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Abstract: Clustering problems are prevalent in areas such as transport and partitioning. Owing to
the demand for centralized storage and limited resources, a complex variant of this problem has
emerged, also referred to as the weakly balanced constrained clustering (WBCC) problem. Clusters
must satisfy constraints regarding cluster weights and connectivity. However, existing methods fail
to guarantee cluster connectivity in diverse scenarios, thereby resulting in additional transportation
costs. In response to the aforementioned limitations, this study introduces a shelved–retrieved
method. This method embeds adjacent relationships during power diagram construction to ensure
cluster connectivity. Using the shelved–retrieved method, connected clusters are generated and
iteratively adjusted to determine the optimal solutions. Further, experiments are conducted on three
synthetic datasets, each with three objective functions, and the results are compared to those obtained
using other techniques. Our method successfully generates clusters that satisfy the constraints
imposed by the WBCC problem and consistently outperforms other techniques in terms of the
evaluation measures.

Keywords: weakly balanced constrained clustering; connectivity; shelved–retrieved method;
centroidal power diagram

1. Introduction

Clustering is a foundational task for applications in real-world scenarios [1,2] including
resource allocation [3] and site selection [4]. It typically involves partitioning a set of points
into several subsets, referred to as clusters, such that the points in the same cluster are
similar, while those in different clusters are dissimilar. In transportation and partitioning, it
is not sufficient to merely partition points according to similarity for clustering [5,6]. Owing
to limited resources and the need for efficient transport, clusters must additionally meet
other specific requirements, among which we are most concerned about weight constraints
and cluster connectivity [7–14].

Weight constraints originate from a prominent and challenging concern regarding
resource limitations in transportation and partitioning scenarios. The weight of a point is
usually associated with some problem-specified quantity, such as the size, area, or volume
of the corresponding object. The cumulative weight of points within a cluster, also referred
to as the cluster weight, is required to remain within a predetermined capacity range. For
example, constraints of this kind are raised when the number of deliveries within the
service area of an express service station must not exceed its designated capacity limits.
This can be achieved by limiting the cluster weights within specific intervals.

Cluster connectivity is another type of constraint often encountered in practice. In
scenarios such as farmland consolidation, some points in the area may be separated by
barriers [12,13]. A route connecting two separate points is required to bypass the barriers,
which can cost significantly more than connecting two points that are at the same distance
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but are not separated by any barrier. As such, transporting between these points directly
may be impossible or unreasonable, thereby resulting in their disconnection. Generalized
from disconnection between point pairs, the cluster connectivity constraint requests that
a cluster cannot be split into two subsets such that any point pair between the subsets is
disconnected. The inconsistency between connectivity and geometric proximity makes the
cluster connectivity constraint a great challenge for the design of an algorithm.

In this paper, the similarity between points is assessed via a cost kernel, a commonly
used technique that generalizes the classical Euclidean distance-based similarity. Similar to
the partitioning clustering, the results should reach the goal that the costs within clusters
are lower enough and the costs between the clusters are high enough according to the cost
kernel. The clustering problem with cost kernel under the constraints on cluster weights and
connectivity is formally known as the weakly balanced constrained clustering (WBCC) problem.

The clustering problem with a cost kernel is easy to solve by traditional clustering
methods, but it is challenging to handle constraints on cluster weights and connectivity.
Traditional clustering methods partition points into clusters using similarity metrics and
optimize the compactness of clusters. The cluster weights are not relative to the reduction
in the objective functions in clustering; thus, they cannot be adjusted through the optimiza-
tion of the objective function. In addition, the cluster connectivity fails to be quantified
by the cost kernel. Therefore, it is particularly challenging to address these constraints
in clustering.

To handle the constraints on cluster weights, previous methods used power diagrams
for clustering point sets [5,8,10,12,13]. They partitioned points x ∈ X into clusters Ci with
associated sites si using an additively weighted distance, i.e.,

Ci = {x : ‖x− si‖2 − αi ≤ ‖x− sj‖2 − αj}.

These methods obtain the cluster weights satisfying the constraints by the optimization of
parameters αi. Because these methods rely solely on distance metrics and optimization of
parameters, they fail to automatically avoid barriers in certain areas. They cannot readily
handle these constraints on cluster connectivity, so it is particularly challenging to handle
the WBCC problems.

