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Abstract: In the present work, an innovative two-phase method is presented for parameter tuning
in radial basis function artificial neural networks. These kinds of machine learning models find
application in many scientific fields in classification problems or in function regression. In the first
phase, a technique based on particle swarm optimization is performed to locate a promising interval
of values for the network parameters. Particle swarm optimization was used as it is a highly reliable
method for global optimization problems, and in addition, it is one of the fastest and most-flexible
techniques of its class. In the second phase, the network was trained within the optimal interval using
a global optimization technique such as a genetic algorithm. Furthermore, in order to speed up the
training of the network and due to the use of a two-stage method, parallel programming techniques
were utilized. The new method was applied to a number of famous classification and regression
datasets, and the results were more than promising.

Keywords: neural networks; particle swarm optimization; genetic algorithms

1. Introduction

Regression and data classification are two major categories of problems that are solved
with machine learning techniques. Such problems appear regularly in scientific fields such
as physics [1,2], chemistry [3,4], economics [5,6], medicine [7,8], etc. A programming tool
that is used quite often to handle such problems is the Radial Basis Function (RBF) artificial
neural network [9]. An RBF network can be defined as the following function:

y
(−→x ) = k

∑
i=1

wiφ
(∥∥−→x −−→ci

∥∥) (1)

The following applies to the above equation:

1. The vector−→x stands for the input pattern to the Equation (1). The number of elements
in this vector is denoted as d.

2. The vectors −→ci , i = 1, .., k are denoted as the center vectors.
3. The vector −→w is considered as the output weight of the RBF network.
4. The value y

(−→x ) represents the predicted value of the network for the pattern −→x .

Typically, the Gaussian function can bed used as the function φ(x), and it is defined as:

φ(x) = exp

(
− (x− c)2

σ2

)
(2)

A plot of the previous function with c = 0, σ = 1 is displayed in Figure 1. As can be
observed, the value of the function decreases as we move away from the center. An ex-
tensive overview of RBF networks was given in the work of Ghosh and Nag [10]. RBF
networks are used as approximation tools in various cases, such as solutions to differential
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equations [11,12], digital communications [13,14], physics [15,16], chemistry [17,18], eco-
nomics [19–21], network security [22,23], etc. RBF networks were thoroughly discussed
in [24], and they have been parallelized in a variety of research papers [25,26]. This model
has been extended by various researchers in tasks such as creating new initialization tech-
niques for the network parameters, [27–29], pruning techniques [30–32], the construction
of RBF networks [33–35] etc.
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Figure 1. A typical plot for the Gaussian function, for c = 0 and σ = 1.

In this work, a hybrid technique is proposed for the optimal calculation of the pa-
rameters of an RBF network. This technique consists of two phases. During the first
phase, information was collected from the training data of the neural network and an
attempt was made to identify a small interval of values for the neural network parameters.
To identify this interval, an optimization method was used, which gradually creates the
optimal value interval, which was estimated to give the lowest value for the training error
of the network. To locate the optimal interval, the Particle Swarm Optimization (PSO)
technique was used [36]. The PSO method was chosen for the first phase because it is
fast and flexible enough for optimization problems, does not require a large number of
parameters to be input by the user, and has been successfully used in a variety of problems
such as flow shop scheduling [37], developing charging strategies for electric vehicles [38],
emotion recognition [39], robot trajectory planning [40], etc. The detection of the value
interval was performed in order to then make the minimization of the network error faster
and more efficient in the second phase of the optimization method. In the second phase,
the parameters of the neural network were optimized within the optimal value interval of
the first phase. The optimization can be performed by any global optimization method [41].
In this work, genetic algorithms [42–44] were chosen for the second phase. The main
advantages of genetic algorithms are tolerance to errors, easy implementation in parallel,
efficient exploration of the search space, etc.

