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Abstract: Contrast enhancement techniques serve the purpose of diminishing image noise and in-
creasing the contrast of relevant structures. In the context of medical images, where the differentiation
between normal and abnormal tissues can be quite subtle, precise interpretation might become chal-
lenging when noise levels are relatively elevated. The Fast Local Laplacian Filter (FLLF) is proposed
to deliver a more precise interpretation and present a clearer image to the observer; this is achieved
through the reduction of noise levels. In this study, the FLLF strengthened images through its unique
contrast enhancement capabilities while preserving important image details. It achieved this by
adapting to the image’s characteristics and selectively enhancing areas with low contrast, thereby
improving the overall visual quality. Additionally, the FLLF excels in edge preservation, ensuring that
fine details are retained and that edges remain sharp. Several performance metrics were employed to
assess the effectiveness of the proposed technique. These metrics included Peak Signal-to-Noise Ratio
(PSNR), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Normalization Coefficient
(NC), and Correlation Coefficient. The results indicated that the proposed technique achieved a
PSNR of 40.12, an MSE of 8.6982, an RMSE of 2.9492, an NC of 1.0893, and a Correlation Coefficient
of 0.9999. The analysis highlights the superior performance of the proposed method when contrast
enhancement is applied, especially when compared to existing techniques. This approach results
in high-quality images with minimal information loss, ultimately aiding medical experts in making
more accurate diagnoses.

Keywords: contrast enhancement; medical images; coronary angiography; fast local laplacian filter;
high-quality images

1. Introduction

Angiography, sometimes referred to as arteriography or an angiogram, is a medical
procedure used by physicians to examine the interior of blood vessels, typically arteries,
and various organs within the body [1]. This procedure primarily focuses on investigating
arteries, veins, and the chambers of the heart. Its applications are extensive, encompassing
the diagnosis of a wide range of medical conditions and irregularities related to blood
vessels. Angiography can be performed on various parts of the body, depending on the
specific medical needs and diagnostic purposes, such as cerebral angiography, periph-
eral angiography, pulmonary angiography, renal angiography, aortic angiography, retinal
angiography, and coronary angiography.

Cardiovascular diseases remain a leading cause of mortality worldwide. Coronary
angiography plays a pivotal role in diagnosing and assessing coronary artery diseases and
cardiovascular diseases, offering vital insights into the conditions of blood vessels and
the overall cardiac health of patients. Additionally, coronary angiography is instrumental
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in facilitating medical interventions and treatments for issues such as vessel narrowing,
blockages, and other conditions, particularly those impacting the heart. Despite its clinical
significance, angiography images often exhibit variations in contrast, brightness, and
overall quality due to diverse imaging conditions and patient characteristics [2]. Such
variability can hinder accurate diagnosis and analysis, underscoring the need for advanced
contrast enhancement techniques to improve the visibility of blood vessels and intricate
vascular structures [3].

In recent years, digital image processing has emerged as a powerful tool for enhancing
the quality of medical images, thereby facilitating more precise medical evaluations and
diagnoses. Among the array of techniques available, contrast enhancement has garnered
substantial attention due to its ability to improve image clarity and optimize visual infor-
mation. This study delves into the application of the Fast Local Laplacian Filter (FLLF)
technique for enhancing blood vessel contrast in coronary angiography images [4]. Modern
medical imaging relies on digital processing methodologies to elevate image quality and
extract crucial diagnostic information [5]. Contrast enhancement, in particular, has emerged
as a promising avenue to amplify the visibility of relevant structures, thereby facilitating
more accurate and confident clinical interpretations [6–9]. This study capitalizes on the Fast
Local Laplacian Filter technique’s potential to enhance contrast while maintaining image
details and minimizing undesirable artifacts.

The central objective of this study is to explore the effectiveness of Fast Local Lapla-
cian Filter techniques in enhancing blood vessel contrast within coronary angiography
images [10,11]. In the FLLF technique, a Laplacian pyramid is created to capture local
image variations and details at different scales. After that, the modified Laplacian (ML)
is introduced through a bilateral filter applied to each level of the Laplacian pyramid.
This bilateral filter is controlled by two factors: the spatial distance (d) and the range
similarity (r). It effectively preserves edges, reduces noise, and enhances image contrast.
The FLLF technique offers a localized approach that adapts to the image’s intrinsic features,
preserving image integrity while elevating its visual impact. The inherent adaptability
of FLLF techniques to varying degrees of contrast enhancement makes it a compelling
candidate for medical image enhancement applications.