In response to those limitations, this paper introduces a shelved–retrieved method to
solve the WBCC problems. The shelved–retrieved approach embeds adjacent relationships
between points in the construction of power diagrams. It assigns points to the cluster to
which adjacent points belong, thereby guaranteeing the connectivity of the cluster. Further,
it takes advantage of power diagrams to obtain clusters satisfying the constraints in the
WBCC problem by optimizing the cluster parameters and sites. The proposed method is
guaranteed to produce a clustering result that satisfies the constraints on cluster weights
and connectivity. Due to the versatility of the cost kernel, our method can carve out different
cost functions in a variety of scenarios and obtain feasible clustering results with lower
costs than existing methods. Furthermore, the clustering results generated by our method
are more compact compared with other methods.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the existing methods for WBCC. Section 3 details the formulation of the WBCC problem
and introduces the shelved–retrieved method. Section 4 presents the simulation results,
and Section 5 concludes.

2. Related Work

Previous methods for WBCC can be categorized into two groups: conventional cluster-
ing on size-constrained clustering and clustering methods induced by diagrams on WBCC.

2.1. Conventional Methods on Size-Constrained Clustering

The size-constrained clustering problem [11,14,15] (characterized by assigning uniform
weights) is a specialized WBCC problem. To address this problem, conventional clustering
techniques have been employed to generate clusters of predetermined sizes.
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The size-constrained clustering problem can be directly handled by traditional clus-
tering methods [7,14,16]. The k-means method was modified to incorporate cluster size
constraints using prior knowledge and can escape from local minima [14]. A Deterministic
Annealing method [17] was used to handle clustering problems with several forms of size
constraints [7]. A heuristic method [16] was incorporated into a conventional clustering ap-
proach as an extension. Additionally, matrix factorization techniques [18] were integrated
into the shrinkage clustering method to identify clusters that fulfilled the size constraints.
The fuzzy C-means method was used to handle the position and the shape of each cluster,
and a wrapper algorithm was introduced to alleviate the cluster size insensitivity [15,19].

To reduce the complexity, other models are proposed to formulate size-constrained
clustering. A Minimum Cost Flow linear network model [11] and a mixed integer program-
ming model [20] were introduced to handle size-constrained clustering problems. These
models were solved by linear programming or network simplex methods.

2.2. Clustering Methods Induced by Diagrams

Power diagrams were introduced in the clustering methods to address the general
WBCC problem. In power diagrams, a geometric domain is partitioned into predefined
sizes within a continuous space [21–23]. Similar to the capacity constrained partition
problems, power diagrams can produce solutions to WBCC problems. The properties of
power diagrams are harnessed to segment point sets into distinct clusters with specific
size constraints [5,10,24]. In the clustering methods induced by diagrams, the additive
weighted distances in power diagrams were introduced as the basis for classifying clus-
ters. The clustering methods induced by diagrams used parameter tuning to adjust the
cluster weights.

In clustering methods induced by diagrams, several models were proposed to for-
mulate WBCC problems. For example, a transportation network model was constructed
and resolved using network Voronoi diagrams and a pressure equalizer approach [5].
Furthermore, a quadratic optimization model was formulated to address WBCC, with its
optimal solution derived from power diagrams in discrete space [9,10,12,13,24]. These
models were constructed for the requirements of real-world scenarios, and they optimize
different objective functions.

2.3. Analysis of Related Work

Conventional methods on size-constrained clustering and clustering methods induced
by diagrams are introduced above. Table 1 summarizes the benefits and limitations of
all methods. Conventional methods on size-constrained clustering have efficiently ad-
dressed size-constrained clustering problems. However, they may fail to produce the
required clusters when applied to general WBCC problems in diverse scenarios. Clustering
methods based on diagrams can address WBCC problems in convex cases. However,
power diagrams rely exclusively on a convex partition strategy to handle this problem,
thereby hindering them from ensuring cluster connectivity. Hence, this study introduces a
shelved–retrieved method as an innovative approach to overcome this limitation.

Table 1. Summarizing of methods in WBCC problems.

