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Abstract: Falls are a major problem in hospitals, and physical or chemical restraints are commonly
used to “protect” patients in hospitals and service users in hostels, especially elderly patients with
dementia. However, physical and chemical restraints may be unethical, detrimental to mental health
and associated with negative side effects. Building upon our previous development of the wandering
behavior monitoring system “eNightLog”, we aimed to develop a non-contract restraint-free multi-
depth camera system, “eNightTrack”, by incorporating a deep learning tracking algorithm to identify
and notify about fall risks. Our system evaluated 20 scenarios, with a total of 307 video fragments,
and consisted of four steps: data preparation, instance segmentation with customized YOLOv8
model, head tracking with MOT (Multi-Object Tracking) techniques, and alarm identification. Our
system demonstrated a sensitivity of 96.8% with 5 missed warnings out of 154 cases. The eNightTrack
system was robust to the interference of medical staff conducting clinical care in the region, as well as
different bed heights. Future research should take in more information to improve accuracy while
ensuring lower computational costs to enable real-time applications.

Keywords: computer vision; deep learning; object tracking; patient monitor; bed exiting; fall; hospi-
tal ward

1. Introduction

Falls and their associated injuries pose significant challenges in hospitals, and health-
care institutions prioritize the delivery of safe, effective, and high-quality care to patients [1].
In the United States, it is estimated that there are between 0.7 and 1 million patient falls
in hospitals, resulting in up to 250,000 injuries and 11,000 deaths [2]. Falls are a major
safety concern and account for over 84% of all adverse incidents that occur in hospitals [3].
Nearly half of these falls occur in close proximity to the patient’s bed [4]. Approximately
33% of hospital falls result in injuries, and among these incidents, 4 to 6% are severe
enough to cause additional health problems and even death, such as fractures and subdural
hematomas [5]. Consequently, many hostels and hospitals have resorted to using restraints
as a precautionary measure [6].

Physical restraint involves the use of devices or equipment to restrict an individual’s
movement, and these cannot be removed by the person themselves [7]. Physical restraints
are employed to ensure the safety of individuals using medical devices and to manage ag-
gressive or agitated behaviors [8–10]. Patients with dementia or cognitive impairments are
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often physically restrained to prevent harm to themselves or others [11]. Chemical restraints
can also be used to achieve similar effects to physical restraints in clinical settings [12].

However, there is much debate surrounding the use of both physical and chemical
restraints. Restraining individuals can prevent them from fulfilling basic needs like ac-
cessing water and using the restroom, which is unethical and detrimental to their mental
health. Moreover, serious accidents such as strangulation can occur when individuals are
restrained [13]. Those who have been restrained have reported experiencing unpleasant
emotions and psychological damage, including hopelessness, sadness, fear, anger, and
anxiety [14]. Adverse health effects of restraint include respiratory problems, malnutri-
tion, urinary incontinence, constipation, poor balance, pressure ulcers, and bruises [15].
Similarly, chemical restraints also have negative consequences. For instance, antipsychotic
medications can cause drowsiness, gait disturbances, chest infections, and other adverse
effects. Some medications can also impact nutrition absorption, increasing the risk of
hospitalization. Furthermore, a 1.7-times higher mortality rate over a two-year period
has been observed, and the incidence of severe cerebrovascular events is approximately
doubled with the use of antipsychotic medications [16]. Considering these drawbacks,
there is a significant demand for alternatives to physical and chemical restraints.

With advancements in sensor and remote sensing technology, virtual restraints are
increasingly being used as alternatives to physical and chemical restraints, such as infrared
photodetectors [17], pressure sensors [18], wearable equipment [19], and associated tele-
health items [20]. The current approaches for human action recognition using RGB-D
data can be categorized into three groups based on the type of data modality employed:
depth-based methods, skeleton-based methods, and hybrid feature-based methods [21].
Muñoz et al. created an RGB-D-based interactive system for upper limb rehabilitation [22].
However, it was limited due to the extra computational cost of RoI detection using whole-
depth sequences [21]. There are several studies of multi-modal interactive frameworks. For
example, Avola et al. proposed a system to establish a connection between the activities
initiated by the user and the corresponding reactions from the system [23]. By processing
data in diverse modalities such as RGB images, depth maps, sounds, and proximity sensors,
the system actively achieves real-time correlations between outcomes and activities [23].
Moreover, instrumented mattresses embedded with sensors may not be cost-effective or fea-
sible in clinical settings, and wearable devices can present compliance issues, particularly
for patients with dementia and agitated behaviors [24]. The Bed-Ex occupancy monitoring
system utilizes weight-sensitive sensor mats attached to the bed to detect when a patient
leaves. An alert is triggered on the inpatient ward and the central nursing station when
a certain loss of weight is detected [25]. However, this type of virtual restraint system
functions as a threshold decision system that only detects danger when people exit the bed.
Falls can still occur when people engage in risky behaviors on the bed, such as leaning
or hanging on the railings, which the weight sensor may still detect. Therefore, a virtual
restraint technique capable of continuously tracking the users’ state is needed, rather than
simply activating an alarm once they exit. The presence of caregivers performing routine
services around the bed can introduce distortion to the sensing system, leading to false
alarms. Infrared fences and pressure mats need to be turned off before conducting services,
which increases the risk of forgetting to restart them and causing misalignment.