Recently, much work has been appeared to tune the parameters of machine learning
models, such as the work of Agarwal and Bhanot [45] for the adaptation of the RBF
parameters, the incorporation of an improved ABC algorithm to adapt the parameters of
RBF networks [46], the usage of the Firefly algorithm for optimization [47], along with
machine learning models for cervical cancer diagnosis [48], the adaptation of the CNN and
XGBOOST models by an optimization algorithm for COVID-19 diagnosis [49], etc.

The rest of this article is organized as follows: in Section 2, the two phases of the pro-
posed method are thoroughly discussed; in Section 3, the experimental datasets are listed,
as well as the experimental results; finally, in Section 4, some conclusions are presented.
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2. Method Description

The training error of the RBF network is expressed as:

E(y(x, g)) =
m

∑
i=1

(y(xi, g)− ti)
2 (3)

The value m stands for the number of patterns, and the values ti denote the real output for
the input. The vector g denotes the set of parameters of the RBF network. Usually, RBF
networks are trained through a two-phase procedure:

1. In the first phase, the k centers, as well as the associated variances are calculated
through the K-means algorithm [50]. A typical formulation of the K-means algorithm
is outlined in Algorithm 1.

2. In the second phase, the weight vector −→w = (w1, w2, . . . , wk) is estimated by solving
a linear system of equations:

(a) Set W = wkj;
(b) Set Φ = φj(xi);
(c) Set T = {ti = f (xi), i = 1, .., M};
(d) The system to be solved is identified as:

ΦT
(

T −ΦWT
)
= 0 (4)

with the solution:
WT =

(
ΦTΦ

)−1
ΦTT = Φ†T. (5)

The proposed work used two computational phases to optimally calculate the network
parameters. Firstly, a promising range of the parameters of the network was calculated through
an optimization process that incorporated interval arithmetic. Subsequently, the parameters
of the network were trained with the usage of a genetic algorithm inside the located range of
the first phase. The following subsections analyze both of these phases in detail.

Algorithm 1 The K-means algorithm.

1. Repeat.
(a) Sj = {}, j = 1..k.
(b) For each pattern xi, i = 1, ..., m, do:

i. Calculate j∗ = mink
i=1
{

D
(
xi, cj

)}
.

ii. Update Sj∗ = Sj∗ ∪ {xi}.
(c) EndFor.
(d) For each center cj, j = 1..k, do:

i. Define Mj as the number of points in Sj.
ii. Calculate cj:

cj =
1

Mj

Mj

∑
i=1

xi

(e) EndFor.
2. Compute the variances for every center as

σ2
j =

∑
Mj
i=1

(
xi − cj

)2

Mj

3. Terminate if there is no change in centers cj.
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2.1. Preliminaries

In order to perform interval arithmetic on RBF networks, the following definitions
are introduced:

1. The comparison of two intervals W = [w1, w2], Z = [z1, z2] is performed through the
function:

L∗(W, Z) =

{
TRUE, w1 < z1, OR (w1 = z1 AND w2 < z2)

FALSE, OTHERWISE;
(6)

2. The function E(y) (Equation (3)) is modified to an interval one
[
Emin(y), Emax(y)

]
calculated with the procedure given in Algorithm 2.

In the proposed algorithm, the RBF network contains n variables, where

n = (d + 2)× k (7)

The value of n is calculated as follows:

1. Every center −→ci , i = 1, .., k has d variables, which means d× k variables.
2. For every center, a separate value σi is used for the Gaussian processing unit, which

means k variables.
3. The output weight −→w also has k variables.

Algorithm 2 Fitness calculation for the modified PSO algorithm.
The fitness calculation for a given particle g is as follows:
1. Take NS random samples in g.

2. Calculate Emin(g) = mingi∈NS

((
∑M

j=1 y
(
xj, gi

)
− tj

)2
)

.

3. Calculate Emax(g) = maxgi∈NS

((
∑M

j=1 y
(
xj, gi

)
− yj

)2
)

.

