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Abstract: Describing viral outbreaks, such as the COVID-19 pandemic, often involves employing
compartmental models composed of ordinary differential equation (ODE) systems. Estimating
the parameter values for these ODE models is crucial and relies on accessible data. To accurately
represent realistic pandemic scenarios with diverse situations, it is necessary to consider model
parameters as time dependent. However, estimating such time-dependent parameters, like transition
rates in compartmental models, is notoriously challenging due to the unknown function class of
these parameters. In this study, we propose a novel approach by using an Augmented Kalman
Smoother (AKS) combined with an Expectation-Maximization (EM) algorithm to simultaneously
estimate all time-dependent parameters in an SIRD compartmental model. Our approach can be
applied to general ODE systems with time-varying parameters, requiring no prior knowledge of
model parameters or additional assumptions on the function class of the ODE time dependencies.
A key advantage of our method compared to other methods is that it does not require assumptions
about the parameterization of the serial interval distribution for estimating SIRD model parameters.
Applying our approach to COVID-19 data in Germany, we adequately describe time-series data
with strong fluctuations and multiple waves, obtaining non-parametric model-based time-course
estimates for the effective reproduction number.

Keywords: SARS-CoV-2; augmented Kalman smoother; SIRD compartmental model; effective
reproduction number; estimation of time-dependent parameters; ordinary differential equations

1. Introduction

The last five decades have witnessed a significant rise in emerging infectious diseases,
particularly zoonoses and vector-borne diseases [1,2]. To gain a comprehensive under-
standing of their dynamics, mathematical models have become an indispensable tool [3–7].
The global pandemic caused by the novel SARS-CoV-2 in 2020/21 prompted numerous
modeling efforts, ranging from early situation assessments [8–10] to evaluating the effec-
tiveness of non-pharmaceutical interventions [11–13], analyzing undetected cases [14,15]
and employing agent-based model descriptions [16–18].

Infectious disease spread is often described by using the classical susceptible–infected–
recovered (SIR) compartmental model where the model parameters are estimated from
the observed data [19–21]. These parameters, specific to each disease, depend on the
pathogen’s characteristics and its contagiousness [6,22]. To improve the description of
infection dynamics, extensions to the classical SIR structure have been proposed, including
differentiation between deceased (D) and recovered (R) individuals or the introduction of
an intermediate exposed compartment (E) for infected but not yet contagious individuals.
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While more compartments can offer detailed descriptions, overly complex models may
face challenges in parameter estimation due to limited data availability and parameter
identifiability issues [23]. Nevertheless, comprehensive SIR-like model structures have
been developed for COVID-19, covering essential features like asymptomatic infectious
individuals, undetected infections and different hospitalization states [8,24–27].

The temporal variations in detected SARS-CoV-2 infection case numbers, with multi-
ple epidemic waves observed in most countries [28,29], necessitate time-dependent model
parameters to accurately describe the dynamics [30–32]. Time dependencies in the parame-
ters account for seasonal effects [33,34] and changes in population behavior or the impact
of non-pharmaceutical interventions. Among the various model parameters of interest, the
effective reproduction numberRt holds particular significance in epidemic models. It rep-
resents the average number of secondary infections caused by one infectious individual and
varies over time, offering insight into the outbreak’s current status and indicating turning
points in infection growth. Estimating the effective reproduction number from measured
data via epidemic models with time-dependent parameters has been a key focus for inform-
ing governmental decision makers during the SARS-CoV-2 pandemic. Different approaches
have been proposed, such as specifying step functions to incorporate non-pharmaceutical
interventions [9] or assuming spline functions to capture flexible time dependencies [35].
While these approaches offer valuable insights into pandemic scenarios, they depend on
the selected function class and often require a high number of model parameters, leading
to challenges in parameter estimation. Defining functions to adequately represent more
diffuse changes, such as behavioral adjustments in the population, remains challenging.

Addressing the task of estimating time-dependent parameters in high-dimensional
ordinary differential equation (ODE) models, especially with sparse data, poses difficul-
ties [36–39]. In the field of epidemiology, established methods like Sequential Monte Carlo
(SMC) or particle Markov chain Monte Carlo (pMCMC) have been successfully applied to
estimate time-dependent transmission rates in SIR-type models [40–45]. However, these
methods often require the careful calibration of meta parameters and can be computation-
ally expensive. Alternatively, function-class-free methods, like iterative Kalman-filter-based
approaches, offer computationally simpler and cheaper alternatives [46].

In this study, we present a function-class-free approach that simultaneously estimates
the time dependencies of all the dynamical parameters in the state-space representation
of an SIRD model, including the effective reproduction number. We employ the Ensem-
ble or Augmented Kalman Smoother (AKS) method, treating dynamic parameters as
states to estimate their time dependencies [47]. Unlike recent approaches that use the
Augmented Kalman Filter for estimating the time-dependent reproduction number in
COVID-19 data [48] based on “trial and error”, our method combines the Augmented
Kalman Smoother with an Expectation-Maximization (EM) algorithm [49,50]. Notably,
we demonstrate that our approach is capable of describing real-world COVID-19 data
while providing time-dependent estimates for all the model parameters. Importantly, our
method requires no additional prior knowledge about the remaining model parameters,
total population numbers or initial values of individual compartments. We apply this
algorithm to SARS-CoV-2 incidence data in Germany from winter 2020 to summer 2021,
obtaining time-dependent estimates for all the model parameters and real-time estimates
of the effective reproduction numberRt.

The code for the AKS method and the analysis scripts used in this work are freely
available on GitHub at https://github.com/vandensich/Augmented-Kalman-Smoother
(release v1.0, published on 14 November 2023) and are published under the MIT license.

This work extends a previously published conference paper that addresses the same
scientific core content [51]. The introduction and methods sections have been rephrased,
and two substantial parts have been added. Sections 3.1–3.3 present the results of an
extensive simulation study, analyzing the method’s performance on generated data sets.
Additionally, Sections 3.5 and 5 include the results of a successful validation, where the
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estimated parameter time courses were used as inputs for an ODE model predicting the
model states.

2. Materials and Methods
2.1. SIRD Model and Reparameterization

The conventional method of characterizing the propagation of an infectious disease
within a population involves employing the SIR model [20]. This model comprises three
compartments: susceptible S, infected I and removed R. Frequently, the removed compart-
ment is further divided into recovered R and deceased D, leading to the SIRD model [52].
The time-continuous evolution of this model is described by the following system of ODEs:

Ṡ = −β · S · I
N0

İ = β · S · I
N0
− γ · I − θ · I

Ṙ = γ · I
Ḋ = θ · I .

(1)

The model contains three time-constant transition rate parameters: β, γ and θ, which
represent the infection rate, recovery rate and mortality rate, respectively. Initially, at t = 0,
the values of the four compartments are denoted as S(0) = S0, I(0) = I0, while R(0) = 0
and D(0) = 0, ensuring that the total number of individuals is given by N0 = S0 + I0.