Category Method Benefits Limitations

Size-constrained

Modified k-means method [14] Escaping from local minima High computational complexity
Deterministic Annealing method [7] Fast convergence Low accuracy
Heuristic method [16] Fast convergence Low accuracy
Shrinkage clustering method [18] Ease of implementation High computational complexity
Fuzzy C-means method [15,19] High stability High computational complexity
Minimum Cost Flow method [11] Escaping from local minima Low efficiency
Mixed integer programming method [20] High accuracy Low efficiency
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Table 1. Cont.

Category Method Benefits Limitations

Diagram-induced
Network Voronoi diagrams method [5] High accuracy Low efficiency
Power diagrams method in discrete
space [9,10,24] High accuracy High computational complexity

3. Methodology

In this section, the WBCC problem and the shelved–retrieved method are formulated
and introduced, respectively.

3.1. Mathematical Formulation

For a given point set X = {x1 = (x1
1, . . . , xd

1), . . . , xm = (x1
m, . . . , xd

m)}, each point is
assigned a weight ωj = ω(xj) > 0 from a weight set Ω = {ω1, . . . , ωm} to represent its
quantity information. This set is divided into n clusters, wherein the binary variable ξi,j
indicates whether the point xj ∈ X belongs to cluster Ci. For instance, ξi,j = 1 indicates
that point xj belongs to cluster Ci. Further, the weight of cluster Ci is determined by
ω(Ci) = ∑m

j=1 ξi,jωj, which is required to satisfy the balancing constraint ω(Ci) ∈ [κ−i , κ+i ],
wherein the minimal capacity κ−i > 0 and the maximal κ+i constitute the set K− and K+,
respectively.

Except for the constraints on the cluster weights, the WBCC problem requires cluster
connectivity. According to the cost kernel f , a weight matrix is given in the datasets.
Then, the corresponding graph G = (V, E) can be generated. The node set is defined as
V = X, and edges are added to the edge set E if the corresponding edge weight is finite
in the weight matrix. Further, cluster Ci is connected if each induced subgraph G[Ci] is
also connected.

In this study, the WBCC problem uses the cost kernel f (·, ·) to construct the objective
function. The cost kernel measures the transportation costs between points xj and si ∈ Ci
in each scenario. The decision variables in this problem formulation are clustering Ci,
i = 1, . . . , n and their corresponding sites si, i = 1, . . . , n.

The mathematical formulation of the WBCC problem is as follows:

min
Ci ,si∈Ci , i=1,2,...,n

n

∑
i=1

∑
xj∈Ci

f (xi, si),

s.t.
m

∑
j=1

ωjξi,j,∈ [κ−i , κ+i ], i = 1, 2, . . . , n,

n

∑
i=1

ξi,j = 1, j = 1, . . . , m,

ξi,j ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . , m,

G[Ci] is connected, i = 1, . . . , n.

. (1)

Obviously, Model (1) has a feasible solution when all κ−i and κ+i are set to zero and
∑n

j=1 ωj, respectively. There are some extreme situations in which Model (1) is unsolvable.
To guarantee that Model (1) has a feasible solution, the dataset should satisfy Assumption 1.
Then, Model (1) has a feasible solution, as proven in Theorem 1.

Assumption 1. The graph G is connected, and K−, K+ satisfy the following qualities:

n

∑
i=1

κ−i + n max
i=1,...,n

(κ+i − κ−i ) <
m

∑
j=1

ωj <
n

∑
i=1

κ+i − n max
i=1,...,n

(κ+i − κ−i ), (2)
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κ+i − κ−i > max
j=1,...,m

ωj. (3)

Theorem 1. Under Assumption 1, Model (1) has a feasible solution.

Proof. n = 2: Graph G can be divided into two connected sub-graphs, G1 and G2, where
G1 = (V1, E1), G2 = (V2, E2).

We assume ω(V1) < κ−1 . We can select point xt ∈ V2, such that G[V1 + xt] and
G[V2 − xt] is connected. Due to Equality (3), we can obtain

ω(V1 + xt) = ω(V1) + ωt ≤ κ+1 .

If ω(V1 + xt) < κ−1 , we repeat the above operations. If ω(V1 + xt) ≥ κ−1 , we prove
this partition is a feasible solution. Due to Formula (2),

ω(V1) + ω(V2) > κ−1 + κ−2 + (κ+1 − κ−1 ) + ωt = κ+1 + κ−2 + ωt > κ−2 + ω(V1) + ωt.