In terms of wearable sensors, an IMU (Inertial Measurement Unit) is an electronic
device designed to be worn on a specific part of the body. It combines accelerometer
and gyroscope sensors, and sometimes a magnetometer, to measure angular rate and
magnetic fields in the vicinity of the body [26]. The recent progress in MEMS (Micro-
Electro-Mechanical Systems) technology has enabled the development of smaller and lighter
sensors, allowing for continuous tracking of human motion and device orientation [27].
Electromyography (EMG) has found extensive application in human–machine interaction
(HMI) tasks. In recent times, deep learning techniques have been utilized to address
various EMG pattern recognition tasks, including movement classification and joint angle
prediction [28]. Deep learning has gained significant popularity in EMG-based HMI systems.
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However, most studies have primarily focused on evaluating offline performance using
diverse datasets. It is crucial to give due consideration to online performance in real-
world applications, such as prosthetic hand control and exoskeleton robot operation [29].
Similarly, in indoor applications, such as hospitals and hotels, Wi-Fi is considerably more
practical than video or wearable technology. Jannat et al. developed a Wi-Fi-based human
activity recognition method using adaptive antenna elimination, which required minimal
computational resources to distinguish falls from other human activities based on machine
learning [30]. Wang et al. [31] introduced a model called WiFall that has the capability to
detect falls in elderly individuals, along with monitoring certain activities. WiFall utilizes
Channel State Information (CSI) for wireless motion detection. The model employs machine
learning algorithms to learn patterns in CSI signal amplitudes. Initially, a Support Vector
Machine (SVM) is used to extract features, and Random Forest (RF) is applied to enhance
the system’s performance. The results demonstrate that WiFall achieves a satisfactory
level of ability in fall detection. The approach achieves a detection precision of 90% with a
false-alarm rate of 15% when using the SVM classifier. When the RF algorithm is employed,
the accuracy is further improved and the false-alarm rate is reduced. However, it is
important to note that this approach focuses on monitoring a single individual’s motion.
Overall, the academic community is additionally highly engaged in innovative sensor
exploration for human activity recognition and behavior recognition, which involves novel
sensors for HAR/HBR, creative designs and usages of traditional sensors, the utilization of
non-traditional sensor categories that are applicable to HAR/HBR, etc. [32].

The utilization of machine learning (ML) represents significant potential for fall detec-
tion, including Support Vector Machines (SVMs), Random Forest (RF), and Hidden Markov
Models (HMM) [33]. These models rely on handcrafted features and require extensive
feature engineering [34]. Hidden Markov Models (HMMs) are based on the concept of
a Markov process, which is a stochastic process with the property that the future state
depends only on the current state and not on the past states [33]. Liang et al. introduced
an alarm system that utilizes an HMM-based Support Vector Machine (SVM) [35]. The
model was trained and evaluated using a dataset consisting of 180 fall instances. Liu et al.
proposed an innovative method for human activity recognition that involves partitioning
activities into meaningful phases called motion units, similar to phonemes in speech recog-
nition [36]. Hartann et al. developed and assessed a concise set of six high-level features
(HLFs) on the CSL-SHARE and UniMiB SHAR datasets [37]. They demonstrated that HLFs
can be effectively extracted using ML methods, allowing for activity classification across
datasets, even in imbalanced and limited training scenarios. Additionally, they identified
specific HLF extractors responsible for classification errors.

However, DL models, in particular convolutional neural networks (CNNs) [38,39],
recurrent neural networks (RNNs) [40], and their variations, have evolved as enhanced
fall detection methods. The requirement for manual feature extraction was eliminated by
the capacity of DL models to automatically extract pertinent features from unprocessed
sensor data, which allows for quicker and more precise detection. Carneiro et al. employed
high-level handcrafted features, including human pose estimation and optical flow, as
inputs for individual VGG-16 classifiers [38]. Kasturi et al. developed a visual-based system
that utilizes video information captured via a Kinect camera [39]. Multiple frames from
the video are stacked to form a cube, which is inputted into a 3D CNN. The 3D CNN
effectively incorporates spatial and temporal characteristics, encoding both appearance and
motion characteristics across frames [39]. Hasan et al. introduced a system for fall detection
utilizing video data, employing a recurrent neural network (RNN) with two layers of Long
Short-Term Memory (LSTM) [40]. The approach involved performing 2D pose estimation
using the OpenPose [41] algorithm to provide body joint information. The extracted pose
vectors were then input into a two-layer LSTM network, enabling fall detection.