4. Return fg = [Emin(g), Emax(g)].

2.2. The Proposed PSO Algorithm

During this phase, arithmetic interval techniques are used to locate a range for the
parameters of the RBF network. The interval techniques [51–53] comprise a common
method in global optimization with various applications [54–56]. The first phase aims to
locate the most-promising bounding box for the n parameters of the corresponding RBF
network. The initial bounding box is defined as S, which is a subset of Rn:

S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn] (8)

The interval method of the first phase divides the set S subsequently by discarding areas
that are not promising enough to contain the global minimum. In order to locate the best
interval for Equation (8), a modified PSO algorithm [57] is used. The proposed variant
of the PSO method is based on the original technique (Algorithm 1 of [57]); however, the
particles are intervals of values, and at each iteration, a normalization of the velocity vector
takes place to avoid generating particles outside the original range of values. The PSO
method is based on a population of candidate solutions, which, in most cases, are called
particles. The method is based on two vectors: the current location of particles denoted as
−→p and the velocity of their movement denoted as −→u . The PSO method finds the global
minimum by moving the particles based on their previous best position, as well as the best
position of the total population of particles.

The initial bounding boxes for the centers and variances of the RBF network are
constructed using the K-means clustering algorithm. Subsequently, the initial values for the
intervals [ai, bi] are calculated through Algorithm 3. The values for the intervals of the first
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(d + 1)× k variables are obtained as a multiple of the positive quantity F with the values
obtained by K-means. The value B is used to initialize the intervals for the output weight
−→w . Afterwards, the following PSO variant is executed:

1. Set Nc as the amount of particles.
2. Set the normalization factor λ.
3. Set the k weights of the RBF network.
4. Set Ng the maximum generations allowed.
5. Set Ns the number of random samples that will be used in the fitness calculation

algorithm.
6. Set f ∗ = [∞, ∞], the fitness of the best located particle p∗.
7. Construct S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn], as obtained from the previous two algo-

rithms.
8. Initialize the Nc particles. Each particle pi, i = 1, ..., Nc is considered as a set of

intervals randomly initialized in S. The layout of each particle is graphically presented
in Figure 2.

9. For i = 1, ..., Nc, do:

(a) Calculate the fitness fi of particle pi using the procedure outlined in Algorithm 2.
(b) If L∗( fi, f ∗) = TRUE, then f ∗ = fi, p∗ = pi
(c) Set pb,i = pi, fb,i = fi as the best located position for particle i and the

associated fitness value.
(d) For j = 1, ..., n, do:

i. Set δ the width of interval pij.

ii. Set uij =
[
−r δ

20 , r δ
20

]
, with r a random number in [0, 1]. The velocity is

initialized to a small sub-interval of the range of values for the corre-
sponding parameter in order to avoid, as much as possible, excessive
values for the velocity. This would result in the particles moving out of
their value range very quickly, thus making the optimization process
difficult.

(e) EndFor.

10. EndFor.
11. Set iter = 0.

12. Calculate the inertia value as ω = ωmax− iter
Ng

(
ωmax −ωmin

)
, where common val-

ues for these parameters are ωmin = 0.4 and ωmax = 0.9. Many inertia calculations
have appeared in the relevant literature such as constant inertia [58], linearly decreas-
ing inertia [59], exponential inertia [60], random inertia calculation [61], dynamic
inertia [62], fuzzy inertia calculation [63], etc. The present method of calculating the
inertia was chosen because it decreases linearly with time, and for large values of the
inertia, it allows a wider search in the search space, while for low values, it allows a
more focused search.

13. For i = 1, ..., Nc, do:

(a) Calculate the new velocity ui = ωui + r1c1(pb,i − pi) + r2c2(p∗ − pi), where
r1, r2 are random numbers in [0, 1], and the constant values c1 and c2 stand for
the cognitive and the social parameters, correspondingly. Usually, the values
for c1 and c2 are in [1, 2].

(b) Normalize the velocity as: ui =
1
λ ui, where λ is a positive number with λ > 1.