In the early stages of an epidemic, when S0 ≈ N0, the disease-specific basic reproduction
number denoted as R0, which represents the average number of secondary cases, can be
directly calculated from the model parameters asR0 = β/(γ + θ). As the disease spreads
and more individuals become infected, the assumption S(t) ≈ N0 is no longer valid, and
the time-dependent effective reproduction number is defined in the literature as [53]

R∗t =
β

γ + θ
· S(t)

N0
(2)

which depends on the change in the susceptible individuals S(t) over time. The effective
reproduction number R∗t serves as a crucial metric for understanding the status of an
epidemic, whereR∗t > 1 indicates an increasing number of newly infected individuals and
R∗t < 1 suggests a declining trend.

In addition to intrinsic factors, external influences such as seasonal variations and behav-
ioral changes in the population significantly impact viral transmission. The time dependencies
in the infection rate β effectively capture the influence of increased hygiene standards and
non-pharmaceutical interventions, which play a critical role in epidemic development. The
manifestation of such effects can be observed through the emergence of epidemic scenar-
ios featuring multiple waves of infections, as seen in seasonal influenza and COVID-19
outbreaks. To accommodate the dynamic nature of epidemics, an unambiguous model
extension involves considering time-dependent transition rates: βt, γt and θt. By incor-
porating these temporal changes into the model, we can accurately define the effective
reproduction number within the context of evolving epidemic patterns as

Rt =
βt

γt + θt
· S(t)

N0
. (3)

In order to simplify the estimation ofRt, we substitute Equation (3) into Equation (1),
yielding a reparameterized version of the SIRD model:
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Ṡ = −Rt · (γt + θt) · I
İ = (Rt − 1) · (γt + θt) · I

Ṙ = γt · I
Ḋ = θt · I.

(4)

It is important to highlight that as a result of this transformation, the susceptible com-
partment S no longer appears on the right-hand side of Equation (4). Consequently, the
differential equation for S can be disregarded without impacting the solution of the remain-
ing system.

Parameter estimation for non-linear ODE models with time-constant parameters
typically involves the utilization of efficient numerical optimization algorithms. These
algorithms aim to minimize the difference between recorded data and model trajectories
by adjusting parameter values, often employing maximum-likelihood estimation tech-
niques [54–58]. However, in the context of changing transmission rates during an infectious
disease outbreak, the time dependency of the model parameters is unknown and needs
to be estimated from the data as well. This estimation task, known as input estimation
for ODE models, presents challenges as existing methods are often limited by their as-
sumptions of specific function classes for time-dependent model parameters, such as step
functions, splines or combinations of sustained and transient-response functions [39,59]. In
contrast, we propose a function-class-free approach based on Kalman Filter and Smoother
methods. This approach enables the estimation of dynamics for unobserved model states
and, with appropriate extensions, also facilitates the estimation of time dependencies in the
model parameters.

2.2. Estimation of Time-Dependent Parameters in Non-Linear ODE Models via the Augmented
Kalman Smoother

The Kalman Filter is an iterative algorithm commonly used to estimate the time
courses of unobserved states within a linear model by utilizing noisy observations collected
over time. Alongside the Kalman Filter, the Kalman Smoother is a two-step algorithm
involving a forward pass with the Kalman Filter followed by a backward-pass procedure
of a similar nature. In scenarios involving non-linear models, the Extended Kalman Filter
and Smoother are applied to linearize such models incrementally, enabling analysis. For
the examination of time-varying parameters in non-linear models, the Augmented Kalman
Smoother (AKS) serves as a notable approach. The AKS combines the Extended Kalman
Smoother with the capability to consider time-dependent parameters.

2.2.1. State-Space Model

The Kalman Filter and its extensions operate in the time-discrete state-space represen-
tation of a particular model. It is given by the general form

xk+1 = b(xk) + εk

yk = H · xk + ηk ,
(5)

for discrete time points k of the n-dimensional process state vector xk and the d-dimensional
vector of observables yk, where n > d. The transition of the state vector x, from time point
k to time point k + 1, is determined by applying the transition function b. This process
incorporates additive Gaussian noise, εk ∼ N (0, Q), which follows a normal distribution
with a mean of zero and covariance matrix Q, to account for process noise. Since not all
states are directly observable, the observation matrix H establishes the relationship between
the state vector x and the observable vector y. Similarly, the observations yk are subject
to additive Gaussian noise, ηk ∼ N (0, M), with a covariance matrix M, representing the
measurement noise.
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The structure of a given ODE model, represented as ẋ = f (x, p), where x denotes
the states and p represents m parameters, can be transformed into its discrete state-space
formulation. In this formulation, the solutions of the ODE correspond to the states x in the
state space and the right-hand side f of the ODE is translated into time-discrete update
rules, which are represented by the transition function b. In addition, the observation
matrix H needs to be specified in the state-space formulation, defining the relationship
between the data vector y and the corresponding states in the state vector x.

2.2.2. Augmented Kalman Smoother

To estimate the unobserved process states in the state-space model represented by
Equation (5), particularly for non-linear models, the Extended Kalman Smoother (EKS) is
employed [60]. The EKS assumes time-constant parameters and necessitates input values
for all model parameters.

For the estimation of the time-dependent parameters, we introduce an extension of
the Extended Kalman Filter and Smoother algorithms, which we refer to as the Augmented
Kalman Smoother (AKS), following the principles of the previously published Augmented
Kalman Filter [61,62]. The AKS formulation closely resembles that of the EKS, but with
a key difference: it introduces additional process states for each time-dependent model
parameter. Consequently, the AKS only requires appropriate initial values for those states
and parameters that vary over time.

As a result of this enhancement, the AKS provides estimates not only for the time
courses of unobserved process states but also for the time courses of the time-dependent
model parameters. Furthermore, the AKS method simultaneously estimates the covariance
matrices P of the state-space vector x of the analyzed process. The algorithm is initialized at
time point k = 1, where the process-state vector x0 and the process-state covariance matrix
P0 at time point k = 0 are provided as inputs for the iterations.