We endeavored to identify bed exiting and other dangerous activities, which would
serve as a measure to prevent falls and injuries and be more effective and desirable. Previ-
ously, we developed a depth camera and ultrawideband radar system, named “eNightLog”,
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to monitor and classify the night wandering behaviors of older adults. We demonstrated
that it outperformed the integrated pressure mattress and infrared fence system [42] and
was effective in managing wandering behaviors in a field test [43]. We then developed
deep learning models for the depth camera [44,45] and ultrawideband (UWB) radar [46,47]
to better classify sleep postures. However, eNightLog had some limitations. It could not
distinguish between users and medical staff, especially when they were taking care of the
users. False alarms also happened when the bed was raised over the threshold height of
the patient’s head or the patient’s service table height changed.

In view of this, we aimed to optimize the existing eNightLog system and extend its
functions to detect potential fall events. We dubbed this new system “eNightTrack” as the
succession of our previous system with enhanced tracking functions.

2. Materials and Methods

This section is composed of 6 subsections. Section 2.1 describes the data collection
protocols. Section 2.2 shows the system setup of data collection. Section 2.3 explains the
procedure of pre-processing to accommodate the format of input to the instance segmen-
tation model. Section 2.4 describes instance segmentation based on the YOLOv8 model.
Section 2.5 explains the head-tracking techniques. Finally, Section 2.6 presents the algo-
rithm for raising an alarm when a user is in danger of falling. Figure 1 presents the overall
structure and development of the eNightTrack system.
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Figure 1. Overall structure eNightTrack.

2.1. Data Collection

Twenty-four nurses (n = 24) from a local hospital participated in a role-play activity
simulating a fall-risk-related scenario for data collection. The nurses reported no physical
disabilities or chronic diseases. They were divided into 8 teams of 3 members. One
member acted as a patient and the others as nurses. During the data collection process, the
nurses performed their routine duties on the ward. The “patient” and “nurses” performed
different activities according to the protocol listed in Table 1. The simulation was performed
under the guidance and advice of nursing school instructors. Also, the protocol was built
according to their real-world experience in the hospital after several experiment preparation
meetings. Figure 2 illustrates screenshots of some scenarios taken. The Human Subjects
Ethics Sub-committee of Hong Kong Polytechnic University approved the study (reference
no. HSEARS20210127007). Written and oral descriptions of the experimental procedures
were offered to all participants, and informed consent was obtained from all participants.

Table 1. Simulated bedtime activity scenario.

Scenario Video Clips Count Purpose of Simulation State Caregivers Appear?

Sc01 1 15 Nurse helping with dressing scenario—nurse
puts a safety vest on the patient. Staying In Bed Yes

Sc02 15
Exiting bedside scenario—patient removes
the safety vest and slips away at the side
of bed.

Bed Exiting No

Sc03 15
Nurse changing sheets scenario—nurse
changes bed sheets when the patient is on
the bed.

Staying In Bed Yes

Sc04 14 Exiting at bed end scenario—patient exits bed
at the rear end of the bed. Bed Exiting No
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Table 1. Cont.

Scenario Video Clips Count Purpose of Simulation State Caregivers Appear?

Sc05 14
Nurse helping adjust position
scenario—nurse pulls sheets up to help
patient to adjust their sleeping position.

Staying In Bed Yes

Sc06 15
Kneeling on rear edge of bed
scenario—patient kneels on the bed at the
rear edge.

Bed Exiting No

Sc07 15

Adjusting bed level scenario—nurse/patient
adjusts the level of the bed from lying to
sitting and raises the level of the bed and
returns it to the original position.

Staying In Bed Yes

Sc08 16
Picking up belongings scenario—patient
leans over the bed rail to look for personal
belongings at the bottom of locker.

Bed Exiting No

Sc09 15
Nurse helping turn scenario—nurse helps
patient to turn and places a pillow
for support.

Staying In Bed Yes

Sc10 15
Pillow mimicking scenario—patient exits bed
when a supporting pillow similar to a human
shape is still on the bed.

Bed Exiting No

Sc11 15 Changing position scenario—patient changes
from a lying to sitting position. Staying In Bed No

Sc12 15 Climbing exiting scenario—patient climbs
over bed rails and leaves. Bed Exiting No

Sc13 15 Pushing table scenario—patient pushes table
towards the rear end of bed. Staying In Bed No

Sc14 16
Leaning scenario—patient climbs over rail
and leans their upper body out to pick
up items.

Bed Exiting No

Sc15 16
Drinking scenario—patient searches for
personal belongings on top of the locker (only
reaching hand out to pick up a cup of water).

Staying In Bed No

Sc16 16
Sliding under the blanket scenario—patient
slides under the blanket at the rear end of bed
and leaves.

Bed Exiting No

Sc17 16
Use of urinal scenario—male patient sits near
the edge of the bed and uses urinal
for voiding.