Then, ω(V2)−ωt ≥ κ−2 . Similarly, ω(V2)−ωt ≤ κ+2 .
We assume that when n = k, Model (1) has a feasible solution. When n = k + 1, we

partition the point set into two clusters V1 and V̂2 with κ̂−1 = κ−1 , κ̂+1 = κ+1 , κ̂+2 = ∑k+1
i=2 κ−i ,

κ̂+2 = ∑k+1
i=2 κ+i . Then, we can obtain k + 1 clusters by partitioning the point set V̂2.

By induction, Model (1) has a feasible solution under Assumption 1 for all n ≥ 2.

3.2. Shelved–Retrieved Method

To solve the WBCC model (1), the shelved–retrieved method embeds adjacent rela-
tionships into the construction of the power diagrams. This integration is essential for the
generation of connected clusters.

It is crucial that clustering results remain connected throughout the process. Then,
each point should be adjacent to at least one other point within the same cluster during the
clustering procedure. In other words, they can only be assigned to clusters to which adjacent
points belong. Here, we specify the assignment process for the shelved–retrieved method.

We take cluster one as an example. The shelved–retrieved method randomly selects
a point from the dataset to serve as the initial site for cluster one. This selected point is
assigned to cluster one and colored black in Figure 1a. Further, the adjacent hollow points of
black points s1, x1, x2, x3, x4, x5 are identified and colored red in Figure 1b. According to
parameters αi, i = 1, . . . , n, the shelved–retrieved method estimates whether f (xj, s1)

2− α1

is smaller than f (xj, si)
2 − αi, i = 2, . . . , n at each point xj. Assuming that f (x1, s1)

2 −
α1, f (x2, s1)

2 − α1, f (x5, s1)
2 − α1 are the smallest and f (x3, s1)

2 − α1, f (x4, s1)
2 − α1

are not, the shelved–retrieved method assigns points x1, x2, x5 to cluster one, and we
color them black in Figure 1c. Points x3 and x4 are colored blue. The shelved–retrieved
method repeats the aforementioned operations until no additional adjacent hollow points
are identified.

Several blue and hollow points might not have been assigned to any cluster. These
blue points are adjacent to other points within the same cluster during the clustering
process. They are assigned to the clusters to which their adjacent points belong.

Using blue points xj, the shelved–retrieved method identifies a set of clusters denoted
by A = {Ci : xk ∈ Ci, xk is a black point adjacent to xj}. The minimum d(xj, si∗)

2 − αi∗

is within the set { f (xj, si)
2 − αi : si ∈ Ci, Ci ∈ A}, while point xj is assigned to cluster i∗.

The shelved–retrieved method repeats the process until all the points are turned black, as
shown in Figure 1. Here, the aforementioned mechanism for clustering points with fixed
parameters is concluded in Algorithm 1.
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(a) (b) (c)

Figure 1. The assigning process of the shelved–retrieved method: The black, hollow, red, and
blue points represent those that belong to clusters, have not undergone processing yet, are eligible
candidates for assignment to clusters, and are temporarily unassigned to any clusters, respectively.
(a) Initial state; (b) Finding the adjacent points; (c) Assigning points.

Algorithm 1 Clustering by power diagrams based on connectivity

Require: Domain X = {x1, . . . , xm}, sites s1, . . . , sn, parameters α1, . . . , αn, adjacent set
Axj , j = 1, . . . , m

Ensure: Clustering solution C = {C1, . . . , Cn}
1: Initialize blue point set B = ∅, black point set K = ∅, red point set R = ∅, cluster

Ci = {si}, i = 1, . . . , n.
2: Update R based on Asi .
3: while R 6= ∅ do
4: for xj ∈ R do
5: for i = 1, . . . , n do
6: if i = arg min

i′=1,...,n
f (xj, si′)

2 − αi′ then

7: Assign xj to Ci and K, and update R based on Axj .
8: end if
9: end for

10: if xj /∈ K then
11: Assign xj to B.
12: end if
13: end for
14: if R = ∅ and K 6= X then
15: for xj ∈ B do
16: Calculate i = arg min

i′∈{Ci :Ci∩K∩Axj 6=∅}
f (xj, si′)

2 − αi′ .