The first step of the algorithm is the so-called prediction step

xk|k−1 = b(xk−1|k−1) (6)

Pk|k−1 = Fk · Pk−1|k−1 · FT
k + Q. (7)

Here, xk|k−1 and Pk|k−1 represent the predicted state vector and covariance matrix at time
k, respectively, based on the k− 1 previous data points. The initial predicted state vector
x1|0 is computed by applying the transition function b to the state vector x0. During the
step-wise linearization process, the Jacobian of b at the point xk−1|k−1 is calculated as

Fk =
∂b
∂x

∣∣∣∣
xk−1|k−1

. (8)

The second step of the algorithm is the update step, where the predicted state vector and
covariance matrix are updated by using the noisy measurement yk:

Kk = Pk|k−1 · HT
k ·
(

Hk · Pk|k−1 · HT
k + M

)−1
(9)

xk|k = xk|k−1 + Kk ·
(

yk − Hk · xk|k−1

)
(10)

Pk|k = Pk|k−1 − Kk · Hk · Pk|k−1 (11)

The Kalman gain, denoted as Kk, is obtained via Equation (9), utilizing the measurement
covariance matrix M and the predicted covariance matrix Pk|k−1 of the process. It represents
the relative weight between the noisy measurements and the model predictions, where a
larger Kalman gain implies that more emphasis is placed on the measurements for the next
prediction step. This effectively balances the uncertainties of the model predictions and the
measurement uncertainties, enabling adaptive updates. The predictions are subsequently
updated according to Equations (10) and (11), completing one iteration of the algorithm.
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The updated state vector xk|k and the updated covariance matrix Pk|k are then used as
inputs for the following prediction step. This iterative process is repeated until all the
observed time points have been considered.

The filter, defined by Equations (6)–(11), performs forward estimation of the state-
space vector x and its covariance matrix P. A limitation of this filtering method is that the
estimate xk|k is only based on the k− 1 previous data points, resulting in estimates at the
beginning of the time series being less informed than those at the end. Furthermore, the
estimates of the filter always lag one step behind the data. To address this issue, the filter is
commonly combined with a smoother, resulting in a Rauch–Tung–Striebel Smoother [63].
The smoother runs backward from k = N − 1 to k = 0, initialized with the last updated
estimates of the filter xN|N and PN|N . It leverages the noisy measurements yk indirectly by
comparing the estimates and predictions generated by the filter. This process generates
smoothed estimates at each time point k, incorporating all the available data:

Bk = Pk|k · FT
k · P

−1
k+1|k (12)

xk|N = xk|k + Bk ·
(

xk+1|N − xk+1|k

)
(13)

Pk|N = Pk|k + Bk ·
(

Pk+1|N − Pk+1|k

)
· BT

k , (14)

and thereby improving the accuracy of the estimates and mitigating the lagging issue of
the filter. Here, Bk is the smoother gain that is similar in function to the Kalman gain Kk in
Equation (9). As a final result, the AKS algorithm yields the state covariance matrices Pk|N
and the smoothed estimates for the state vector xk|N that represents the trajectories of the
model states as well as the time courses of the model parameters.

2.2.3. Expectation-Maximization Algorithm for AKS Initial Parameters

To ensure the effective operation of a Kalman Smoother algorithm, appropriate initial
values for x0, P0, Q and M need to be provided. To achieve optimal starting conditions,
an Expectation-Maximization (EM) algorithm can be employed. Its expectation step (E-
step) consists of the AKS algorithms. Using the smoothed estimates xk|N and Pk|N , a
maximum-likelihood estimation is carried out for the covariance matrices Q and M. This
involves determining update equations for Q and M by maximizing the following target
function [64] with respect to these matrices:

L =− 1
2

ln|P0| −
1
2

Tr
[

P−1
0 P0|N

]
− N

2
ln|Q| − 1

2
Tr

[
Q−1

N

∑
k=1

Σk

]

− N
2

ln|M| − 1
2

Tr

[
M−1

N

∑
k=1

Ωk

]
where Σk =Pk|N + (xk|N − b(xk−1|N)) · (xk|N − b(xk−1|N))

T

+ Fk · Pk−1|N · FT
k − Pk−1,k|N · FT

k − Fk · PT
k−1,k|N

Ωk =(yk − G · xk|N) · (yk − G · xk|N)
T + G · Pk|N · GT

(15)

Analytically, it can be shown that the maximum is reached for

Qnew =
1
N

N

∑
k=1

Σk and Mnew =
1
N

N

∑
k=1

Ωk , (16)

which then serve as the input for the next EM iteration [64]. Furthermore, the values for
x0|N and P0|N obtained via the AKS from the previous iteration are used as the initial values
x0 and P0 for the next iteration, which corresponds to the maximization step (M-step) of
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the EM algorithm. These iterative steps are repeated until a chosen convergence criterion
reaches a certain level α:∣∣∣∣(∑

i
Qi + ∑

i
Mi + ∑

i
x0,i + ∑

i
P0,i

)
−
(

∑
i

Qnew,i + ∑
i

Mnew,i + ∑
i

x0|N,i + ∑
i

P0|N,i

)∣∣∣∣∣∣∣∣(∑
i

Qi + ∑
i

Mi + ∑
i

x0,i + ∑
i

P0,i

)∣∣∣∣ < α (17)

Here, α denotes the relative tolerance for the difference between the consecutive hyper-
parameter estimates Q, M, x0 and P0. The iteration process continues until the relative
difference between the consecutive hyperparameter estimates falls below the tolerance
level α. In the combined application of the AKS, it is necessary to provide an initial guess
for these hyperparameters to start the EM algorithm. However, the presented analyses
indicate that the choice of these initial values is not crucial for achieving high-quality final
results. A visualization of the method in the form of pseudo code is shown in Algorithm 1.

Algorithm 1 Augmented Kalman Smoother (AKS)
1: procedure AKS(Raw_data)
2: .Data processing
3: data← Raw_data
4: . Model parameters and initial values
5: G ← OBSERVATION_MATRIX()
6: x0← INITIAL_STATE_VECTOR_GUESS()
7: u0← INITIAL_STATE_COVARIANCE_GUESS()
8: P0← INITIALIZE_STATE_COVARIANCE(u0)
9: Q← INITIAL_EVOLUTION_ERROR_GUESS()

10: M← INITIAL_OBSERVATION_ERROR_GUESS()
11: .AKS initialization
12: x ← x0
13: P← P0
14: count← 0
15: ε← 100
16: .Main loop for AKS
17: while ε > 1e− 3 do
18: . Predict state-space vectors and covariance matrices
19: Pred, P_Pred← AKF_PREDICTION(x, P, Q) [Equations (6)–(8)]
20: .Filter state-space vectors and covariance matrices
21: Est, P_Est, Gain, P_lag, Jacob← AKF_UPDATE(data, G, Pred, P_Pred, M) [Equations (9)–(11)]]
22: . Smooth state-space vectors and covariance matrices
23: smooth, std, P_smooth, B_list← AKS_SMOOTHER(Est, P_Est, Gain, P_lag, Jacob) [Equations (12)–(14)]
24: .Perform M-step for parameter estimation
25: M, Q, x0, P0← M_STEP(data, Pred, P_Pred, Jacob, P_Est, P_smooth, B_list) [Equations (15) and (16)]
26: .Update AKS variables
27: x, P, count← UPDATE_AKS_VARIABLES(smooth_list, P_smooth, x0, P0, count)
28: .Check convergence criterion
29: ε← CHECK_CONVERGENCE(P, x, Q, M, x0, P0) [Equation (17)]
30: end while
31: .Return results
32: return smoothed_results
33: end procedure