Staying In Bed No

Sc18 16 Leaning forward scenario—patient leans
forward when sitting at the edge of bed. Bed Exiting No

Sc19 17 Use of bedpan scenario—patient uses bedpan
in bed. Staying In Bed Yes

Sc20 16 Sliding scenario—patient slides to the rear
end of the bed and leaves without blanket. Bed Exiting No

1 Sc denotes scenario.
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2.2. System Setup

Three infrared red–blue–green (RGB) stereo-based depth cameras (Realsense D435i,
Intel Corp., Santa Clara, CA, USA) were positioned to capture the entire scenario simulation
process using the RealSense Software Development Kit (SDK) platform in a clinical teaching
room. We used D435i because it had a smaller minimum Z depth for detection of 28 cm
to ensure the user could be detected when they stood up as the depth cameras were
installed 1.5 m above the bed. The 1.5 m height of the depth camera above the bed ensures
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the ability to capture a reasonable field of view to observe the patient’s movements in
bed and whether he or she left the bed. The data were transmitted and processed on
a personal computer. Figure 3 presents the setup of the experiment equipment. In this
experiment, the information from the depth camera in the middle was used for analysis.
The information from the other two depth cameras at both ends could be used in a future
study of reconstructed 3D monitoring work. The depth cameras were adopted to prevent
ethical issues, as the RGB camera would capture the real scene and human appearances.
Generally, the middle depth camera obtains the best performance individually compared to
the others at the two ends [48]. Therefore, we took the data from the middle depth camera
to conduct an initial experiment in this project. Multiple depth cameras provided a wider
field of view, allowing for a more comprehensive monitoring of patients’ movements that
could be particularly beneficial in scenarios where a patient’s movements are not confined
to a single viewpoint. In the future, the data from three depth cameras will be combined
for 3D reconstruction to avoid line-of-sight issues.
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Figure 3. Setup and environment of data collection.

2.3. Data Preprocessing

The dataset must be preprocessed before being used for instance segmentation. The
workflow of data preprocessing is shown in Figure 4. The raw data (in bag format) collected
covered 20 scenarios, which contain 10 negatives (patient staying in bed) and 10 positives
(patient leaving bed area). The definition of each scenario is presented in Table 1. In total,
307 individual videos were successfully obtained after the original bag files were clipped
with a frame rate 6 frames/s, and the number of each scenario is also displayed in Table 1.
There were supposed to be an equal number of positive and negative video clips, but one
of the positive samples was abnormal due to a power issue and was adopted for testing.
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Figure 4. Workflow of data preprocessing.

To reduce the computation cost of achieving real-time analysis, the clipped data
needed to be compressed before further processing. As the particular input of the instance
segmentation model is in png file format, the bag format files of different scenarios were
converted to mp4 files. In our project, the patient’s head movement was representative of
patient movement because the head can be more easily detected most of the time, while
other parts of the body may be covered by the quilt. Moreover, if the head is detected out
of the bed, it is almost certain that the patient is at risk of falling.
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Generally, thousands of samples are required for training most instance segmentation
models; therefore, frames were extracted every 40 frames to cover the various poses of
patients and 2127 png images were obtained in total. Before polygon labelling, the acquired
images needed to be manually filtered. Images were disqualified and excluded if (a) the
head was indistinguishable from the background; (b) the head was blocked; or (c) no head
was in the scene (patient leaving). Polygon labelling was implemented on the online cloud
platform named Roboflow where two classes, 0 for the head of the patient and 1 for the
head of medical care personnel, were labelled.

The labels for each png sample were stored in a txt file and the output format for
a single row in the segmentation data is ‘<class-index> <x1> <y1> <x2> <y2> . . . <xn>
<yn>’. In this format, <class-index> represents the index of the class assigned to the
object, and <x1> <y1> <x2> <y2> . . . <xn> <yn> denote the bounding coordinates of the
object’s segmentation mask. Once polygon labelling is finished, data augmentation, such as
horizontal and vertical flips, was applied to make the model insensitive to object orientation
and improve the generalization. The training dataset is typically the largest subset for
generalization of the model when maintaining enough cases for validation and testing. A
validation dataset is used to fine-tune the hyperparameters, monitor performance during
training, and prevent overfitting. A relatively small ratio is used for the validation set. The
test dataset is usually the smallest for the final evaluation of the trained model, measuring
its generalization capability. We originally selected the train/valid/test ratio as 7:2:1 on
the RoboFlow label platform. The system automatically suggested the final ratio after
data augmentation when more augmented data were included in the training dataset.
Finally, 2552 images were obtained and were split as follows: training dataset 2152, 84.3%;
validation dataset 266, 10.4%; and testing dataset 134, 5.3%.