17: Assign xj to Ci and K, and update R based on Axj .
18: end for
19: end if
20: end while

The shelved–retrieved method uses Algorithm 2 to cluster the points. In each iteration,
denoted by p, parameters αi and ei := ω(Ci)− κi are represented by α

p
i and ep

i , respectively.
sgn(·) denotes the sign function. The sites can be updated by the Lloyd algorithm [25] in
the clustering.

α
p+1
i =


α

p
i − 0.1sgn(ep

i )minj=1,...,n,j 6=i d(si, sj) if p = 1

α
p
i − 0.2sgn(ep

i )minj=1,...,n,j 6=i d(si, sj)/n if p ≥ 2 and (α
p
i − α

p−1
i )(ep

i − ep−1
i ) 6= 0

α
p
i −min

{∣∣∣∣ α
p
i −α

p−1
i

ep
i −ep−1

i

ep
i

∣∣∣∣, 0.2 minj=1,...,n,j 6=i d(si, sj)/n
}

sgn(ep
i ) otherwise

. (4)
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Algorithm 2 Shelved-retrieved method

Require: Domain X = {x1, . . . , xm}, weight set Ω = {ω1, . . . , ωm}, set K = {κ1, . . . , κn},
weight matrix Aω , adjacent set Axj for each point xj, and maximum number of iterations
M.

Ensure: Clustering solution C = {C1, . . . , Cn}
1: Initialize s1, . . . , sn, α1 = 0, . . . , αn = 0.
2: repeat
3: p = 1
4: repeat
5: Obtain the clustering C by the Algorithm 1.
6: Update α

p+1
i by Formula (4) for each i.

7: p← p + 1
8: until p > M or C satisfies the constraints on cluster weights.
9: Update s1, . . . , sn by the Lloyd algorithm.

10: until s1, . . . , sn remain the same values.

Using the aforementioned process, the shelved–retrieved method can produce a
connected solution for Model (1), as stated in Lemma 2.

Lemma 2. The shelved–retrieved method can produce a feasible solution for Model (1).

Proof. The shelved–retrieved method ensures that each point in a cluster is connected to
the cluster site through a path, thereby resulting in connected clustering. Here, we prove
that the clustering results satisfy the inequality constraints on the cluster weights.

For each cluster Ci, we can obtain point xj that satisfies

j = arg max
j:xj∈Ci

(xi − si) · (sk − si)

f (sk, si)
.

Based on the process of assigning points to the clusters, we propose the following
inequality:

αk − αi < f (xj, sk)
2 − f (xj, si)

2, ∀ eik ∈ Es.

Further, we transform these inequalities into Standard equality system (5).

α′k − α′′k − (α′i − α′′i ) + βik = f (xj, sk)
2 − f (xj, si)

2, ∀eik ∈ Es

α′i, α′′i , βik ≥ 0, ∀eik ∈ Es
(5)

The rank of the equality system is lower than |Es|, both of which are smaller than the
number of variables 2n + |Es|. Hence, Equality system (5) has a solution, and a power
diagram is built.

By fixing the other parameters αk, k 6= i, the weight of cluster Ci is within the interval
[ω(si), ∑m

j=1 ωj]. We consider cluster weight ω(Ci) as a response variable and parameter αi
as an independent variable. A step function is defined as the mapping from the independent
variable to the response variable. Parameter αi exists such that the corresponding cluster
weight ω(Ci) in the step function satisfies the inequality constraint in Model (1). Because
the sites are optimized using the shelved–retrieved method, clustering C produced by the
shelved–retrieved method is the optimal solution for Model (1).

We offer the computational complexity analysis of Algorithm 2 as follows. In each iter-
ation with a given red point set, Algorithm 1 handles these red points at most O(mn∆(G))
times. Algorithm 1 loops through the red point set, at most, m− n times; thus, the com-
putation burden of Algorithm 1 is O((m − n)mn∆(G)). Algorithm 2 iterates, at most,
O(k1k2(m− n)mn∆(G)) times, where k1 denotes the number of site iterations and k2 de-
notes the number of parameter iterations.
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4. Results

We conducted the experiments on synthetic datasets and farmland consolidation with
Windows 10, Intel(R) Core(TM) i7-10700K CPU @ 3.8GHz. The models were implemented
using Python 3.8.5. To compare the results, we used two metrics for evaluation: the
transportation costs (objective function value) and root-mean-square standard deviation
(RMSSTD) [26]. A lower RMSSTD value indicates a better performance. RMSSTD was
calculated using the following formula:

RMSSTD =

(
n

∑
i=1

∑xj∈Ci
f (xj, si)

2

d ∑n
i=1(|Ci| − 1)

) 1
2

.