This research paper encompasses an in-depth examination of the application and out-
comes of Fast Local Laplacian Filter techniques in the context of coronary angiography [12].
The FLLF algorithm is dissected and tailored to the unique requirements of angiography
images, with special attention to achieving an optimal balance between improved contrast
and the preservation of diagnostic information.

This paper includes an overview of related works in contrast enhancement (Section 2);
a detailed exposition of the FLLF methodology (Section 3); the experimental setup, dataset
description, and the results and their implications (Section 4); and concluding remarks and
avenues for future research (Section 5).

2. Literature Study

In recent times, medical image processing has emerged as a captivating and highly
relevant research area for scholars. Within this field, two key aspects have garnered con-
siderable attention: image enhancement, and the identification of low-contrast issues [13].
Both of these areas hold significant importance in the realm of medical image processing.
Image enhancement aims to improve the quality and visual clarity of medical images,
while the identification of low-contrast problems plays a crucial role in identifying and
addressing issues related to image quality and visibility [14]. A summary of the literature
review is shown in Table 1.

The current registration techniques fall short of preserving valuable information and
image quality. To address this limitation and maintain the original image’s features, the
proposed method combines contrast enhancement with the registration process. In this new
approach, a scanned medical image is taken as the starting point. To enhance image quality,
a dynamic histogram equalization method is used [15]. The proposed method focuses on



Algorithms 2023, 16, 531 3 of 18

making medical images look better, rather than just improving technical measures like
PSNR or the amount of data that can be hidden in them. They split the images into two
parts: one with important details (Region of Interest) and one without. When it comes to
medical images, it is crucial that details are highlighted in the less vibrant areas to help
doctors diagnose effectively [16].

It is important to improve image quality as specialists find it difficult to analyze poor-
quality images. To address this issue, a method called “Dynamic Histogram Equalization
with Modified Histogram Equalization on Fuzzy based Improved Particle Swarm Opti-
mization (FIPSO)” was developed. This approach aims to enhance the image’s contrast,
making it easier for specialists to examine. It achieves this by smoothing out the image
details and distributing pixel intensity to nearby pixels using a Gaussian function [17].

The proposed approach aims to improve the contrast of medical images. The core con-
cept revolves around creating an optimization challenge that takes into account both overall
and specific enhancements in order to create a robust image enhancement method [18].

In [19], a new method called the “adaptive fuzzy gray-level difference histogram
equalization algorithm” was proposed, in order to offer a more precise interpretation and
cleaner images with less noise. Initially, the differences in gray levels in the input image
were calculated using binary similar patterns. These gray-level differences were then made
more flexible, in order to handle any uncertainties in the image. After this adjustment,
a fuzzy gray-level difference clip limit was computed to control excessive contrast en-
hancement, ensuring that only relevant enhancements are made. In [20], an algorithm was
introduced called “piecewise linear histogram equalization (PLHE)”. This algorithm is a
more advanced version of CHE, offering simplicity, a piecewise linear approach, and the
convenience of a single parameter to manage the enhancement process. In order to demon-
strate how well this new algorithm works, we have chosen two measures, information
entropy and sharpness, that showcase the visual improvements it brings about. Another
improved method for local contrast preservation is adaptive histogram equalization. This
technique incorporates various image processing steps, including changing color spaces,
inverting images, reducing haze, and boosting color saturation [21]. A chaos-based opti-
mization algorithm has also been developed to enhance contrast in medical images. In this
approach, a weighted combined framework was introduced as the method for improving
contrast, serving as the cost function [22].

Several methods have been proposed to enhance the contrast and quality of medical
images, addressing the limitations of current registration techniques. These approaches
combine contrast enhancement with the registration process, aiming to preserve valuable
image details. They often utilize techniques like dynamic histogram equalization, modified
histogram equalization with fuzzy-based optimization, and piecewise linear histogram
equalization, with a focus on improving visual quality rather than just technical measures
like PSNR. Additionally, some methods emphasize local contrast preservation through
adaptive histogram equalization and image processing techniques such as color space
changes, image inversion, dehazing, and saturation adjustment. In these methods, an
optimization challenge is presented, considering both global and specific enhancements, in
order to create robust image enhancement techniques, ultimately benefiting medical image
interpretation and diagnosis.
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Table 1. Summary of the Literature Review.

