box, ball ∩ orthant) | 3 | Frank-Wolfe | true | 0.73205 | 0.73205 | 0.0 | 0.000145 |
(box, ball ∩ orthant) | 3 | point cloud | false | 2.4221 | 2.4221 | 0.0 | 0.63 |
(simplex, L1 ball) | 3 | proj grad | false | 1.7321 | 1.7321 | 0.0 | |
(simplex, L1 ball) | 3 | proj grad | true | 1.7321 | 1.7321 | 0.0 | 0.000158 |
(simplex, L1 ball) | 3 | Frank-Wolfe | false | 1.2247 | 1.2247 | 0.0 | |
(simplex, L1 ball) | 3 | Frank-Wolfe | true | 1.2247 | 1.2247 | 0.0 | 0.00186 |
(simplex, L1 ball) | 3 | point cloud | false | 1.732 | 1.732 | 0.0 | 0.615 |
(box, ball ∩ orthant) | 10 | proj grad | false | 5.0 | 3.4576 | 0.73165 | 0.0001 |
(box, ball ∩ orthant) | 10 | proj grad | true | 5.3246 | 5.3246 | 0.0 | 0.000666 |
(box, ball ∩ orthant) | 10 | Frank-Wolfe | false | 2.0 | 1.2288 | 0.36583 | |
(box, ball ∩ orthant) | 10 | Frank-Wolfe | true | 2.1623 | 2.1623 | 0.0 | 0.000183 |
(box, ball ∩ orthant) | 10 | point cloud | false | 4.8158 | 4.8158 | 0.0 | 0.629 |
(simplex, L1 ball) | 10 | proj grad | false | 3.1623 | 3.1623 | 0.0 | |
(simplex, L1 ball) | 10 | proj grad | true | 3.1623 | 3.1623 | 0.0 | 0.000749 |
(simplex, L1 ball) | 10 | Frank-Wolfe | false | 2.6667 | 2.6667 | 0.0 | |
(simplex, L1 ball) | 10 | Frank-Wolfe | true | 2.6667 | 2.6667 | 0.0 | 0.00196 |
(simplex, L1 ball) | 10 | point cloud | false | 3.1626 | 3.1626 | 0.0 | 0.613 |
(box, ball ∩ orthant) | 100 | proj grad | false | 15.248 | 13.016 | 0.69754 | 0.000621 |
(box, ball ∩ orthant) | 100 | proj grad | true | 19.0 | 19.0 | 0.0 | 0.00126 |
(box, ball ∩ orthant) | 100 | Frank-Wolfe | false | 7.124 | 6.0078 | 0.34877 | 0.00168 |
(box, ball ∩ orthant) | 100 | Frank-Wolfe | true | 9.0 | 9.0 | 0.0 | 0.000304 |
(box, ball ∩ orthant) | 100 | point cloud | false | 15.598 | 15.598 | 0.0 | 0.629 |
(simplex, L1 ball) | 100 | proj grad | false | 10.0 | 10.0 | 0.0 | |
(simplex, L1 ball) | 100 | proj grad | true | 10.0 | 10.0 | 0.0 | 0.000852 |
(simplex, L1 ball) | 100 | Frank-Wolfe | false | 9.8494 | 9.8494 | 0.0 | |
(simplex, L1 ball) | 100 | Frank-Wolfe | true | 9.8494 | 9.8494 | 0.0 | 0.00299 |
(simplex, L1 ball) | 100 | point cloud | false | 9.9493 | 9.9493 | 0.0 | 0.64 |
(box, ball ∩ orthant) | 1000 | proj grad | false | 45.174 | 43.698 | 0.6652 | 0.00591 |
(box, ball ∩ orthant) | 1000 | proj grad | true | 62.246 | 62.246 | 0.0 | 0.00875 |
(box, ball ∩ orthant) | 1000 | Frank-Wolfe | false | 22.087 | 21.349 | 0.3326 | 0.00256 |
(box, ball ∩ orthant) | 1000 | Frank-Wolfe | true | 30.623 | 30.623 | 0.0 | 0.00531 |
(box, ball ∩ orthant) | 1000 | point cloud | false | 48.627 | 48.627 | 0.0 | 1.13 |
(simplex, L1 ball) | 1000 | proj grad | false | 31.623 | 31.623 | 0.0 | 0.000377 |
(simplex, L1 ball) | 1000 | proj grad | true | 31.623 | 31.623 | 0.0 | 0.0113 |
(simplex, L1 ball) | 1000 | Frank-Wolfe | false | 31.575 | 31.575 | 0.0 | 0.000303 |
(simplex, L1 ball) | 1000 | Frank-Wolfe | true | 31.575 | 31.575 | 0.0 | 0.013 |
(simplex, L1 ball) | 1000 | point cloud | false | 31.597 | 31.597 | 0.0 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lange, K. Computation of the Hausdorff Distance between Two Compact Convex Sets. Algorithms 2023, 16, 471. https://doi.org/10.3390/a16100471
Lange K. Computation of the Hausdorff Distance between Two Compact Convex Sets. Algorithms. 2023; 16(10):471. https://doi.org/10.3390/a16100471
Chicago/Turabian StyleLange, Kenneth. 2023. "Computation of the Hausdorff Distance between Two Compact Convex Sets" Algorithms 16, no. 10: 471. https://doi.org/10.3390/a16100471
APA StyleLange, K. (2023). Computation of the Hausdorff Distance between Two Compact Convex Sets. Algorithms, 16(10), 471. https://doi.org/10.3390/a16100471