4.1. Synthetic Datasets

Experiments were conducted on three synthetic cases with three objective functions to
evaluate the validity and rationality of the shelved–retrieved method. The discrete form of
the centroidal power diagram (D-CPD) method, which is specified in Appendix A, was
used as a comparison method in the experiments.

For all synthetic cases, 2000 points were generated in a funnel-shaped region, and
chosen to effectively represent concave conditions. Three separate cases were constructed to
evaluate the effectiveness of the proposed method on datasets containing different numbers
of clusters. In Case 1, three subarea capacity intervals were set as [1969.49, 2089.49], [5819.85,
5939.85], and [2182.77, 2302.77]. In Case 2, we increased the number of subareas and the
capacity intervals were set as [1969.49, 2089.49], [3819.85, 3939.85], [2182.77, 2302.77], and
[1819.85, 2039.85]. In Case 3, we set five subareas with capacity intervals [1969.49, 2089.49],
[2819.85, 2939.85], [2182.77, 2302.77], [1819.85, 2039.85], [819.85, 1045.85].

Transportation costs in different scenarios served as objective functions. Three distinct
cost kernels were constructed to quantify different transportation costs and validate the
effectiveness of our method across a range of scenarios.

First, the following Euclidean function was used as the cost kernel in the experiments
as expressed below:

f̂1(xj, si) = ‖xj − si‖2.

In addition to the Euclidean function, two additional cost kernels, f̂2 and f̂3, were used
in the experiments as expressed below:

f̂2(x, y) = (x− y)M1(x− y)T ,

f̂3(x, y) = (x− y)M2(x− y)T .

Here,

M1 =

(
1 0
0 4

)
is a positive-definite matrix, but

M2 =

(
1 1
2 4

)
is not.

Because the D-CPD method is applicable exclusively in metric spaces, we applied it
to address the WBCC problem with the cost kernel f̂1. The results are shown in Figure 2.
These results show that the D-CPD method yields disconnected results when applied to the
synthetic datasets. Consequently, it can be inferred that the D-CPD method is unsuitable
for solving the WBCC problem in all scenarios.
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(a) (b) (c)

Figure 2. Results on the three synthetic cases. In each subfigure, the color of a point represents the
cluster to which it belongs. (a) The result in Case 1; (b) The result in Case 2; (c) The result in Case 3.

Further, the shelved–retrieved method was applied to address the WBCC problem. The
results corresponding to the three distinct cost kernels are presented in Figure 3. The visual
representations in Figure 3 show that our method consistently satisfies the connectivity
requirements of the clusters. Hence, the shelved–retrieved method can produce connected
results when applied in diverse scenarios.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. (a–i) Results of three synthetic cases with three cost kernels. In each subfigure, the color of
a point represents the cluster to which it belongs. The results in the same row represent variations
of a single case under different cost kernel functions, while those in the same column correspond
to a common cost kernel. The cost kernels involved in the three columns are f̂1(x, y) = ‖x− y‖2,
f̂2(x, y) = (x− y)M1(x− y)T , and f̂3(x, y) = (x− y)M2(x− y)T , respectively.
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To compare the shelved–retrieved method to the D-CPD method, we evaluated all the
results using two metrics.

For each of the different cost kernels f̂k, k = 1, 2, 3, the transportation cost can be
calculated using formula ∑n

i=1 ∑xj∈Ci
f̂k for each k. The results are presented in Table 2.

The transportation costs obtained using the shelved–retrieved method were considerably
lower than those obtained using the D-CPD method. Compared to the D-CPD method,
the transportation costs of the shelved–retrieved method were reduced by an average of
22.53% for the three cases. Consequently, the shelved–retrieved method effectively reduced
transportation costs.

Table 2. Transportation costs of two methods on synthetic cases. Owing to the limitation of the
D-CPD method to metric spaces, the transportation costs can only be calculated using the cost kernel
f̂1 in all the cases.