Study Data Type Techniques Descriptions Performance Metrics Results

[15] CT images
Fuzzy employed

dynamic histogram
equalization

Contrast enhancement is considered a
significant aspect of medical analysis

because diagnosis error can be
minimized only by utilizing a

better-quality image.

Average Pixel
Intensity, Standard

Deviation,
Average gradient,

Entropy,
Mutual Information

[16] MRI images Contrast stretching

An effective data hiding technique that
enhances the visual quality of

watermarked images while ensuring
efficient concealment of the

embedded data.

PSNR, SSIM 16.24
0.9932

[17] Digital
images

Dynamic Histogram
Equalization

Enhancing the quality of MRI-generated
images is crucial, as the complexity of

these images often poses challenges for
specialists during their analysis

and interpretation.

PSNR, SSIM,
MSE

32.00
0.9000
0.300

[18] X-ray Image Modified shark smell
optimization

The main idea here is to introduce an
optimization problem by considering
both global and local enhancement to

achieve a strong image
enhancement method

Contrast, CNR, EME,
WPSNR,

Homogeneity

0.89, 78.12
32.41 17.13,

0.85

[19] X-ray image

Fuzzy gray-level
difference histogram

equalization
algorithm

The gray-level difference of an input
image is calculated using the binary

similar patterns.
Entropy, PSNR 7.01, 38.15

[20] MRI images
Piecewise linear

histogram
equalization

The primary function involves ensuring a
uniform distribution of histogram

components across the entire
grayscale range

Entropy, edge
enhancement
index (EHI)

5.2001
5040

[23] MRI image
Limited Dynamic

Weighted Histogram
Equalization

The proposed reversible data
hiding-based limited dynamic weighted

histogram equalization technique for
abnormal tumor regions improves the

contrast and transmits hidden
secret information.

PSNR 34.65

[21] Digital
images

Adaptive Histogram
Equalization

The algorithm’s efficacy extends beyond
enhancing medical images; it also caters
to the enhancement of ordinary images

captured under both low-light and
daylight conditions.

PSNR,
NAE

53.4047
1.0267

[24] MRI images

Histogram
equalization,

adaptive gamma
correction

Extracting pertinent information from
low-contrast and poor-quality MRI

images proves to be a formidable task.

PSNR,
MSE

29.07
80.92

[22] CT and MRI
images

Chaos-based
optimization

Medical images often exhibit
characteristics such as low contrast,

significant noise, and compact
dimensions. The accurate identification

of anomalies within these images heavily
relies on their quality and level of clarity.

Entropy,
edge contents

6.65
0.19
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3. Proposed Methodology

In this study, the primary focus was the improvement of the quality of medical images,
particularly for diagnosing coronary disease. The main goal was to enhance images that
have low contrast and may contain noise, making it difficult for medical professionals to
accurately diagnose heart-related conditions. The aim was to make these images clearer and
cleaner, ultimately aiding in more effective and reliable diagnoses for coronary diseases.

3.1. Fast Local Laplacian Filter

The Fast Local Laplacian Filter (FLLF) technique is an advanced approach for en-
hancing the contrast of images while preserving their fine details and textures. Unlike
traditional global contrast enhancement methods that can lead to oversaturation or loss of
subtle details, the FLLF technique operates locally, adapting to the unique characteristics of
different image regions [10], as shown in Figure 1.
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At the core of the FLLF technique lies the Laplacian pyramid. This pyramid is con-
structed by generating a series of Gaussian pyramids of varying scales and then computing
the differences between consecutive levels. Mathematically, for a Gaussian pyramid level i
denoted as Gi, the corresponding Laplacian pyramid level Li is calculated as:

Li = Gi− resize(Gi + 1) (1)

where resize(Gi + 1) represents the Gaussian pyramid level Gi + 1 resized to the dimensions
of Gi. This process generates a pyramid that captures local image variations and details at
different scales.