2.4. Instance Segmentation

The novel YOLOv8 model expands on the achievement of earlier YOLO iterations
and incorporates additional capabilities and enhancements that significantly increase its
performance and versatility [49]. The pre-trained weight model “yolov8-seg.yaml” from
GitHub was used as the initial model. Rather than splitting up into two phases like Faster
R-CNN, which first detects regions of interest before recognizing items in those areas,
algorithms such as Single-Shot Detector (SSD) and You Only Look Once (YOLO) focus on
locating every item in the shot in a single forward pass [49–51]. Faster R-CNN is a rather
sluggish detector that fails in real-time tasks, while it has a slightly improved accuracy when
real-time processing is not necessary [52,53]. SSD is simpler compared to methods that
require region proposals because it completely eliminates the proposal generation phase
and the subsequent pixel or feature resampling phase, encapsulating all computations in
a single network [50]. Therefore, YOLO is more suitable for our application to achieve
real-time segmentation. To avoid the disturbance created by medical personnel or visitors
entering the identification area, our customized YOLO model should have the ability
to identify the head of a patient and heads of non-patient participants. Thus, instance
segmentation is preferred over object detection as it takes more morphological information
into consideration to identify similar objects. The training phase adopted python 3.10.11,
torch 2.0.0, 100 epochs, batch size 16, a learning rate of 0.01, momentum of 0.937, and
patience of 50. The computer (Centralfield Computer Ltd., Hong Kong, China) used for
training with Windows 10 Education operating system (Microsoft Co., Redmond, WA,
USA) 32 GB of RAM, a 2.1 GHz Intel® Core™ i7-12700 processor with 12 cores and 2 TB of
solid state hard disk (SSD).

2.5. Multi-Object Detection

MOT (Multi-Object Tracking) is based on object detection and object re-identification
(ReID) [54,55]. Three different MOT techniques, StrongSORT [54], ByteTrack [56,57], and
DeepSORT [58], were adopted and compared based on their tracking performance. Deep-
SORT was one of the original methods to use a deep learning model for MOT. It is usually
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selected because of its generalization and effectiveness [59]. Although its tracking paradigm
was valuable, the performance of DeepSORT was not comparable due to its outmoded
techniques. StrongSORT was developed using the fundamental elements of DeepSORT
and advanced components. For instance, Faster R-CNN was applied in DeepSORT while
YOLOX-X was chosen for StrongSORT. Also, a superior appearance feature extractor, BoT
(Bottleneck Transformer) [60], was selected rather than simple CNN [54]. ByteTrack is
a tracking method based on the tracking-by-detection paradigm. A simple and efficient
data association method called BYTE was proposed. The vital difference between it and
other tracking algorithms is that it does not simply remove the low-score detection results
but associates every detection box [57]. By using the similarity between the detection box
and the trajectories, the background can be removed from the low-score detection results
while retaining the high-score detection results, and real objects (difficult samples such as
occlusion and blurring) are removed, thus reducing missed detections and improving the
tracking coherence [56]. The resulting MOT method with the best performance from this
section is applied in Section 2.6 Alarm Identification.

A widely used method for evaluating the performance and generalizability of a
machine learning model is 5-fold cross-validation. The basic concept was to split the
original dataset into five parts of equal size, of which four were used to train the model and
one was used to validate it. After carrying out this process five times, the final assessment
results were calculated by averaging the outcomes of the five performance evaluations.

2.6. Alarm Identification

The algorithm should achieve the goal of triggering an alarm when the head center
of a patient goes beyond the dynamically defined safe region, which varies with the head
height, as shown in Figure 5.
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The detected label information (head) of tracked frames is output as a text file that can
be accessed before further processing. Due to the fact that the object size viewed by the
camera decreases as its distance from the lens increases, the safe region defined to limit
patient movement should be adjusted with the patient’s head height, as shown in Figure 6.
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The bed height is the distance from the camera to the bed and the head height is from
the head center to the bed. The initial state is assumed as a patient lying in bed, at which
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point medical personnel will manually initiate the tracking and alarm program as depicted
in Figure 7. The scale of the dynamic safe region is used to calculate an instant safe region
relative to the initial condition, and is expressed as follows:

scale =
Bh

Bh − Hh
(1)

where Bh is bed height, Hh is head height.
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The tolerable head height for patient safety was set to 1 m in our experiment when the
patient was in a sitting position, which was used to limit the maximum safe region. Here,
the maximum scale of the safe region is obtained from Equation (1):

scale =
Bhmax

Bhmax − Hhmax
=

1.5m
1.5m − 1m

= 3 (2)

The patient was regarded as exiting the safe region when the head center was beyond
the safe region as shown in Figure 8, where the head center was defined as the 5% highest
region in the detected head bounding box.

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 20 
 

The bed height is the distance from the camera to the bed and the head height is from 
the head center to the bed. The initial state is assumed as a patient lying in bed, at which 
point medical personnel will manually initiate the tracking and alarm program as de-
picted in Figure 7. The scale of the dynamic safe region is used to calculate an instant safe 
region relative to the initial condition, and is expressed as follows: 𝑠𝑐𝑎𝑙𝑒 =  𝐵ℎ𝐵ℎ − 𝐻ℎ (1) 

where Bh is bed height, Hh is head height. 

 
Figure 7. Initial state of each scenario, where the red frame here indicates the dynamic safe region 
and the pink frame indicates the head of user. 