Case Cost Kernel Shelved–Retrieved Method D-CPD Method Reduction

Case 1
f̂1 2614.56 2615.82 0.0482%
f̂2 3916.60 / /
f̂3 3040.00 / /

Case 2
f̂1 2615.81 3319.67 21.20%
f̂2 2635.42 / /
f̂3 2345.04 / /

Case 3
f̂1 1881.07 3506.45 46.35%
f̂2 2254.69 / /
f̂3 2069.65 / /

Additionally, we utilized RMSSTD as a metric to measure the similarity between
the clusters.

All the results were evaluated using RMSSTD, and the values are presented in Table 3.
Table 3 shows that the RMSSTD of the shelved–retrieved method is considerably lower
than that of the D-CPD method in each case. Consequently, the clustering results obtained
using the shelved–retrieved method outperform those obtained using the D-CPD method.

Table 3. RMSSTD on synthetic cases. Since the D-CPD method can only be used in metric spaces,
RMSSTD can be calculated with the objective function f̂1 in all the cases.

Case Cost Kernel Shelved–Retrieved Method D-CPD Method Reduction

Case 1
f̂1 0.809 0.813 0.492%
f̂2 0.99 / /
f̂3 0.87 / /

Case 2
f̂1 0.74 0.91 18.68%
f̂2 0.81 / /
f̂3 0.77 / /

Case 3
f̂1 0.69 0.94 26.60%
f̂2 0.75 / /
f̂3 0.72 / /

In synthetic cases, compared with the D-CPD method, our method can produce
connected and more compact clusters, and the corresponding transportation costs are much
lower. The shelved–retrieved method is more suitable for solving the WBCC problems
compared to the D-CPD method.

4.2. Farmland Consolidation

Farmland consolidation is a classical scenario in the WBCC. A large number of small-
sized lots cultivated by farmers are scattered over an agricultural area. In farmland consoli-
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dation, these lots are restructured into several large connected fields. The adjacent lots in a
large connected field are assigned to the same farmer, and the area of lots belonging to the
farmer should not change too much. These requirements in farmland consolidation can be
formulated by the WBCC problem.

To verify the rationality of our method, we conduct experiments on farmland consoli-
dation. We obtain the relative data of the agricultural area in Germany, such as the position
of each lot, the barriers in the area, and the boundary of the lots. Due to the privacy of the
datasets, we present the schematic map of the agricultural area in Figure 4. As Figure 4
shows, the lots are distributed over a large area, and the barriers are located in the center of
the farmland.

Figure 4. The schematic map of the agricultural area in German.

A total of 399 lots in Figure 4 are cultivated by seven farmers, and each farmer requires
that the area should not change too much after reassignment. Each farmer, respectively,
provides the lower and upper thresholds ε−, ε+, i.e., the maximal value of area deviation.
The original farm area of farmer i is denoted as κi; then, the restructured farmland area is
within the interval [κi − ε−, κi + ε+]. To harmonize expressions of formulation, we denote
κ−i = κi − ε− and κ+i = κi − ε+.

According to the requirements in farmland consolidation, information regarding the
belonging of each lot to respective farmers should be obtained. In the experiments, we set
m = 7 and n = 399. Similar to the experiments on synthetic datasets, the D-CPD method is
applied to handle the farmland consolidation with cost kernel f̂1. As presented in Figure 5,
the D-CPD method produces a disconnected result in the cyan cluster. Hence, the D-CPD
method is unsuitable for solving the WBCC problem in farmland consolidation.
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Figure 5. Results on farmland consolidation by the D-CPD method. The color of a point represents
the cluster to which it belongs.

Furthermore, the shelved–retrieved method is applied to solve the farmland consol-
idation with r = 18 in the experiments. Three cost kernels f̂1, f̂2, f̂3 are used to measure
different transportation costs in farmland consolidation. The results corresponding to the
three distinct objective functions are shown in Figure 6. Compared with the result of the
D-CPD method in Figure 5, the shelved–retrieved method produces connected results but
the D-CPD method does not. Thus, the shelved–retrieved method can reasonably solve the
WBCC problem in farmland consolidation.