(c) Update the position pi = pi + ui.
(d) Calculate the fitness fi of particle pi.
(e) If L∗( fi, fb,i) = TRUE, then pb,i = pi, fb,i = fi.
(f) If L∗( fi, f ∗) = TRUE, then f ∗ = fi, p∗ = pi.

14. EndFor.
15. Set iter = iter+1.
16. If iter≤ Ng , goto Step 13.
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17. Else, return S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn], the domain range for the best particle p∗.

Algorithm 3 Algorithm used to locate the initial values for [ai, bi], i = 1, ..., n.

1. Set m = 0.
2. Set F > 1, B > 0.
3. For i = 1..k, do:

(a) For j = 1..d, do:
i. Set am = −F× cij, bm = F× cij.
ii. Set m = m + 1.

(b) EndFor.
(c) Set am = −F× σi, bm = F× σi.
(d) Set m = m + 1.

4. EndFor.
5. For j = 1, ..., k, do:

(a) Set am = −B, bm = B.
(b) Set m = m + 1.

6. EndFor.

c11 c12 ... c1d σ1 c21 c22 ... c2d σ2 ... ck1 ck2 ... ckd σk w1 w2 . . . wk

Figure 2. The scheme of the particles in the current PSO algorithm.

2.3. Optimization of Parameters through Genetic Algorithm

During the second phase of the proposed method, a genetic algorithm is implemented,
which optimizes the parameters of the RBF network within the optimal interval calculated
in the first phase. The used genetic algorithm has its roots in the GA(cr1, l) algorithm
from the paper of Kaelo and Ali [64]. This method was enhanced using the stopping rule
suggested by Tsoulos [65]. This genetic algorithm has the following steps:

1. Initialization step:

(a) Set Nc as the number of chromosomes. Every chromosome is coded as in the
case of PSO using the scheme of Figure 2.

(b) Set Ng as the maximum number of generations allowed.
(c) Set k as the weight number of the RBF network.
(d) Obtain the domain range S from the procedure of Section 2.2.
(e) Initialize NC randomly in S.
(f) Define the selection rate ps ∈ [0, 1].
(g) Define the mutation rate pm ∈ [0, 1].
(h) Set iter = 0.

2. Evaluation step:
For every chromosome g, calculate the associated fitness value fg = ∑m

i=1(y(xi, g)− ti)
2:

3. Genetic operations step:
Perform the genetic operations of selection, crossover, and mutation.

(a) Selection procedure: First, the population of chromosomes is sorted based on
the associated fitness values. The first (1− ps)× Nc chromosomes are copied
unchanged to the next generation, while the rest are replaced by offspring
constructed by the crossover procedure. During the selection step, a series
of mating pairs is chosen using the well-known procedure of tournament
selection for each parent.
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(b) Crossover procedure: For each pair (z, w) of chosen parents, two new off-
spring z̃ and w̃ are constructed with the steps:

z̃i = aizi + (1− ai)wi

w̃i = aiwi + (1− ai)zi (9)

where ai is a random number with ai ∈ [−0.5, 1.5] [64].
(c) Mutation procedure: For every element of each chromosome, pick a random

number r ∈ [0, 1]. If r ≤ pm, then alter randomly the corresponding element.

4. Termination check step:

(a) Set iter = iter + 1.
(b) If the termination criteria hold, then Terminate; else, goto evaluation step.

The overall process of the two phases is graphically shown in Figure 3.

Figure 3. Graphical representation of the proposed two-phase method.

3. Experiments

The suggested method was tested on a series of classification and regression prob-
lems found from various papers and sites of the relevant literature. For the classification
problems, two Internet databases were used:

1. The UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on 5
January 2023).

2. The Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 5 January
2023) [66].

The regression problems can be found at the Statlib URL ftp://lib.stat.cmu.edu/datasets/
index.html (accessed on 5 January 2023).