The FLLF technique introduces the concept of the modified Laplacian (ML), obtained
through a bilateral filter applied to each level of the Laplacian pyramid [4]. The bilateral
filter is governed by two main factors: the spatial distance, d, and the range similarity, r.
It preserves edges and reduces noise while enhancing the contrast shown in Figure 1.
Mathematically, the modified Laplacian ML at level i can be expressed as:

MLi = bilateralFilter(Li, d, r) (2)

where bilateralFilter(Li, d, r) applies the bilateral filter to the Laplacian pyramid level Li
with parameters d and r.

The final step involves reconstructing the enhanced image by combining the modified
Laplacian ML with the base image G0. The reconstructed image E is calculated as:

E = G0 + resize(ML0) + ∑ i = n Resize(MLi) (3)

where n is the number of pyramid levels. In this equation, G0 is the base image, resize(ML0)
is the resized version of the modified Laplacian at the top level of the pyramid, and
∑ i = n Resize(MLi) represents the sum of resized modified Laplacian levels across all
pyramid levels. This reconstruction process adapts the contrast enhancement locally,
allowing the technique to enhance different image regions individually based on their
unique characteristics. Equation (3) can be broken down into more detail:
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• E: This is the enhanced image to be created, which will have improved contrast
and details.

• G0: This represents the base image, which is typically the original input image to
be enhanced.

• resize(ML0): The modified Laplacian at the top level of the pyramid (MLi) is resized
to match the dimensions of the base image (G0). This means ensuring that the (MLi)
and G0 have the same width and height.

• ∑ i = n Resize(MLi): The sum (∑) is taken over all levels (i) of the Laplacian pyramid
from 1 to ‘n’. For each level, the corresponding modified Laplacian (MLi) is resized to
match the dimensions of the base image (G0) and then added to the result.

So, this equation shows that the enhanced image ‘E’ is formed by adding three components:

• The original base image G0.
• The modified Laplacian at the top level of the Laplacian pyramid (resize(ML0)), en-

suring that it matches the dimensions of G0.
• The sum of the modified Laplacian levels from all levels of the pyramid

(∑ i = n Resize(MLi)), where each level has been resized to match G0.

This process combines the base image with information from the Laplacian pyramid,
including the local image variations and details captured at different scales, to create
an enhanced image that adapts contrast locally. The use of the Laplacian pyramid and
modified Laplacian with resizing ensures that the enhancement process is applied on
multiple scales, preserving fine details and textures while improving contrast. The final
result, ‘E’, represents the enhanced image that retains local characteristics while having
better contrast. Top of Form.

The Fast Local Laplacian Filter technique offers a sophisticated solution for contrast
enhancement in images. By exploiting the Laplacian pyramid and the bilateral filter,
it achieves localized enhancement while preserving essential details and textures. This
adaptability makes the FLLF technique suitable for a wide range of images with varying
contrast levels and textures, contributing to improved visual quality while retaining the
natural appearance of the image. The FLLF algorithm (Algorithm 1) is presented below;

Algorithm 1: Fast Local Laplacian Filter (FLLF)

Input: Image Aip

Mathematical Symbols:
Gaussian Blur: GaussianBlur(image, Kernel_size)
Resizing: Resized G[i + 1] = Resize

(
G[i + 1], Dimensionso f (G[i])

)
Laplacian: Li = G[i]− Resized_G[i + 1]
Bilateral Filter: BilateralFilter(image, d base, drange

)
Resizing: Resized_ML[i] = resize

(
ML[i], dimensionso f (G[i])

)
Enhanced Image: E = G(0) + Resized_ML[0] + ∑ i = 1num _level − 1Resized_ML[i]
Parameters: dbase, drange , numlevels
Step 1. Generate Gaussian Pyramid:
————Create an empty Gaussian pyramid list G
————Append I to G (base level)
————// Now this is a for-loop
——-For Loop i in range (1, {numlevels}) :
————Apply Gaussian blur to G[i− 1] with kernel size proportional to i
————Append the blurred image to G
——-End For Loop
Step 2. Generate Laplacian Pyramid:
————Create an empty Laplacian pyramid list L
————// Now this is a for-loop
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Algorithm 1: Cont.