(a) (b) (c)

Figure 6. Results on the farmland consolidation with three cost kernels. The color of a point represents
the cluster to which it belongs. (a) The result with cost kernel f̂1; (b) The result with cost kernel f̂2;
(c) The result with cost kernel f̂3.

We also evaluate all results by the transportation costs and RMSSTD to compare
the two methods. Transportation costs are presented in Table 4. In the experiments, the
transportation cost generated by the results of the shelved–retrieved method is reduced
by 40.17% compared to the D-CPD method. Therefore, the shelved–retrieved method can
reduce the cost of equipment transportation between lots.
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Table 4. Transportation costs of two methods on farmland consolidation. Owing to the limitation
of the D-CPD method to metric spaces, the transportation costs can only be calculated using the
objective function f̂1 in all the cases.

Cost Kernel Shelved–Retrieved Method D-CPD Method

f̂1 8239.77 13,772.06
f̂2 9711.75 /
f̂3 10,538.33 /

The RMSSTD value of each result is presented in Table 5. Table 5 shows that the
RMSSTD of the shelved–retrieved method is lower than that of the D-CPD method with
a 22.67% reduction. Thus, the shelved–retrieved method outperforms other methods in
farmland consolidation.

Table 5. RMSSTD of two methods on farmland consolidation. Owing to the limitation of the D-CPD
method to metric spaces, the transportation costs can only be calculated using the objective function
f̂1 in all the cases.

Cost Kernel Shelved–Retrieved Method D-CPD Method

f̂1 3.24 4.19
f̂2 3.46 /
f̂3 3.67 /

5. Conclusions

The WBCC problem necessitates the division of a point set into connected clusters,
each with weights falling within specified intervals. To handle this problem, our study
introduced the shelved–retrieved method, which incorporates adjacent relationships into
power diagram construction, enabling points to be assigned to clusters based on their
adjacent points. Leveraging parameters from power diagrams, this method effectively
partitions the point set into connected clusters. Furthermore, it employs a specially designed
loop structure to guarantee the generation of clusters that adhere to both weight and
geometrical connectivity constraints.

Our experiments, which included three synthetic cases using three cost kernels, as well
as their application in farmland consolidation, consistently demonstrated the effectiveness
of the shelved–retrieved method. Our results consistently met the constraints of the WBCC
problem, resulting in an average reduction of transportation costs by 22.53% and 40.17%
for synthetic cases and farmland consolidation, respectively.

Our findings highlight the fact that the shelved–retrieved method not only addresses
the WBCC problem effectively, but also ensures cluster connectivity, surpassing other
techniques in terms of transportation costs and RMSSTD. This method’s flexibility in
quantifying different costs through cost kernels allows for substantial cost reductions in
various scenarios. However, it is important to note that the shelved–retrieved method may
face challenges when dealing with high-dimensional weights. Future research endeavors
should aim to address the WBCC problem in such high-dimensional weight scenarios to
further enhance the method’s applicability and effectiveness.
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Appendix A. D-CPD Method

In the D-CPD method, parameter α can be optimized using Equation (A1).

α
p+1
i =

α
p
i −

uep
i li
|ep

i |
if
∣∣∣ep

i

∣∣∣ > 1
2 (κ

+
i − κ−i )

α
p
i otherwise

. (A1)

The specific algorithm for D-CPD is presented in Algorithm A1.

Algorithm A1 D-CPD method

Require: Domain X = {x1, . . . , xm}, weight set Ω = {ω1, . . . , ωm}, capacity sets K− =
{κ−1 , . . . , κ−n }, K+ = {κ+1 , . . . , κ+n }.

Ensure: Clustering solution C = {C1, . . . , Cn}
1: Initialize the cluster Ci = ∅ for each i = 1, . . . , n and the parameters α1, . . . , αn = 0.
2: Randomly select s1, . . . , sn in X.
3: repeat
4: p = 1
5: repeat
6: Assign the point xj to the cluster Ci∗ for each j ∈ {1, . . . , m}, where i∗ =

arg min
i

f (xj, si)
2 − αi.

7: Update α
p+1
i by the Formula (A1) for each i.

8: p← p + 1
9: until α

p+1
i = α

p
i for all i

10: Update s1, . . . , sn by Lloyd algorithm
11: until s1, . . . , sn are not changed
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