3.1. Experimental Datasets

The classification problems used here were the following:

1. Appendicitis dataset, a medical dataset suggested in [67].
2. Australian dataset [68], an economic dataset.
3. Balance dataset [69], used for the prediction of psychological states.
4. Cleveland dataset, related to heart diseases [70,71].
5. Bands dataset, a dataset related to printing problems [72].
6. Dermatology dataset [73], which is a medical dataset.
7. Hayes-roth dataset [74].
8. Heart dataset [75], a medical dataset.
9. HouseVotes dataset [76].
10. Ionosphere dataset, a dataset from the Johns Hopkins database [77,78].
11. Liverdisorder dataset [79], a medical dataset about liver disorders.
12. Lymography dataset [80].
13. Mammographic dataset [81], which is a dataset about breast cancer.
14. Parkinsons dataset, a medical dataset about Parkinson’s Disease (PD) [82].
15. Pima dataset, a medical dataset [83].
16. Popfailures dataset [84], a dataset about climate.

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
ftp://lib.stat.cmu.edu/datasets/index.html 
ftp://lib.stat.cmu.edu/datasets/index.html 
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17. Spiral dataset: The spiral artificial dataset contains 1000 two-dimensional examples
that belong to two classes (500 examples each). The number of features is 2. The data
in the first class were created using the following formula: x1 = 0.5t cos(0.08t), x2 =
0.5t cos

(
0.08t + π

2
)
, and the second class data using: x1 = 0.5t cos(0.08t + π), x2 =

0.5t cos
(
0.08t + 3π

2
)
.

18. Regions2 dataset, described in [85].
19. Saheart dataset [86], which is related to heart diseases.
20. Segment dataset [87], which is related to image processing.
21. Wdbc dataset [88], which is related to breast tumors.
22. Wine dataset. The wine recognition dataset contains data from wine chemical analysis.

It contains 178 examples of 13 features each, which are classified into three classes. It
has been examined in many published works [89,90].

23. Eeg dataset. As a real-word example, an EEG dataset described in [91] was used here.
The datasets derived from the dataset are denoted as Z_F_S, ZONF_S, and ZO_NF_S.

24. Zoo dataset [92], used for the classification of animals.

The regression datasets were as follows:

1. Abalone dataset [93].
2. Airfoil dataset, a dataset from NASA related to aerodynamic and acoustic tests [94].
3. Baseball dataset, a dataset used to predict the points scored by baseball players.
4. BK dataset [95], used to estimate the points scored per minute in a basketball game.
5. BL dataset; this dataset is related to an experiment on the affects of machine adjust-

ments on the time to count bolts.
6. Concrete dataset, related to civil engineering [96].
7. Dee dataset, used to predict the daily average price of electric energy in Spain.
8. Diabetes dataset, a medical dataset.
9. FA dataset, related to fat measurements.
10. Housing dataset, described in [97].
11. MB dataset, a statistics dataset [95].
12. MORTGAGE dataset, which contains economic data.
13. NT dataset, derived from [98].
14. PY dataset (the Pyrimidines problem) [99].
15. Quake dataset, which contains data from earthquakes [100].
16. Treasure dataset, which contains economic data.
17. Wankara dataset, which is about weather measurement

3.2. Experimental Results

The RBF network for the tests was coded in ANSI C++ with the help of the freely
available Armadillo library [101]. In addition, in order to have greater reliability of the
experimental results, a 10-fold validation technique was used. All the experiments were
executed 30 times with different seeds for the random generator each time, and the average
was measured. For the classification datasets, the average classification error is reported and,
for the regression datasets, the mean test error. The machine used for the experiments was
an AMD Ryzen 5950X with 128GB of RAM. The used operating system was Debian Linux.
In order to accelerate the training process, the OpenMP library was incorporated [102].
The experimental settings are listed in Table 1. The experimental results for the classification
datasets are listed in Table 2 and, for the regression datasets, in Table 3. For the experimental
tables, the following were applied:

1. The column NN-PROP indicates the application of the Rprop method [103] in an
artificial neural network [104,105] with 10 hidden nodes. The RPROP method is
coded in the FCNN software package [106].