The tolerable head height for patient safety was set to 1 m in our experiment when 
the patient was in a sitting position, which was used to limit the maximum safe region. 
Here, the maximum scale of the safe region is obtained from Equation (1): 𝑠𝑐𝑎𝑙𝑒 =  𝐵ℎ௫𝐵ℎ௫ − 𝐻ℎ௫ =  1.5m1.5m − 1m = 3 (2) 

The patient was regarded as exiting the safe region when the head center was beyond 
the safe region as shown in Figure 8, where the head center was defined as the 5% highest 
region in the detected head bounding box. 

 
Figure 8. Illustration of head center out of safe region. 

The algorithm flowchart for alarm identification is illustrated in Figure 9. When the 
subject or patient was detected and was in the safe region, there was no need to raise an 
alarm. When the subject was not in bed, but he/she was once detected in bed, this was 
determined as them exiting the bed and the alarm was raised if the duration was over the 

Figure 8. Illustration of head center out of safe region.

The algorithm flowchart for alarm identification is illustrated in Figure 9. When the
subject or patient was detected and was in the safe region, there was no need to raise an
alarm. When the subject was not in bed, but he/she was once detected in bed, this was
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determined as them exiting the bed and the alarm was raised if the duration was over the
tolerant time. However, if the patient was never detected in the scenario, all the parameters
recorded were reset as a new video. When tracking of the subject was lost and they were
not previously detected to be in bed, it was assumed that there was no person visible in
the field of view and no alarm was required. If tracking of the subject was lost and they
were detected to have not previously been in bed with previous warning, this frame was
regarded as a warning state. When the subject was in bed previously and tracking was lost
without previous warning, the movement value was used to determine whether the patient
was still in the safe region. As displayed in Figure 10, the movement indicator diagram
was designed using the movement value calculated by

movement =
valid.pixels

∑
i=0

{
0, depth[i] ≤ threshold
depth[i], depth[i] > threshold

(3)

where the valid.pixels are those pixels for which the depth camera is able to retrieve the
depth information, while the left-side parts of Figures 7 and 8 contain black regions that
are invalid pixels. depth[i] is the difference between the adjacent frames. The threshold
of movement was determined by the movement value of the frames when no patient was
in bed, which here was 100,000.0. If there is no movement, it should theoretically be all
black in the movement view diagram, as in Figure 10a. The red frames in Figure 10 are the
bed edge.
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To adapt the depth information noise, the noise threshold was set as 80.0, indicating
that the difference between adjacent frames should be greater than 80.0 to confirm move-
ment existing. Movement existing in the bed but no patient detected could be the case
that tracking was lost for the head but the subject was still in bed. However, warning was
needed when the movement was less than the threshold over the tolerant time.

3. Results

This section is about the demonstration of the experimental aims and consists of four
subsections. In Section 3.1, the evaluation metrices are adopted to assess the results and
performance of a series of technological processes mentioned in Section 2. Section 3.2
presents the instance segmentation results and evaluates the ability to classify the heads of
subjects and medical helpers. In Section 3.3, a comparison of different tracking techniques
will be conducted. Then, Section 3.4 will show the final performance of the safe alarm
algorithm.

3.1. Evaluation Metrices
3.1.1. Tracking Evaluation

The three MOT methods, StrongSORT, DeepSORT, and ByteTrack, are compared in
terms of lost-tracking rate and the number of ID changes. The lost-tracking rate is calculated
as follows:

Ltr =
Nnd
N f

(4)

where Ltr is the lost-tracking rate, Nnd is the number of frames without detection, and Nf
is the total number of frames.

A higher lost-tracking rate means fewer frames are being tracked. Therefore, the MOT
method with the lowest lost-tracking rate is preferred.

Moreover, the MOT models should ideally continue tracking a certain subject with
a constant ID number. However, the tracker may reassign a new ID number to the same
subject once the subject is re-tracked after a break, which means the tracker recognizes
the subject with a different identification number. More frequent ID changes or identity-
switching errors indicate the tracker has a worse ability for tracking and can lead to incorrect
interpretations of object behavior and interactions [55]. Thus, the MOT method with fewer
ID changes is superior.

3.1.2. Confusion Matrices

One of the most common performance measurements of pattern classification is
accuracy, which is defined as the portion of correct predictions to the total size of the
dataset. The accuracy generally evaluates the overall classification results but cannot reflect
which class the misclassification is from. Therefore, a bias towards the majority class,
ignoring the minority class, could happen. The confusion matrix, which also takes the
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particularities of the decisions into consideration, could be used to solve this issue. As two
conditions, positive and negative, are determined, four possible outputs could be defined as
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP is the
number of positive cases correctly predicted as positive. TN is the number of negative cases
correctly predicted as negative. FP is the number of negative cases incorrectly predicted as
positive, while FN is the number of positive cases that are incorrectly predicted as negative.