——-For Loop i in range (0, {numlevels} − 1) :
————Resize G[i + 1] to the dimensions of G[i]
———— // Compute Laplacian pyramid
————Li = G[i]− Resized G[i + 1] using Equation (1)
————Append Li to L
——-End For Loop
Step 3. Enhance using Modified Laplacian:
————Create an empty modified Laplacian pyramid list ML
————// Now this is a for-loop
——-For Loop each level Li in L :
————Apply Bilateral filter to Li with spatial distance dbase and range similarity drange
————Append the filtered result to ML
——-End For Loop
Step 4. Reconstruct Enhanced Image:
————Create an empty list E
————// Now this is a for-loop
——-For Loop i in range ({numlevels} ):
————// Compute modified Laplacian
————Resize ML [i] to the dimensions of G[i] using Equation (2)
————Append the resized ML [i] to E using Equation (3)
————Sum all elements of E and G [0] element-wise
————The reconstructed enhanced image E is obtained
——-End For Loop
Output: Enhanced Image E

3.2. Advantages of Fast Local Laplacian Filter

The Fast Local Laplacian Filter (FLLF) offers several advantages, and its development
has been motivated by the need for effective contrast enhancement in various applications.
Some of its key advantages and motivations include:

Preservation of Image Details: FLLF excels at enhancing image contrast while preserv-
ing important image details. It achieves this by selectively enhancing regions with low
contrast, ensuring that fine details are retained and that edges remain sharp. This is crucial
in applications where maintaining image fidelity is essential.

Adaptive Enhancement: The filter is adaptive and its enhancement strength can be
adjusted based on the characteristics of the input image. This adaptability makes it suitable
for a wide range of images with varying contrast levels.

Reduced Noise: FLLF effectively reduces image noise, resulting in cleaner and clearer
images. This is particularly important in medical imaging, where noise can hinder the
accurate interpretation of critical details.

Improved Visual Quality: By enhancing contrast and reducing noise, FLLF signifi-
cantly improves the overall visual quality of images. This can enhance user experience and
aid in more accurate image analysis.

Versatility: FLLF is a versatile technique that can be applied to various types of images,
including medical images like coronary angiography. Its effectiveness in different domains
makes it a valuable tool for researchers and professionals.

Enhanced Diagnostic Capabilities: In medical imaging, the ability to enhance contrast
and preserve image details is crucial for accurate diagnosis. FLLF’s capabilities align with
this need and can contribute to improved diagnostic accuracy.

Quantitative Evaluation: The performance of FLLF can be quantitatively assessed
using metrics like PSNR, MSE, RMSE, NC, and CoC. This allows for rigorous evaluation and
comparison with other methods, demonstrating its superiority in contrast enhancement.

Research Advancement: FLLF represents an advancement in the field of image pro-
cessing and contrast enhancement. Its introduction opens up new possibilities for research
and applications in image enhancement and analysis.
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4. Experimentation
4.1. Performance Measures

Evaluation measures, such as Root Mean Squared Error (RMSE), Peak Signal-to-Noise
Ratio (PSNR), Normalization Coefficient (NC), Mean Squared Error (MSE), and Correlation
Coefficient (CoC), are commonly used to assess the performance of contrast enhancement
methods in image processing. These measures provide a quantitative evaluation to compare
the quality of the enhanced image with the original image. This section shall explore each
measure and its corresponding equation:

Peak Signal-to-Noise Ratio: PSNR serves as a commonly employed metric for assess-
ing the effectiveness of contrast-enhanced images [25]. It offers insight into the relationship
between the highest attainable signal strength and the magnitude of noise present in the
image. PSNR is calculated using the following equation:

PSNR = 10 ∗ log10
(

MAX2/MSE
)

(4)

where MAX is the maximum possible pixel value in the image (e.g., 255 for an 8-bit
image) [26,27].

Mean Squared Error: MSE quantifies the average squared disparity between the
pixel values of the initial image and the enhanced image. A diminished MSE value re-
flects more favorable outcomes, indicating that the enhancement has successfully min-
imized the differences between the two images [27,28]. MSE is calculated using the
following equation:

MSE =

(
1

X×Y

)
×∑ ∑

[
(I(r, s)− D(r, s))2

]
(5)

where X and Y are the width and height of the image, I(r, s) represents the pixel value of
the original image at coordinates (r, s), and D(r, s) represents the pixel value of the denoised
image at the same coordinates.

Root Mean Squared Error: RMSE is the square root of the MSE and provides a mea-
sure of the average difference between the original and enhanced image pixel values [29].
It is commonly used as an error metric in image processing.