2. The column NN-GENETIC denotes the application of a genetic algorithm in the
artificial neural network with 10 hidden nodes. The parameters of the used genetic
algorithm are the same as in the second phase of the proposed method.
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3. The column RBF-KMEANS denotes the classic training method for RBF networks by
estimating centers and variances through K-means and the output weights by solving
a linear system of equations.

4. The column IRBF-100 denotes the application of the current method with λ = 100.
5. The column IRBF-1000 denotes the application of the current method with λ = 1000.
6. In both tables, an extra line is added, in which the mean error for each method is

shown. This row is denoted by the name AVERAGE. This line also shows the number
of times the corresponding method achieved the best result. This number is shown in
parentheses.

Table 1. The used values for the experimental parameters. The first column denotes the name of the
parameter and the second the used value.

Parameter Value

Nc 200

Ng 100

Ns 50

c1 1.0

c2 1.0

F 5.0

B 100.0

k 10

ps 0.90

pm 0.05

Table 2. Experimental results for the classification datasets. The first column is the name of the used
dataset.

Dataset NN-RPROP NN-GENETIC RBF-KMEANS IRBF-100 IRBF-1000

Appendicitis 16.30% 18.10% 12.23% 16.47% 14.03%

Australian 36.12% 32.21% 34.89% 23.61% 22.39%

Balance 8.81% 8.97% 33.42% 12.65% 13.15%

Bands 36.32% 35.75% 37.22% 37.38% 36.29%

Cleveland 61.41% 51.60% 67.10% 49.77% 49.64%

Dermatology 15.12% 30.58% 62.34% 38.24% 35.64%

Hayes Roth 37.46% 56.18% 64.36% 33.62% 34.13%

Heart 30.51% 28.34% 31.20% 15.91% 15.60%

HouseVotes 6.04% 6.62% 6.13% 4.77% 3.90%

Ionosphere 13.65% 15.14% 16.22% 8.64% 7.52%

Liverdisorder 40.26% 31.11% 30.84% 27.36% 25.63%

Lymography 24.67% 23.26% 25.31% 19.12% 20.02%

Mammographic 18.46% 19.88% 21.38% 17.17% 17.30%

Parkinsons 22.28% 18.05% 17.41% 15.51% 13.59%

Pima 34.27% 32.19% 25.78% 23.61% 23.23%
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Table 2. Cont.

Dataset NN-RPROP NN-GENETIC RBF-KMEANS IRBF-100 IRBF-1000

Popfailures 4.81% 5.94% 7.04% 5.21% 5.10%

Regions2 27.53% 29.39% 38.29% 26.08% 25.77%

Saheart 34.90% 34.86% 32.19% 27.94% 28.91%

Segment 52.14% 57.72% 59.68% 47.19% 40.28%

Spiral 46.59% 44.50% 44.87% 19.43% 19.56%

Wdbc 21.57% 8.56% 7.27% 5.33% 5.44%

Wine 30.73% 19.20% 31.41% 9.20% 6.84%

Z_F_S 29.28% 10.73% 13.16% 4.19% 4.18%

ZO_NF_S 6.43% 8.41% 9.02% 4.31% 4.35%

ZONF_S 27.27% 2.60% 4.03% 2.23% 2.08%

ZOO 15.47% 16.67% 21.93% 10.13% 11.13%

AVERAGE 26.86%(3) 24.87%(1) 29.03%(1) 19.43%(8) 18.68%(13)

Table 3. Experimental results for the regression datasets. The first column is the name of the used
regression dataset.