2.2.4. From the Time-Continuous ODE System to Its Time-Discrete State-Space Formulation

Although we apply the presented Kalman Smoother method exclusively to epidemic
models within this paper, it is in general applicable to any partially observed non-linear
ODE systems, as is shortly outlined in the following. Let us consider the following time-
continuous dynamic ODE model:

ẋ = f (x, p) . (18)

In the time-discrete formalism, the time derivative of the state variables x is represented
by a function f that depends on both the state vector itself and the parameter vector p.
Additionally, the initial conditions of the ODE system can also be regarded as parameters
within p.
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For the time-discrete formulation, the right-hand side of the ODE, denoted as f (x, p),
is interpreted as an update equation for each discrete time step, transitioning from xk−1 to
xk. Consequently, Equation (18) can be expressed as(

xk
pk

)
=

(
xk−1
pk−1

)
+

(
f (xk−1, pk−1)

0

)
+ εk−1 . (19)

The parameters pk are considered as supplementary states in the state space and are not
updated according to the ODE model structure, as indicated by the zero term in the
equation. Instead, their time dependence solely arises from the additive noise term εk−1,
which is simultaneously estimated by the Kalman Smoother at each step. This additional
degree of freedom grants the Kalman-Smoother-based approach the ability to adapt these
parameters based on the available data. Consequently, the approach achieves a data-driven
estimation of time-dependent parameters in an ODE system without any constraints on the
parameters’ trajectory.

2.3. SIRD-AKS Method for Estimating the Effective Reproduction NumberRt

Based on the general derivation in Equation (19), the time-discrete state-space formu-
lation of the SIRD model from Equation (4) can be written as

xk =



Sk
Ik
Rk
Dk
Rk
γk
θk


= b(xk−1) + εk−1 =



Sk−1
Ik−1
Rk−1
Dk−1
Rk−1
γk−1
θk−1


+



−Rk−1 · (γk−1 + θk−1) · Ik−1
(Rk−1 − 1) · (γk−1 + θk−1) · Ik−1

γk−1 · Ik−1
θk−1 · Ik−1

0
0
0


+ εk−1 , (20)

where the first four rows are the four states of the time-continuous ODE and εk−1 corre-
sponds to the process noise, as introduced in Equation (5). To incorporate the desired time
dependence of the three SIRD model parameters, namelyRk, γk and θk, the AKS method
treats these parameters as additional states within the state-space formulation, leading to
the SIRD-AKS model. As a result, the SIRD-AKS not only provides time-course estimates
for the model states Sk, Ik, Rk and Dk, but also for the parametersRk, γk and θk.

In real-world outbreak scenarios, data on the number of currently infectious individ-
uals in state I per day are often unavailable. However, the incidence, representing the
number of newly infected cases per time period, is commonly reported and easily accessible.
In the SIRD model, these incidence numbers correspond to the flux of individuals into
the infectious state, given by vI,k = Rk · (γk + θk) · Ik, transitioning from time step k to
k + 1. Similarly, published data for the number of newly recovered vR,k = γk · Ik and newly
deceased vD,k = θk · Ik individuals form the fluxes into their respective states. Hence, the
fluxes vI,k, vR,k and vD,k serve as the observables yk for the SIRD-AKS method.

However, the observation matrix H introduced in Equation (5) only allows linear
relationships between observables and states. To address this limitation and map the data
to the appropriate variables of the state space for the SIRD-AKS method, the state-space
formulation is expanded once more by introducing three additional states corresponding
to the three fluxes, resulting in
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xk =



Sk
Ik
Rk
Dk
Rk
γk
θk

vI,k
vR,k
vD,k


= b(xk−1) + εk−1 =



Sk−1
Ik−1
Rk−1
Dk−1
Rk−1
γk−1
θk−1

0
0
0


+



−vI,k−1
vI,k−1 − vR,k−1 − vD,k−1

vR,k−1
vD,k−1

0
0
0

Rk−1 · (γk−1 + θk−1) · Ik−1
γk−1 · Ik−1
θk−1 · Ik−1


+ εk−1 (21)

and an observation matrix

H =

 1 0 0
0M7×3 0 1 0

0 0 1

 . (22)

that links the incidence data to the respective fluxes vI,k, vR,k and vD,k. The SIRD-AKS
method utilizes incidence data to estimate the state-space vector xk through the state-space
formulation defined in Equation (21). The entries of xk are interpreted as discretized time
series of the model states, time-dependent parameters and fluxes, i.e., incidence numbers.
To ensure that all the variables remain strictly positive, the entire analysis is conducted on
a logarithmic scale for xk. Employing the logarithmic scale offers advantages in terms of
numerical stability.

2.4. Incidence-Based Reproduction-Number-Calculation Method

In contrast to estimating the effective reproduction numberRt as a time-dependent
parameter by using the SIRD-AKS method, it can also be calculated directly from incidence
data based on the incidence-based method formulated in [65]. This method requires both
incidence data and information about the empirical serial interval distribution, which
represents the time period between the onset of illness in an infected case and the onset of
illness in a subsequent case.

Due to the unavailability of reliable data on the serial interval distribution during
the early stages of the SARS-CoV-2 pandemic, the German federal center for disease
control and prevention (Robert Koch Institute or RKI) chose to use the incidence-based
method from [65] and assumed a Dirac δ-distribution centered at s = 4 days for the serial
interval [66]. This assumption led to a straightforward formula for calculating the effective
reproduction numberRs

t as the ratio between the number of newly infected individuals at
time point t and the number of newly infected individuals at time point t− s:

Rs
t =

nI,t

nI,t−s
(23)

To account for fluctuations in the reported incidence data, such as weekday depen-
dencies, the method employed a moving average over τ days, resulting in a more stable
estimate denoted asRs,τ

t :

Rs,τ
t =

1
τ ∑t

i=t−τ+1 nI,i
1
τ ∑t

i=t−τ+1 nI,i−s
=

n̄τ
I,i

n̄τ
I,i−s

. (24)

The RKI reported two differentRs,τ
t values on a daily basis: (i) a sensitive 4-dayR4,4

t
value and (ii) a more-stable 7-dayR4,7

t value, using averaging windows of 4 or 7 days. The
advantage of this incidence-based method lies in its simplicity, as it does not require the
explicit formulation of a compartmental model or parameter estimation. Additionally, the
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resultingRt values are easy to interpret, even for non-experts, as they correspond to the
doubling time of newly infected individuals within s = 4 days. Consequentially, the daily
updated value of Rt calculated from this incidence-based method was used by the RKI
to inform the public as well as political decision makers about the status of the pandemic
situation and therefore had a considerable influence on the installed non-pharmaceutical
interventions [66].