In addition, sensitivity, specificity, and balanced accuracy are usually used alongside
the confusion matrix. Sensitivity is the ratio of TP over all positive cases, specificity is
the ratio of TN over all negative cases, and the balanced accuracy is the mean value of
sensitivity and specificity that eliminates the imbalance in the number of different classes
of data.

sensitivity =
TP

TP + FN
(5)

specificity =
TN

TN + FP
(6)

balanced accuracy =
sensitivity + specificity

2
(7)

where precision measures the proportion of correctly predicted positive instances out of all
instances predicted as positive.

precision =
TP

TP + FP
(8)

Recall, also known as sensitivity or true-positive rate, measures the proportion of
predicted true positives out of all positives.

recall =
TP

TP + FN
(9)

F1 is commonly used for the evaluation of a model’s accuracy and is particularly
suitable for imbalanced datasets. It can be expressed as follows:

F1 =
2 × precision × recall

precision + recall
(10)

3.1.3. Object Detection Performance Evaluation

mAP50 (mean Average Precision at 50) is a performance discipline widely employed
in object detection and image retrieval that is used to evaluate the accuracy and efficiency
of a machine learning model based on recall and precision. mAP50 calculates the average
precision across different levels of recall, specifically at 50 recall points. These recall points
are evenly spaced from 0 to 1. The precision at each recall point is determined, and the
average precision is computed by taking the mean of all these precision values [61].

3.2. Performance of YOLOv8 Instance Segmentation

As displayed in Table 2, the overall mAP50 for the segmentation of the heads of both
medical personnel and patients reaches 98.8%, which indicates an acceptable ability of
the customized YOLOv8 model. The mAP50 of medical personnel segmentation is 98.6%,
which is slightly lower than that of patients, which is 99.0%. The ability to identify the
patient’s head is related to the following steps, so a mAP50 of 99.0% is reasonable for the
tracking and alarm identification process.
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Table 2. The performance of customized YOLOv8.

Class mAP50

All 98.8%
Medical Personnel 98.6%

Patient 99.0%

Table 3 indicates the mean mAP50 values of 5-fold cross-validation for all classes,
for medical personnel, and for the patient, which are 97.6%, 96.6%, and 98.5%. The cross-
validation results demonstrated the superior performance and good generalization of the
model.

Table 3. Five-fold cross-validation results of customized YOLOv8.

mAP50

Class Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

All 98.2% 98.8% 97.0% 96.8% 97.0% 97.6%
Medical Personnel 97.1% 98.4% 94.8% 97.3% 95.5% 96.6%

Patient 9.91% 99.3% 99.2% 96.3% 98.4% 98.5%

3.3. Comparison of Different Tracking Techniques

The total number of frames in all video clips is 91,829. As the tracking results recorded
in Table 4 show, StrongSORT has the highest lost-tracking rate of 23.4%, while DeepSORT
and BtyeTrack have the same rate of 8.9%. StrongSORT loses tracking in almost a quarter
of all frames, which is not suitable for further alarm identification. DeepSORT and Byte-
Track with lower lost-tracking rates have no reaction delay on re-tracking a subject, while
StrongSORT requires a certain number of frames to confirm the appearance of a detected
subject. As for the count of ID changes, although StrongSORT has the least amount of ID
changes, it could be caused by its worse performance on tracking, which means that fewer
frames have been tracked, resulting in fewer scenes where ID change can occur. From
the comparison of the number of ID changes in DeepSORT (2109) and ByteTrack (1697),
ByteTrack demonstrates a better ability to keep tracking a specific subject. However, it is
not directly relevant to the accuracy of identifying a patient’s head. Therefore, a further
comparison of DeepSORT and ByteTrack is conducted in the next section.

Table 4. Comparison of MOT methods.

StrongSORT DeepSORT ByteTrack

Number of frames losing tracking 21,482 8205 8205
Lost-tracking rate 23.4% 8.9% 8.9%

Total count of ID changes 1550 2109 1697

3.4. Performance of Alarm Algorithm

To evaluate the performance of the alarm stage, the state of staying in bed is regarded
as a positive condition while exiting the bed is negative. Therefore, the detection metrics
are defined as follows:

• TP: the bed-exiting scenarios are predicted with warning.
• TN: the staying-in-bed scenarios are identified as safe.
• FP: the staying-in-bed scenarios are predicted with warning.
• FN: the bed-exiting scenarios are identified as safe.

The examples of the above four conditions are illustrated in Figure 11. The TP example
was from scenario 17 when the patient exited from the bedside. The TN example was from
scenario 1 when the medical personnel helped to put a safety vest on the patient. The FP
example was from scenario 1 when the in-bed movement was identified as bed exiting.
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The FN example was from scenario 2 where the alarm was not triggered as tracking of
the patient’s head was lost when the patient slipped away from the side of the bed. The
causes of lost tracking could be that the patient moved so fast that the frame rate of the
depth camera could not capture it. Figure 12 displays the confusion matrices of the alarm
algorithm combined with tracking results from DeepSORT and ByteTrack.
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Both results shown in Table 5 from the MOT methods DeepSORT and ByteTrack have
excellent sensitivity with satisfactory specificity. The false-negative scenario where the
alarm is not raised while the patient is at risk of a fall should be controlled at the lowest
level in real hospital applications, which in our experiment happens at a rate of 3.2%.
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Table 5. Performance of alarm algorithm based on DeepSORT and ByteTrack.