DATASET NN-RPROP NN-GENETIC RBF-KMEANS IRBF-100 IRBF-1000

ABALONE 4.55 7.17 7.37 5.57 5.32

AIRFOIL 0.002 0.003 0.27 0.004 0.003

BASEBALL 92.05 103.60 93.02 78.89 85.58

BK 1.60 0.03 0.02 0.04 0.03

BL 4.38 5.74 0.013 0.0003 0.0003

CONCRETE 0.009 0.009 0.011 0.007 0.007

DEE 0.608 1.013 0.17 0.16 0.16

DIABETES 1.11 19.86 0.49 0.78 0.89

HOUSING 74.38 43.26 57.68 20.27 21.54

FA 0.14 1.95 0.015 0.032 0.029

MB 0.55 3.39 2.16 0.12 0.09

MORTGAGE 9.19 2.41 1.45 0.39 0.78

NT 0.04 0.006 8.14 0.007 0.007

PY 0.039 1.41 0.012 0.024 0.014

QUAKE 0.041 0.040 0.07 0.04 0.03

TREASURY 10.88 2.93 2.02 0.33 0.51

WANKARA 0.0003 0.012 0.001 0.002 0.002

AVERAGE 11.71(1) 11.34(1) 10.17(5) 6.27(7) 6.76(3)

As one can see from the experimental results, the proposed method significantly
outperformed the other techniques in the majority of cases in terms of the average error in
the test set. Moreover, the difference from the established method of training RBF networks
was of the order of 40%, and in some cases, this percentage can be doubled. The statistical
difference of the proposed technique against the rest is also shown in Figures 4 and 5.
However, the proposed technique was significantly slower than the original training
technique, as it is a two-stage technique. In the first stage, an optimal interval of values
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for the network parameters is created with a modified PSO method, and in the second
stage, the network is trained using a genetic algorithm. Of course, this extra time can be
significantly reduced by incorporating parallel techniques, as was done experimentally
using the OpenMP library. Furthermore, changing the normalization factor λ from 100
to 1000 did not have much effect on the mean error in the test set. This implies that the
proposed method is quite robust, since it does not have much dependence on this parameter.

Figure 4. Graphical comparison of all methods for the classification datasets.

Figure 5. Graphical comparison of the methods for the regression datasets.
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An additional experiment was performed with different values for the parameter F.
The experimental results for this experiment are shown in Table 4 for the classification
datasets and in Table 5 for the regression datasets. For this critical parameter, no large
deviations appeared in the results of the proposed method. This further enhances the
robustness and reliability of the proposed technique.

Furthermore, in the Table 6, the metrics of precision, recall, and f-score are shown
for a series of classification datasets and for the proposed method (IRBF-100) and the
classic method for training RBF networks (RBF-KMEANS). In these experimental results,
the reader can see the superiority of the proposed technique over the traditional method of
training RBF networks.

Table 4. Experimental results with the proposed method and using different values for the parameter
F on the classification datasets.

DATASET F = 3 F = 5 F = 10

Appendicitis 14.43% 14.03% 14.47%

Australian 23.45% 22.39% 23.21%

Balance 13.35% 13.15% 11.79%

Bands 36.48% 36.29% 36.76%

Cleveland 49.26% 49.64% 49.02%

Dermatology 36.54% 35.64% 34.37%

Hayes Roth 39.28% 34.13% 36.46%

Heart 15.14% 15.60% 14.89%

HouseVotes 4.93% 3.90% 6.41%

Ionosphere 7.56% 7.52% 9.05%

Liverdisorder 28.37% 25.63% 28.97%

Lymography 20.12% 20.02% 21.05%

Mammographic 18.04% 17.30% 18.21%

Parkinsons 18.51% 13.59% 13.49%

Pima 23.69% 23.23% 23.52%

Popfailures 5.76% 5.10% 4.50%

Regions2 25.79% 25.77% 25.32%

Saheart 28.89% 28.91% 26.99%

Segment 36.53% 40.28% 43.28%

Spiral 16.78% 19.56% 22.18%

Wdbc 4.64% 5.44% 5.10%

Wine 8.31% 6.84% 8.27%

Z_F_S 4.32% 4.18% 4.03%

ZO_NF_S 3.70% 4.35% 3.72%

ZONF_S 2.04% 2.08% 1.98%

ZOO 11.87% 11.13% 9.97%

AVERAGE 18.65% 18.68% 19.12%
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Table 5. Experimental results with the proposed method using different values for the parameter F
on the classification datasets.