However, a limitation of this method is its strong dependence on the assumption of
a δ-distributed serial interval at s = 4 days, which can impact the interpretation of the
calculated Rt values. In contrast, the SIRD-AKS method presented earlier does not rely
on such assumptions, providing a more flexible and robust approach for estimating the
effective reproduction number and other parameters in the SIRD model.

2.5. Simulation Setting

To show the performance of the presented AKS method for the estimation of time-
dependent parameters in nonlinear ODE models, we first applied the algorithm to simu-
lated data sets from various scenarios. In each simulation scenario, a different combination
of model structure and values of the time-constant parameters or time courses of the time-
dependent parameters were chosen. The ODE system was then solved for the given initial
conditions by using the R package deSolve [67]. In order to generate realistic incidence data
for the respective quantities, the fluxes vI , vR and vD of the ODE system were discretized,
and relative Gaussian noise with a zero mean and given standard deviation was added. In
the initial examples, different parameter time courses and noise levels were chosen in an
SIRD model for data generation, followed by scenarios that consider data sets generated by
non-SIRD models. Ultimately, the method was applied to officially reported incidence data
for SARS-CoV-2 in Germany.

Note that all the noisy incidence data sets were analyzed by the presented SIRD-AKS
method, i.e., based on the reparameterized SIRD model from Equation (21), regardless of
the chosen model structure for data generation. Further, no information about the true
values, time dependency or function class of the model parameters were provided to the
SIRD-AKS algorithm, but only the respective incidence data sets. Then, the resulting
estimates of the SIRD-AKS algorithm for model states, fluxes and parameter time courses
were compared to the respective true quantities derived from the solutions of the data-
generating ODE models. In particular, the accordance of the estimated time-dependent
effective reproduction numberRt and its true time course was analyzed.

3. Results
3.1. AKS Performance for Multiple Time-Varying SIRD Model Parameters

As a first simulation setting, the classical SIRD model from Equation (1) with the
initial values S0 = 108, I0 = 1 was used for data generation. Furthermore, three different
parameter settings for the three model parameters βt, θt and γt were simulated.

In the first parameter setting shown in Figure 1A, time-varying parameters were
chosen as βt = 0.05 + 0.04 · sin (t/50) and θt = 0.003 + 0.0015 · sin (t/33), while γ = 0.02
was chosen to be constant over time. The resulting dynamics forRt reflect the combination
of the sinusoidal input βt and the decrease in the susceptible S, c.f. Equation (3). To
generate data sets, the fluxes vI = βt

SI
N0

, vD = θt I and vR = γt I between the model’s states
were evaluated at 375 equidistant time points, mimicking approximately one year of daily
observations. Gaussian noise with a relative error of 5% was added to the three time series
of observables, shown as green dots in Figure 1.
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Figure 1. Estimation of multiple time-dependent parameters. (A): The classical SIRD model was
simulated with a time-constant parameter γ and time-dependent parameters βt and θt. From these
parameters, the effective reproduction numberRt was calculated via Equation (3). True parameter
time courses and states are depicted as red solid lines and red dashed lines, respectively. Therefore,
data were simulated at 375 equidistant time points for the observed fluxes vD, vI and vR, as indicated
by green dots. The SIRD-AKS is based on the reparameterized SIRD model and thus does not yield
estimates for βt or S but instead directly forRt. The estimates of the SIRD-AKS are shown as black
solid lines with gray bands for their uncertainties. Results are shown on logarithmic scale. The
results of the the SIRD-AKS algorithm are able to describe the data and are in good agreement with
the true parameter time courses, both for the time-constant and time-dependent parameters. Note
that the SIRD-AKS estimates for the states overlap with the true time courses of the model states.
(B,C): In different parameter settings, simulation was performed with time-constant parameters γ

and θ, whereas βt was either chosen as a stochastic process (B) or as a step function (C), respectively.
The corresponding values forRt were computed by using Equation (3). In both cases, the SIRD-AKS
results retrieve the true parameter time courses adequately.
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Next, the noisy data were provided to the SIRD-AKS in order to estimate the model
states and time-dependent parameters. For this, the EM algorithm part of the SIRD-
AKS was initialized with I0 = 100, R0 = 0.1, D0 = 0.1, vI,0 = 1, vR,0 = 0.1, vD,0 = 0.1,
γ0 = log(0.1), θ0 = log(0.01) andRt,0 = log(6), and the convergence threshold was chosen
to be α = 0.001. The estimation results are shown as black lines in Figure 1A, where the gray
error bands of the estimates correspond to the estimated covariance matrices Pk|k. Note that
the time-dependent parameters are shown on a logarithmic scale throughout this work.
The SIRD-AKS is able to simultaneously capture the dynamics of the simulated values
for parameters, states and observations. In particular, the time-dependent parameters
γt, Rt and θt were obtained without providing any information on their function class
or dynamical behavior. It can be observed that the gray error bands for the estimated
parameters in Figure 1 are larger in the beginning of the time series, where also the
parameter estimates slightly deviate from the true values due to missing dynamics in the
data. In contrast, with increasing dynamic activity in the data, the error bands become
smaller and the estimates coincide with the true values.

To analyze whether the SIRD-AKS can also handle different time dependencies of
the model parameters, for example, rapidly changing parameters including discontin-
uous functions over time, two further parameter settings were addressed, as shown in
Figure 1B,C. For this, the SIRD model was evaluated with time-constant parameters γt
and θt and a time-varying βt. In parameter setting II, the time course of βt was chosen
as an autoregressive process of order p = 1 (AR[1]) with an added exponential decay.
The autoregressive process is given by xi = 0.0022 + 0.95 xi−1 + wi with the noise term
wi ∼ N (0, 0.004). Furthermore, a step function with three constant levels was utilized
in parameter setting III. Data were simulated (not shown) and the SIRD-AKS algorithm
was applied analogously to the previous setting I with sinusoidal βt. For all parameter
settings I, II and III, the SIRD-AKS results adequately capture the dynamics of the three
time-dependent parameters, demonstrating a broad applicability of the method to different
function classes of time-dependent-parameter time courses.

3.2. Performance for High Noise Levels

To investigate how robust the SIRD-AKS method performs with respect to possibly
high observation noise, we again considered parameter setting II with the stochastic process
forRt. In parallel, four data sets were simulated with different noise levels, as shown in
Figure 2A–D. The parameter time courses and initial values for the states were chosen to
be the same for all these scenarios. This is reflected by the true value of parameterRt that
shows the same trajectory in all four scenarios, represented by the red line in Figure 2. In
contrast, the simulated data for the observed fluxes expectedly show higher variations for
higher noise levels, shown in green in Figure 2.