RMSE is calculated using the following equation:

RMSE = sqrt(MSE) (6)

Correlation Coefficient: The CoC measures the linear relationship between the pixel
values of the original and enhanced images. It provides a measure of how well the denoised
image matches the original image. The Correlation Coefficient is calculated using the
following equation:

CoC = cov(I, D)/(σI ∗ σD) (7)

where cov(I, D) represents the covariance between the pixel values of the original and
denoised images, and σI and σD represent the standard deviations of the original and
denoised images, respectively.

Normalization Coefficient: The NC is a measure used to assess the similarity of
contrast enhancement results between original and enhanced images. A higher value of
NC indicates that contrast enhancements were achieved.

The equation for calculating the Normalization Coefficient (NC) can vary depending
on the general approach for calculating the NC based on the concept of normalization.

Here is a general equation for calculating the Normalization Coefficient (NC):

NC = (CEA −OrgB)/(CEA + OrgB) (8)

where NC is the Normalization Coefficient and CEA represents the contrast enhancement
image, while the OrgB is the original image.
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These evaluation measures provide objective metrics to assess the performance of
enhanced images. Lower RMSE and higher PSNR values indicate better quality, while
a higher Correlation Coefficient signifies a stronger correlation between the original and
enhanced images.

4.2. Results and Discussion

This article primarily focuses on the contrast enhancement techniques applied to
coronary angiography images, with an emphasis on improving their quality by addressing
issues such as low contrast. This study explores various techniques such as the Retinex
Algorithm [30,31], Contrast Stretching (CS) [32], Gamma Correction (GC) [33], Histogram
equalization (HE) [34], Local Bright Contrast (LBC) [35], Local Transformation Histogram
Equalization (LTHE), Optimized maximum contrast (OMC) [36], Piecewise Linear Trans-
formation (PLT), Sigmoid, Adaptive Histogram Equalization (AHE) [37], Bi-Histogram
Equalization (BHE), Brightness Bi-Histogram Equalization (BBHE) [38], Contrast Limited
Adaptive Histogram Equalization (CLAHE) [37], Dualistic Sub Image Histogram Equal-
ization (DSIHE) [39], Logarithmic Transform (LT), Multi Histogram Equalization (MHE),
Multi-Scale Retinex with Color Restoration (MSRCR) [40], Global Transformation His-
togram Equalization (GTHE) [41], and Fast Local Laplacian Filter (FLLF) [10], and assesses
their efficacy in enhancing the images before further analysis or diagnosis. This section
of the article discusses the experiments conducted to evaluate the performance of noise
removal and low contrast identification. It is divided into three subsections: simulation
setup, visual analysis, and statistical analysis.

4.3. Simulation Setup

The simulation of image processing was conducted on a computer system running
Windows 10 Pro. The computation time was measured using a computer equipped with an
Intel(R) Core (TM) i5-6300U CPU @ 2.40 GHz 2.50 GHz and 8 GB of RAM. The experiment
utilized the Jupiter Lab development environment, which is a web-based interactive IDE
for scientific computing that is open-source. To access Jupiter Lab, an Anaconda emulator
was used. Anaconda is a distribution of Python and R specifically designed for fields
like data science, machine learning, and scientific computing. It provides a user-friendly
environment for managing packages, handling dependencies, and executing code. The
use of the Anaconda emulator ensures that Jupiter Lab is launched with all the necessary
libraries and packages pre-installed, simplifying and streamlining the setup and execution
process of the experiment.

Dataset Description: The dataset used in this study consisted of X-ray coronary an-
giography (invasive coronary angiography) images obtained from two renowned hospitals
in Peshawar, Pakistan: The Cardiology Centre of the Hayatabad Hospital Complex and the
Teaching Hospital of Khyber Peshawar. These images depict coronary arteries that exhibit
varying thicknesses and complex vascular structures against a background. The dataset
primarily revealed information about the intensity of blood vessels. It distinguished be-
tween various types of blood vessels, including healthy ones, constricted (narrow) vessels,
and obstructed (blocked) vessels. Additionally, the dataset contained numerous instances
of noise. Each coronary artery image in the dataset had a size of 512 × 512 pixels. The
dataset contained information from a large number of patients, but in our study, we only
utilized data from a couple of specific patients. The collection of angiographic images was
performed under the supervision and guidance of a cardiologist.