DATASET F = 3 F = 5 F = 10

ABALONE 5.56 5.32 5.41

AIRFOIL 0.004 0.003 0.004

BASEBALL 88.40 85.58 84.43

BK 0.03 0.03 0.02

BL 0.0005 0.0003 0.0002

CONCRETE 0.009 0.007 0.007

DEE 0.18 0.16 0.16

DIABETES 0.67 0.89 0.77

HOUSING 20.03 21.54 20.84

FA 0.03 0.029 0.036

MB 0.19 0.09 0.26

MORTGAGE 0.89 0.78 0.03

NT 0.006 0.007 0.007

PY 0.027 0.014 0.018

QUAKE 0.04 0.03 0.04

TREASURY 0.77 0.51 0.17

WANKARA 0.002 0.002 0.002

AVERAGE 6.87 6.76 6.60

Table 6. Precision, recall, and f-score for a series of classification datasets.

RBF-KMEANS IRBF-100
DATASET PRECISION RECALL F-SCORE PRECISION RECALL F-SCORE

APPENDICITIS 0.80 0.77 0.76 0.79 0.74 0.78

AUSTRALIAN 0.67 0.61 0.58 0.79 0.76 0.76

BALANCE 0.74 0.76 0.64 0.75 0.78 0.76

BANDS 0.52 0.51 0.48 0.58 0.57 0.56

HEART 0.68 0.69 0.67 0.86 0.85 0.85

IONOSPHERE 0.84 0.81 0.81 0.92 0.89 0.90

LIVERDISORDER 0.65 0.64 0.64 0.72 0.71 0.71

MAMMOGRAPHIC 0.81 0.81 0.81 0.83 0.83 0.82

PARKINSONS 0.76 0.68 0.69 0.85 0.80 0.81

PIMA 0.72 0.67 0.68 0.75 0.70 0.71

SAHEART 0.65 0.61 0.61 0.70 0.66 0.67

SEGMENT 0.43 0.39 0.39 0.58 0.53 0.53

SPIRAL 0.56 0.56 0.55 0.70 0.70 0.70

WDBC 0.93 0.91 0.92 0.96 0.94 0.95

WINE 0.74 0.65 0.66 0.93 0.93 0.92

Z_F_S 0.85 0.84 0.83 0.96 0.97 0.96

ZO_NF_S 0.90 0.90 0.90 0.95 0.95 0.95
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4. Conclusions

In the present work, a two-stage hybrid method was proposed to efficiently identify
the parameters of RBF neural networks. In the first stage of the method, a technique
rooted in particle swarm optimization was used to efficiently identify a reliable interval of
values for the neural network parameters. In the second stage of the method, an intelligent
global optimization technique was used to locate the neural network parameters within
the optimal value interval of the first stage. In this work, a genetic algorithm was used in
the second phase, but any global optimization method could be used in its place.

The method was applied to a multitude of classification and regression problems from
the relevant literature. In almost all cases, the proposed method significantly outperformed
the other machine learning models, and on average, the improvement in the error on the
test sets was of the order of 40% relative to the established RBF training method. Moreover,
the method is quite robust with respect to the basic parameters since any changes in the
parameter values do not significantly affect its performance. Furthermore, the method can
efficiently locate the value interval of network parameters without any prior knowledge
about the type of training data or whether it is a classification or a regression problem.
However, the proposed technique is significantly more time-consuming than the traditional
training technique, as it requires computational time for both of its phases. However, this
effect can be overcome to some extent by the use of modern parallel computing techniques.

The method could be extended by the use of other techniques of training the param-
eters in RBF networks, such as, for example, the differential evolutionary method [107].
Furthermore, more efficient methods of terminating the first stage of the method could be
used, as finding a suitable interval of values for the network parameters requires many
numerical calculations.
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