The SIRD-AKS method was applied to all four scenarios, and its estimates are shown
as black lines in Figure 2. Firstly, it can be seen that the observations are adequately
described by the SIRD-AKS, which follows the data points also when they rapidly vary
over time, as in Figure 2D. Secondly, the correct trajectory of the time-dependent parameter
Rt as well as the correct levels of the time-constant parameters γ and θ were obtained in all
four scenarios. However, the higher the noise level, the more it becomes evident that the
SIRD-AKS estimates fluctuate around the true values of the parameters, while the average
form of the parameter time course is still in accordance with the time course for the true
value ofRt. Taken together, these results show that the SIRD-AKS results for the estimates
of the time-dependent parameters remain correct, even for relatively high noise levels in
the data.
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Figure 2. Performance of SIRD-AKS is robust towards high noise levels in the data. (A–D): The
SIRD model was simulated with a time-varying βt and time-constant γt and θt, as shown in red. The
parameters were chosen as in parameter setting II in Figure 1. The data were simulated by using
increasing noise levels from scenario (A–D), as shown as green dots for the observed fluxes vD, vI and
vR. The SIRD-AKS estimates are shown as black lines with gray error bands for their uncertainties
and are compared to the corresponding true time courses. Again, instead of parameter βt from the
data-generating SIRD model,Rt was calculated from the true parameter time courses and compared
to the SIRD-AKS result. While the precision of the SIRD-AKS estimates decreases with higher noise
levels, the average dynamics of the parameter time courses are satisfactorily met.

3.3. Influence of Potential Model Misspecifications

Up to this point, we have only shown applications of the SIRD-AKS method to
simulated data from the same SIRD model structure. In more realistic applications, however,
the true model structure is not known, or as in all real-world scenarios, the chosen model
structure is only an appropriate simplification of the real underlying biological process.
Therefore, we next investigated the performance of the SIRD-AKS method in light of model
misspecifications. To this aim, data were generated from non-SIRD model structures but
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were analyzed by the AKS method by using the inappropriate SIRD model structure. We
tried to reconstruct the time courses of the effective reproduction number in two examples
of such intentionally misspecified model structures for the SIRD-AKS method.

First, the so-called SEIRD model was considered for data generation. It constitutes an
extension of the SIRD model augmented by a model state of exposed (E) corresponding to
individuals that are infected but not yet infectious. This extension is commonly considered
when the disease progression underlies an incubation period. The ODE system of the
SEIRD model reads

Ṡ = −β · S · I
N0

Ė = β · S · I
N0
− δ · E

İ = δ · E− γ · I − θ · I
Ṙ = γ · I
Ḋ = θ · I ,

(25)

where the reciprocal of the additional parameter δ−1 is called the latency period. Note
that the limiting case of the SEIRD model for δ−1 → 0 is the SIRD model, while for higher
values of δ−1, the difference between the two models increases and distinct dynamics are
expected. To illustrate this transition, four different analyses with latency periods varying
from 4 to 21 days were performed.

The SEIRD model Equation (25) was simulated for data generation with time-dependent
parameters βt and θt as well as the time-constant parameter γt, following the previous
parameter setting I. Again, the true values for the reproduction numberRt were calculated
from the model parameters for the SEIRD model [68]. To mimic a realistic application of the
presented method in an epidemic scenario, where the true underlying process is not fully
known, data from the SEIRD model were analyzed by the SIRD-AKS, and only the daily
numbers of the newly infected vI , newly recovered vR and newly dead vD were provided
as observations to the algorithm. In consequence, the SIRD-AKS is able to estimate the
SIRD model states and parameters but cannot infer the transition rate δ or the exposed
state E.

The resulting time courses of the SIRD-AKS estimates are shown in the upper part of
Figure 3 with increasing values for the latency period δ−1 from panel A to D. Comparing
the four simulation scenarios, the different latency periods are reflected both in different
dynamics of the observables and in the time courses of the reproduction numberRt. As
expected, the peak in the observed infections appears later for higher latency periods
corresponding to longer times that individuals remain in the exposed state E.

For all scenarios, the SIRD-AKS was applied to the SEIRD data sets, as shown in
black in Figure 3A–D. It can be seen that the time courses of the parameters γt and θt are
throughout accurately obtained. Interestingly, the estimates for the effective reproduction
numberRt are also very close to the true values for the low-to-medium latency periods. In
contrast, for higher latency periods, the estimates forRt are slightly shifted to later time
points and are also biased towards the characteristic value ofRt = 1. In total, this shows
that the AKS method is able to cope with moderate deviations in the model structure, while
more extreme model misspecifications, e.g., latency periods of three weeks, can noticeably
influence the result of the estimated time-dependent parameters. Especially, for COVID-19,
such a model misspecification does not negatively impact the SIRD-AKS estimation results
since a latency period of 5–6 days was typically reported [69].
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Figure 3. AKS shows robustness to model misspecifications. (A–D): The SEIRD model from
Equation (25) was simulated with time-varying parameters βt and θt and for different latency periods
increasing from δ−1 = 4d (A) to δ−1 = 21d (D). Calculated time courses forRt depend on the latency
period parameter and thus changes in the four scenarios. Simulated data were generated from the
SEIRD model fluxes with 5 % relative error. The data were analyzed by the SIRD-AKS algorithm,
which assumes the reparameterized SIRD model as truth and, in particular, does not contain an
exposed state E. Despite the model misspecification between the data-generating process and the
analyzing model, the SIRD-AKS estimates for the time-dependent parameters are accurately met
for shorter latency periods in scenario (A,B). For larger deviations from the assumed SIRD model
structure, the AKS results are slightly biased towards values of one (C,D), while the overall dynamics
are retrieved sufficiently.

In order to formulate a model-misspecification problem that is closer to a real-world
scenario, we additionally utilized a larger and more complicated model structure that
covers a multitude of additional features. For this, we employed the so-called SECIR model
that consists of sixteen model states and was developed to obtain a detailed description
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of the SARS-CoV-2 epidemic in Germany in 2020, including, for example, several infected
carrier states as well as diverse hospitalization stages [27]. This model was used for data
generation by using parameters values within the allowed parameter ranges as in the
original publication. The only deviation is that we replaced the originally estimated time
course of the transmission parameter R1 by a simple five-step function. This parameter
mainly influences the time course of the true value of the effective reproduction number
Rt within the SECIR model, which was calculated according to the respective equation in
the original publication and is shown as a reference in red in Figure 4. Within the chosen
parameter set for the simulation, the resulting trueRt time course covers a broad range of
values, in particular below and above the characteristic value of Rt = 1. The generated
data sets for the newly infected vI , newly recovered vR and newly dead vD were again
provided as observations of the SIRD-AKS analysis. The estimated time course of the
effective reproduction numberRt from the SIRD-AKS with SECIR data is shown as a black
line in Figure 4. Except for the level of the first plateau until t = 80, theRt value from the
SIRD-AKS method shows a similar shape as the true Rt time course and yields almost
correct levels on the other plateaus. However, the estimated Rt time course is slightly
biased toRt = 1 after t = 80 days.