Sensitivity Specificity Balanced Accuracy F1

DeepSORT 96.8% 62.8% 79.8% 82.8%
ByteTrack 96.8% 61.4% 79.1% 82.3%

4. Discussion

The innovation of this study lies in the application and integration of depth cameras
and deep learning to address the demand for a restraint-free bed-exiting alarm system for
fall prevention with real-time tracking and dynamic virtual fence techniques. It is worth
noticing that our previous research eNightLog [40] had no tracking. The highest point
of the defined region was regarded as the patient’s head so the interference factor of bed
height would raise a false alarm in scenario 07 when the nurse/patient adjusts the level
of the bed. As shown in Figure 13, with the ability of head tracking and application of a
dynamic safe region that expands with the head height increasing, our system could avoid
the disturbance caused by alternative bed heights, which demonstrated the robustness of
our model. Also, since our system could classify whether a person is medical personnel or
a user, it is able to prevent mistaking medical personnel for users and raising false alarms
when medical personnel leave the safe region. Therefore, comparing our current study,
we can adjust the bed height and inclination without affecting the system performance.
Although the accuracy of our system cannot match that of previous wearable sensors, it is
not complicated to use and reduces the workload of nurses.
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The misclassification of patient heads in YOLOv8 when identifying the patients and
medical personnel is mainly due to head-like interference, such as pillows, shoulders, and
knees, when viewing from certain levels. The depth information used in this experiment
is only from a top-down viewpoint, which results in the intake of information about the
appearance of subjects in the visible area being relatively limited. Therefore, misclassifi-
cation could occur when our customized YOLOv8 model misidentifies items of head-like
shapes as a head. The issue could be addressed when the depth information captured
by multi-depth cameras from diverse perspectives is taken into consideration. Also, the
multi-depth camera information could also be registered into a new volume to avoid the
issue of overlapping objects.

Some false negatives occur during tracking with a relatively large safe region. The
largest safe region is already limited by the user sitting height, so the user leaves the
depth camera’s view once he leaves the safe region. This buffer zone can be enlarged
by using a camera with a wider angle or installing a camera in a higher position so that
the proportion of the predetermined region to the whole field of view is small enough to
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provide a reasonable buffer zone area. In addition, a greater frame rate than the 6 frames/s
in this experiment could increase the flexibility of our eNightTrack system. Though the
ReID changes demonstrated robustness as they indicated the situations of lost tracking
and mis-tracking in MOT techniques, it could not exactly reflect the robustness. As for the
complexity, both DeepSORT and StrongSORT tracking contained approximately 6.46 M
trainable parameters, while the YOLOv8 segmentation model contained 261 layers and
approximately 3.41 M trainable parameters. Due to the limitation that only a small number
of features were used in this study, it is not easy to remove any feature among them for
an ablation study. In a future study, we can track all palms, shoulders, knees, and feet,
where OpenPose can be used to recognize them and improved tracking techniques can
then be applied to track additional features to enhance the performance. Compared with
the bed-exiting identification system developed by Lu et al. in 2018 [62] that achieved an
accuracy of 60.3% on 151 samples with combination of DPCA (dynamic principal compo-
nent analysis) and GMM (Gaussian mixture model) technologies, our system demonstrated
higher accuracies of 79.8% and 79.1%.

In future implementations of our system in hospitals, the tolerant head height of the
patient used to determine the maximum safe region should be adjusted to the patient’s
height. Furthermore, more subjects could be recruited in future work to eliminate inter-
subject interference and improve the generality of the eNightTrack system. Additionally,
prior YOLO models, such as YOLO-NAS, could be utilized for head detection. Similarly, an
emergency MOT technique could substitute the tracking model adopted in this experiment.
The registered 3D data mentioned in Section 3.2 could be utilized for 3D tracking, which
could be more comprehensive. Clinical trials should be implemented before it is finally
applied to hospital use.

5. Conclusions

In hospitals, some unattended patient bed-exiting events might result in falls, increas-
ing the burden on medical staff. At present, commonly used means of physical or chemical
restraint might harm the physical and mental health of patients. Ordinary RGB camera
monitoring systems involve privacy concerns. Therefore, our virtual monitoring system
based on depth cameras has been developed for preventing patients’ movements and
fall risk.

We demonstrated that the eNightTrack system had a convincing sensitivity of 96.8% for
detecting bed-exiting events, making it a potential effective tool to prevent falls. Moreover,
it offers several advantages, including the avoidance of privacy issues and could serve as
an alternative to current restraint measures. The system is robust to disturbances caused by
bed height variations, furniture changes, and medical personnel entering the predefined
region. However, there are still several limitations and concerns that should be focused on
during future developments. A further modified eNightTrack system could be installed in
hospital wards to support nurses in monitoring at any moment.
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