4.4. Visual Analysis

The effectiveness of the proposed algorithm was evaluated by assessing the image
quality through human observation and perception. To evaluate the efficacy of the proposed
technique in comparison with existing methods, a set of low-contrast coronary angiography
medical images from a widely recognized benchmark database was employed. The versa-
tility and effectiveness of the proposed method were thoroughly tested in contrast with
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other established approaches [37]. The comparison of the proposed method’s performance
against other existing methods is depicted in Figures 2 and 3.

The outcomes depicted in Figure 2 demonstrate the simulation findings of the ‘an-
giography’ testing image alongside its corresponding histogram. The Retinax technique,
illustrated in Figure 2b, demonstrates a notable concern with excessive noise and over-
enhancement. The angiography images generated by the CS and GC techniques in
Figure 2c,d suffer from irregular intensity distribution, resulting in the distortion of subtle
edges within the testing image.

As depicted in Figure 2e–h, the simulated angiography images derived from the HE,
LBC, LTHE, and OMC methods exhibit multiple artifacts and struggle to preserve intricate
edge features. Similarly, the results obtained from the PLT, Sigmoid, AHE, and BHE
techniques (shown in Figure 2i–l) lack meaningful visual information due to their limited
contrast adjustments. Furthermore, the experimental outcomes derived from the BBHE,
CLAHE, and DSIHE methods (depicted in Figure 2m,o,p) produce contrast-enhanced
images that are excessively bright.

Among the displayed results, Figure 2p–s showcase visually appealing outcomes,
albeit with reduced significant details. Notably, the proposed FLLF method, illustrated in
Figure 2t, demonstrates that the enhanced angiography image possesses a visually pleasing
appearance, characterized by well-defined edge details and preserved mean brightness.
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Through an in-depth analysis of the histogram plot, it becomes evident that the
proposed FLLF technique adeptly mitigates insignificant contrast enhancement issues by
curtailing undesirable segments within the histogram plot. Furthermore, the technique
enhances image details by evenly distributing intensity occurrence levels across the entire
dynamic range. This process collectively contributes to the overall improvement of the
angiography image, aligning well with visual expectations.

Figure 3 presents the simulation results of the ‘angiography’ testing image, showcasing
its histogram in parallel. Additionally, within Figure 3, each technique resultant image is
visually illustrated alongside its accompanying histogram. This presentation allows for a
comprehensive analysis and evaluation of the effectiveness and impact of each contrast
enhancement technique.

4.5. Statistical Analysis

An objective approach to performance evaluation was conducted on the existing and
proposed methods using five different metrics, including PSNR, MSE, RMSE, NC, and CoC.

An analysis of Tables 1 and 2 makes it evident that the proposed Fast Local Laplacian
Filter (FLLF) method offers the most promising outcomes. For both test image 1 and test
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image 2, the FLLF method achieved the highest PSNR values, recording values of 36.61
and 40.12, respectively. In terms of MSE and RMSE, which measure the average squared
difference between pixel values of the original and processed images, the FLLF method
consistently attained the lowest values among all the techniques evaluated.

Moreover, the CoC, a crucial metric for gauging enhancement quality, shows that the
FLLF method closely approaches a value of 1. This indicates favorable results, particularly
evident in the case of test image 2, and ranks the FLLF method as the third best for
test image 1. Lastly, the NC metric highlights that the proposed algorithm achieved the
highest value, indicating notable results for the LT technique on test image 1 and the OMC
technique on test image 2.

Tables 2 and 3 provide a visual representation of the most notable outcomes, with a
clear distinction through color coding. The top three best results are visually differentiated
using distinct colors: blue is assigned to the topmost results, green indicates the second-best
outcomes, and orange highlights the third-best results. Figures 4 and 5 also include bar
charts that demonstrate the top three best results and emphasize the superiority of our
proposed method over all the other methods.

Figures 6 and 7 present a visual representation of the time comparison between the
proposed Fast Local Laplacian Filter (FLLF) method and various state-of-the-art techniques.
Notably, FLLF, MHE, and OME exhibit favorable time complexities, signifying efficient
performance. Conversely, the PLT method demonstrates the poorest time efficiency among
the evaluated techniques.