For a comparison of the different methods, Figure 4 also shows the results for the repro-
duction numberRs,τ

t calculated by using the incidence-based method from Equation (24)
for different values of the fixed serial interval time s = 2, ..., 10 days in unit steps and with
averaging windows of τ = 4 days. It can be clearly seen that the choice of the fixed serial
interval time heavily influences the resulting levels of the reproduction number. The Robert
Koch Institute (RKI) as the German center for disease control provided officially issued
reproduction number values during the SARS-CoV-2 pandemic for Germany based on this
method with a chosen fixed serial interval value of s = 4 days. The accordingly calculated
R4,4

t value for the SECIR data set is highlighted in blue in Figure 4. Comparing the blue
and red line, it can be concluded that at least for the simulations of the SECIR model
and the chosen parameterization, a fixed serial interval of s = 4 days is not an adequate
choice. While the RKI-issued value roughly covers the general form of the time course, it is
noticeably biased towards the characteristic value ofRt = 1. As a consequence, the rate of
increase or decay in newly infected individuals within an ongoing disease outbreak would
be definitely underestimated.

An appropriate choice of the serial-interval distribution or at least an optimal choice
of the fixed serial interval time s would solve this issue, as can be seen from the gray lines
in Figure 4. However, it should be noted that the selection of the optimal value for s is
difficult in real-world applications and requires additional data or assumptions. That is,
the simplicity of the calculation and interpretation by using the incidence-based method
comes at the price of required assumptions for the serial interval times.

Some deviations from the true Rt value also appear in the results of the SIRD-AKS
method. However, we surmise that these originate from the misspecified model structure.
We argue that a clear advantage of the SIRD-AKS method is that it does not rely on
additional hyperparameters or distributional assumptions, such as the incidence-based
method does on the serial interval time. This renders the SIRD-AKS method to be a
de facto non-parametric approach for the estimation of the reproduction number and
model parameters in general. As shown in this example, the SIRD-AKS method also yields
reasonable results when the internal state-space model does not meet the model structure of
the data-generating process. It therefore qualifies for the application to real-world data sets,
where the true underlying process is masked and thus the optimal choice of an appropriate
fixed serial interval time for the incidence-based method becomes even more difficult.
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t , as shown by the gray lines for different
values of s = 2, ..., 10.

3.4. Application to SARS-CoV-2 Data from Germany

After demonstrating the performance of the SIRD-AKS method for multiple-parameter
time courses and model misspecifications in simulated data sets, the method was applied
to COVID-19 data from Germany between January 2020 and August 2021. The data were
taken from the COVID-19 Data Repository maintained by the Center for Systems Science
and Engineering (CSSE) at Johns Hopkins University [70] and is displayed in Figure 5A as
green dots. Data pre-processing was performed with a moving average over seven days in
order to reduce weekday effects and reporting delays in the raw data.

Figure 5A shows the analyzed data and estimated time courses of the observed fluxes
for the newly infected vI , newly recovered vR and newly dead vD. The estimated time
courses for the recovery rate γt and death rate θt are shown in Figure 5B. The fluctuations
in the death rate are in line with the time periods when more old people had been reported
as being infected, i.e., from April to June and from November to February 2020 [71]. This
also agrees with previous studies showing that the mortality of COVID-19 is heavily linked
to the patient’s age [72,73].

The estimated time-dependent reproduction rate Rt from the SIRD-AKS method is
shown as a black line in Figure 5C. For comparison, two additionalRt values are provided,
which are both based on the previously discussed incidence-based method and assume
a fixed serial interval of s = 4 days and an averaging window of τ = 7 days. However,
they use different data sources. TheRt value shown as a blue line is calculated from the
same data from [70] that were also analyzed by using the SIRD-AKS method. The other
shown value in magenta is the officially issued and so-called seven-dayR4,7

t value from the
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RKI [66]. The difference is that it does not use the raw data from the CSSE repository but
instead applies an additional so-called Nowcasting pre-processing method that copes with
the redistribution of the case numbers for the elimination of reporting delays [74]. Both
incidence-based methods show a similar time course forRt but with peaks that seem to be
shifted by a couple of days, presumably because of the case-number redistribution.
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Figure 5. Application of the SIRD-AKS to SARS-CoV-2 data of Germany from the CSSE repository.
(A): Incidence data taken from [70] for March 2020 until August 2021 are shown in green. SIRD-AKS
results for the fluxes of newly infected, newly recovered and newly deceased is shown as black line.
(B): After an initial rise, the SIRD-AKS estimated for the recovery rate γt stays nearly constant, while
the estimated death rate θt shows a dynamic with two peaks at around May–June 2020 and February–
March 2021. These time points coincide with periods of high hospitalization states and where mostly
older people were infected [71]. (C): The SIRD-AKS estimates (black) for the reproduction number
are displayed in comparison to the seven-day reproduction number based on Nowcasting data and
published by the RKI in magenta [66] as well as the calculatedRs,τ

t incidence-based method in blue
that is based on CSSE data. Both incidence-based methods assume a fixed serial time of s = 4 days
and averaging window of τ = 7 days. Time points of essential control measures are indicated by
colored vertical lines [75].

When compared to the estimate from the SIRD-AKS method, both incidence-based
values again lie closer to Rt = 1. The time course from the SIRD-AKS shows a larger
variety of peak heights in both directions and more deviations from Rt = 1 on longer
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time scales. This becomes even more prominent when the changes in the reproduction
numbers are compared to the time points of new non-pharmaceutical interventions and
control measures, as indicated by vertical lines. While the incidence-based Rt values
likewise decrease drastically at the start of the first nation-wide lockdown in March 2020,
the end of the first lockdown is only visible as a trend change in the SIRD-AKS reproduction
number, but not in the incidence-based approaches. A similar case occurs for the so-called
lockdown light in November 2020 and second nation-wide lockdown in December 2020 [75].
Both incidence-based measures barely show any effect on the reproduction number, while
the SIRD-AKS estimate shows a fluctuating yet undoubtedly decreasing trend until the
approximate time point where the SARS-CoV-2 Alpha variant spread in Germany.

3.5. Validation of Parameter Time-Course Estimates in an ODE Model

The presented SIRD-AKS method is based on the transition of the model structure
from the time-continuous ODE system to the time-discrete and recursive formulation in the
state space. Further, estimates for the time-dependent parameters are in fact augmented
states in the state space, interpreted as parameter time courses. We asked whether these
parameter time courses produce coherent dynamics when being incorporated into the
corresponding ODE system as input functions.