Table 2. Illustrates a comprehensive comparison between the proposed method and advanced noise
removal techniques applied to test image 1.

Contrast Techniques PSNR MSE RMSE NC CoC
Retinax 33.03 18,333.3601 135.4007 1.1377 0.6950
CS 33.39 202.0203 14.2271 1.1628 0.9999
GC 27.44 1189.6561 34.4913 1.1287 0.9954
HE 27.58 3416.8531 58.4538 1.0514 0.9910
LBC 27.76 7060.3217 84.0257 1.2837 0.9871
LTHE 28.55 261.2856 16.1643 1.2102 0.9471
OMC 36.39 201.0203 14.2248 1.1628 0.9999
PLT 28.59 202.4859 14.2297 1.1092 0.9987
Sigmoid 28.82 18,690.0791 136.7116 1.0525 0.4992
AHE 28.45 312.3480 17.6733 1.1981 0.9390
BHE 29.44 12,334.8630 111.0624 1.1844 0.8451
BBHE 28.37 1353.1227 36.7848 1.2041 0.8897
CLAHE 31.45 312.3480 17.6733 1.1981 0.9390
DSIHE 27.89 3307.2439 57.5086 1.2546 0.7789
GTHE 27.58 3416.8531 58.4538 1.0514 0.9910
LT 27.54 1335.1442 36.5396 1.4988 0.9759
MHE 27.95 7390.1161 85.9657 1.1611 0.2412
MSRCR 27.64 13,659.7440 116.8749 1.1412 0.1630
FLLF 36.61 199.1714 13.9166 1.4757 0.9994
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Table 3. Illustrates a comprehensive comparison between the proposed method and advanced noise
removal techniques applied to test image 2.

Contrast Techniques PSNR MSE RMSE NC CoC
Retinax 27.84 19,574.1926 139.9078 1.0635 0.6025
CS 38.74 28.6982 6.9492 1.0893 0.9999
GC 28.49 951.7033 30.8496 1.0696 0.9920
HE 27.70 3311.7610 57.5479 1.0670 0.8954
LBC 27.40 4757.5027 68.9746 1.1396 0.9270
LTHE 28.11 342.0377 18.4942 1.1190 0.9570
OMC 38.74 19.6565 4.4335 1.1778 0.9994
PLT 27.35 280.9360 16.7611 1.0063 0.9957
Sigmoid 27.90 20,859.4069 144.4278 0.9840 0.6008
AHE 28.37 462.4049 21.5036 1.1114 0.9311
BHE 27.93 9313.0024 96.5038 1.1138 0.8288
BBHE 28.16 2071.5758 45.5145 1.1194 0.8842
CLAHE 28.37 462.4049 21.5036 1.1114 0.9311
DSIHE 27.80 4582.7375 67.6959 1.1626 0.8087
GTHE 27.70 3311.7610 57.5479 1.0670 0.8954
LT 27.13 2107.6280 45.9089 1.1695 0.9433
MHE 27.90 8906.9083 94.3764 1.1457 0.2114
MSRCR 27.86 16,128.0107 126.9961 1.0900 0.1889
FLLF 40.12 8.6982 2.9492 1.0893 0.9999
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Figure 6. Illustrates the time complexity (s) of the proposed technique in comparison with the existing
state-of-the-art methods on test image 1.
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Figure 7. Illustrates the time complexity (s) of the proposed technique in comparison with the existing
state-of-the-art methods on test image 2.

5. Conclusions

This article introduces the Fast Local Laplacian Filter algorithm, a method designed
to enhance the contrast and fine details in coronary angiography medical images while
maintaining their natural appearance. This filter effectively reduces noise levels, resulting in
more precise interpretations and sharper image presentations. To evaluate its performance,
this article employs various metrics, such as PSNR, MSE, RMSE, NC, and CoC. The test
results consistently demonstrate the superiority of the proposed approach compared to
existing techniques in terms of enhancing both contrast and intricate details. This article
underscores the significant potential of the proposed technique within the medical field.
By improving the clarity and richness of information in coronary angiography images, it
has the capacity to aid in accurate diagnoses and to promote a deeper understanding of
the details present in these images. This conclusion is well-supported by the quantitative
metrics used to evaluate the method’s performance, reinforcing the algorithm’s utility in
advancing medical imaging and ultimately benefiting patient care and diagnosis.
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