To perform this consistency check, we plugged in the estimated time courses for the
parameters Rt, γt and θt from Figure 5B,C into the ODEs of the reparameterized SIRD
model in Equation (21). To choose appropriate initial values for the numerical solution
of this ODE system, the values of the SIRD-AKS estimates at time point k = 62, i.e., 24
March 2020, were chosen. This time point corresponds to the first time point where the
estimated uncertainties of the time-dependent parameters become adequately small. It
also coincides with the starting point of the large initial decrease in the time course ofRt,
c.f. Figure 5C. The results of the numerical simulation of the time-continuous ODE system
with time-dependent parameters are shown in Figure 6 as a black line. It is remarkable that
all three trajectories are very well in agreement with the flux data for vI , vR and vD that
went into the previous AKS analysis, shown as green dots in Figure 6.
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Figure 6. ODE solutions for the SIRD model with estimated time-dependent parameters. The fluxes
for vI , vR and vD are calculated from the numerically solved ODEs of the reparameterized SIRD
model from Equation (4) and are compared to Germany data from Figure 5A, as depicted by green
dots. The black lines indicate the ODE solutions when the three estimated time courses for γt, θt and
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Rr from Figure 5B,C are utilized as time-dependent parameters in the SIRD ODE system. Identical
ODE simulations were performed and are shown as blue line, where theRt time course is taken from
the incidence-based method with fixed s = 4 and τ = 7 (c.f. Figure 5C blue line). While the SIRS-AKS
estimates yield almost perfect ODE trajectories, the incidence-based method underestimates the
dynamics of the pandemic in an SIRD model.

This confirms that the parameter time courses estimated from the incidence data by
the AKS method are indeed able to reassemble the correct dynamics in the ODE solutions.
The presented AKS method thus qualifies as a potential input-estimation approach for ODE
models in general.

For comparison, the same ODE simulation was performed by utilizing the alternative
Rt time course calculated from the incidence-based method with a fixed serial-interval
time of s = 4 days and an averaging interval of τ = 7 days, as presented above in Figure 5C
as a blue line. Since this methods lacks estimates for parameters γt and θt as required to
solve the ODE system, time-course estimates for γt and θt from the SIRD-AKS method
were chosen. The resulting incidence-based ODE trajectories are displayed as blue lines in
Figure 6.

In contrast to the ODE trajectories with SIRD-AKS estimates, the ODE solutions with
incidence-basedRt do not agree well with the data. Although the overall dynamic activity
of the data is approximately covered, it does not capture certain details of the data series
well, e.g., the partial drop in the infected flux during the second wave in February 2021.
Furthermore, the predicted amplitudes of newly infected individuals are not adequately
met and thus the overall pandemic situation would be underestimated.

It should be noted that the lack of estimates for γt and θt from the incidence-
based method renders some difficulty for a fair method comparison within this ODE-
validation approach.

In conclusion, the incidence-based method does not provide an estimate for the
reproduction number Rt that can be used as an input function in the addressed ODE
model. Instead, for the shown real-word application, the incidence-based method Rt
generates an ODE solution that differs from the observations in orders of magnitude.
In contrast, the SIRD-AKS method reassembles an adequate ODE solution, even in the
potentially over-simplified SIRD model.

4. Discussion

The general task of estimating time-dependent parameters in ODE models, also
referred to as input-function estimation, is known to be conceptually difficult. Either a
particular function class, i.e., a parameterization of a general input function, needs to be
provided, or the initial value problem of solving the ODE needs to be transferred into a
boundary value problem for which no good optimizers are available [36].

To remedy this, we present in this work a non-parametric model-based estimation for
all time-dependent parameters in epidemiological ODE models by combining an Expectation-
Maximization algorithm with the Augmented Kalman Smoother (AKS) algorithm.

The approach is able to estimate the time dependencies in multiple model parameters
and independently from the particular input function class. While other approaches exist
that also take advantage of Kalman filter methods for the estimation of a single time
dependency in compartmental models [76], this approach is more general and enables the
estimation of all time-dependent model parameters simultaneously.

We showed the performance of our AKS method by using an SIRD core model struc-
ture (SIRD-AKS) in diverse simulation settings. The SIRD-AKS performs well even with
high noise levels and under different degrees of model misspecification. Thus, the method
also yields meaningful estimates in situations where the details of the data-generating
process remain unknown, meaning that the assumed AKS model structure does not per-
fectly cover the true process structure. In particular, the presented approach only utilizes
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incidence data of infected, recovered and deceased individuals and, as a major advantage
compared to existing methods [27,66], does not require any further prior knowledge on the
analyzed disease.

When applying the SIRD-AKS method to COVID-19 data from Germany, it can be
observed that all the parameter time-course estimates are plausible, and in particular,
the effective reproduction number Rt estimate displays the impact of all relevant non-
pharmaceutical interventions and applied control measures during the SARS-CoV-2 pan-
demic in Germany. Further, the simultaneously estimated death rate θt matches well with
the time pattern of how many elderly people were infected by the disease.

We further compared our SIRD-AKS method to an alternative approach for the estima-
tion ofRt, which considerably depends on the choice for the value of the assumed Dirac
δ-distributed serial interval.

In contrast, the SIRD-AKS method is independent of the distribution of the serial
interval, and therefore, it does not require any information on the assumed serial interval
time as a hyperparameter. Instead, our approach internally copes with the serial interval
through the ODE model and is not affected by any inadequate assumptions on the serial-
interval distribution. Even if the serial-interval distribution is also subject to change over
time, as, for example, reported in [77], this is compensated by the general time dependency
e.g., of the transmission parameter βt in the SIRD model.

Compared to the incidence-based method, the SIRD-AKS estimate for the effective
reproduction number Rt shows the pandemic situation more clearly as it is less biased
towardsRt = 1. Furthermore, we checked the appropriateness of the estimated parameter
time courses obtained by using the SIRD-AKS method by plugging them back into the
original ODE model. While the incidence-based estimates yielded case numbers that were
orders of magnitude below the original data, we were able to correctly reassemble the case
numbers by the ODE model from the SIRD-AKS estimates.

5. Conclusions

In summary, the SIRD-AKS method is a non-parametric model-based estimation ap-
proach for the reproduction number and other time-dependent model parameters that
only requires incidence data of newly infected, recovered and deceased individuals. If one
would want to analyze different epidemiological data sets independently of COVID-19 or
any other diseases with a short-enough incubation time (δ−1 < 14d, see Section 3.3), the
method would only need to be provided the respective data sets, and no changes to the
method would be required. Since the presented approach is not restricted to epidemiolog-
ical ODE models by construction, it might also be used for input-function estimation in
non-linear ODE models in general.
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