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Abstract: A derivative-free optimization (DFO) method is an optimization method that does not
make use of derivative information in order to find the optimal solution. It is advantageous for
solving real-world problems in which the only information available about the objective function
is the output for a specific input. In this paper, we develop the framework for a DFO method
called the DQL method. It is designed to be a versatile hybrid method capable of performing direct
search, quadratic-model search, and line search all in the same method. We develop and test a series
of different strategies within this framework. The benchmark results indicate that each of these
strategies has distinct advantages and that there is no clear winner in the overall performance among
efficiency and robustness. We develop the SMART DQL method by allowing the method to determine
the optimal search strategies in various circumstances. The SMART DQL method is applied to a
problem of solid-tank design for 3D radiation dosimetry provided by the UBCO (University of British
Columbia—Okanagan) 3D Radiation Dosimetry Research Group. Given the limited evaluation
budget, the SMART DQL method produces high-quality solutions.

Keywords: derivative-free optimization;black-box optimization; local optimization; direct search
method; model-based method; 3D radiation dosimetry

1. Introduction

An optimization problem

min{ f (x) : x ∈ Ω} (1)

is considered a black-box optimization (BBO) problem if the objective function f is provided
by a black box. That is, for a given input, the function returns an output, but provides
no information on how the output was generated. As such, no higher-order information
(gradients, Hessians, etc.) are available. Developing methods to solve BBO problems is a
highly valued field of research, as the methods are used in a wide range of applications [1–8]
(amongst many more).

In many BBO problems, heuristic techniques are used [1–3]. In this paper, we focus on
provably convergent algorithms. The study of provably convergent algorithms that do not
explicitly use high-order information in their execution is often referred to as derivative-free
optimization (DFO). We refer readers to [9,10] for a general overview of DFO and to [11,12]
for recent surveys of applications of DFO.

DFO is often separated into two disjoint strategies: direct search methods and model-
based methods [10]. Direct search methods involve looking for evaluation candidate(s)
directly in the search domain [9,10]. Conversely, model-based methods involve building
a surrogate model from the evaluated points to find the next evaluation candidate [9,10].
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As DFO research has advanced, researchers have proposed that these two strategies should
be merged to create hybrid algorithms that applied both techniques [9,10,13–15]. However,
very few algorithms have been published that hybridize theses two methods.

In this research, we seek to develop a framework that allows for direct search and
model-based methods to be united into a single algorithm. We further seek to develop
dynamic approaches to select and adjust how the direct search and model-based methods
are used. In doing so, we aim to apply both a mathematical analysis that guarantees con-
vergence (under reasonable assumptions) and numerical testing to determine techniques
that work well in practice.

1.1. Overview of DQL and SMART DQL Method

Some efforts have been made to hybridize direct search and model-based methods.
For example, the SID-PSM method involves combining a search step of minimizing the
approximated quadratic model over a trust region with the direct search [13,14]. The RQLIF

method, which we discuss next, provides a more versatile approach [15].
To understand the RQLIF method, we note that there are two common ways to find

the next evaluation candidate during a model-based method [10]. First, methods can find
the candidate at the minima of the surrogate model within some trust region or constraints.
These are referred to as model-based trust-region (MBTR) methods. Second, methods can
use the model to predict the descent direction and perform a line-search on the direction.
These are referred to as model-based descent (MBD) methods.

At each iteration, the RQLIF method searches for an improvement using three distinct
strategies without relying on gradient or higher-order derivative information. These
steps are referred to as the direct step, quadratic step, and linear step. These three steps
correspond to three distinct search strategies from the direct search method, MBTR methods,
and MBD methods.

Inspired by the structure of the RQLIF method, we propose the DQL method frame-
work. The purpose of this framework is to allow a flexible hybrid method that permits a
direct search, quadratic-model search, and line-search all in the same method. Our objective
is to design a framework that allows the development of a variety of search strategies and
to determine the strategies that perform best. The DQL method is a local method for
solving unconstrained BBO problems. We ensure its local convergence by implementing
a two-stage procedure. The first stage focuses on finding an improvement in an efficient
manner. It accepts an improvement whenever the candidate yields a better solution. We
call this stage the exploration stage. The second stage focuses on the convergence to a local
optimum; we call this stage the convergence stage.

In Section 2, we introduce the DQL method’s framework and the search strategies.
In Section 3, we conduct the convergence analysis. Provided that the objective function has
a compact level set L(x0) and the gradient of the objective function is Lipschitz continuous
in an open set containing L(x0), the convergence analysis indicates that there exists a con-
vergent subsequence of iterations with a gradient of zero at its limit. This demonstrates that
when the evaluation budget is large enough, the method will converge to a stationary point.

Using the framework of the DQL method, we obtain a series of combinations of
quadratic and linear step strategies. In order to select the best combination among them,
in Section 3, we perform a numerical benchmark across all the possible combinations.
The quadratic step strategies are capable of improve the overall performance of the method.
However, the linear steps show a mixed performance and there is no clear winner on
efficiency or robustness. This inspires the idea that by employing an appropriate strategy in
certain circumstances, we may be able to achieve an overall improvement in performance.

This idea of allowing the method to make decisions on search strategies in various
circumstances leads to the SMART DQL method, which we discuss in Section 4. By analyz-
ing the search results from various strategies, we develop decision processes that select the
appropriate strategies for the search steps during the optimization. This allows the method
to dynamically decide the appropriate strategies for the given information. In Section 4, we
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perform numerical tests on the SMART DQL method and discover that the SMART DQL
method outperforms the DQL methods in terms of both robustness and performance.

In Section 5, we apply the SMART DQL method to the problem of design of solid tanks
for optical computed tomography scanning of 3D radiation dosimeters described in [16].
The original paper employs a grid-search technique combined with a manual refinement to
solve the problem. This process involves considerable human interaction. Conversely, we
find that the SMART DQL method is capable of producing a high-quality solution without
human interaction.

1.2. Definitions

Throughout this paper, we assume f : Rn → R. Let xk
best denote the best solution

found by the method at iteration k and f k
best denote the corresponding function value.

We present the definitions that are used to approximate gradient and Hessian by the
DQL method as follows. We begin with the Moore–Penrose pseudoinverse.

Definition 1 (Moore–Penrose pseudoinverse). Let A ∈ Rn×m. The Moore–Penrose pseu-
doinverse of A, denoted by A†, is the unique matrix in Rm×n that satisfies the following four equations:

AA† A = A, (2)

A† AA† = A, (3)

(AA†)> = AA†, (4)

(A† A)> = A† A. (5)

The generalized centred simplex gradient and generalized simplex Hessian are studied
in [17,18], respectively.

Definition 2 (Generalized centred simplex gradient [17]). Let f : Rn → R, x0 ∈ Rn be
the point of interest, and D =

[
d1 d2 · · · dk] ∈ Rn×k. The generalized centred simplex

gradient of f at x0 over D is denoted by ∇c f (x0; D) and defined by,

∇c f (x0; D) = (D>)†δc
f (x0; D) ∈ Rn, (6)

where

δc
f (x0; D) =

1
2
[

f (x0 + d1)− f (x0 − d1), · · · , f (x0 + dk)− f (x0 − dk)
]>. (7)

Definition 3 (Generalized simplex Hessian). Let f : Rn → R and x0 be the point of interest.
Let S =

[
s1 s2 · · · sm] ∈ Rn×m and {Di : Di ∈ Rn×k, i = 0, 1, 2, · · · , m} be the set of

direction matrices used to approximate the gradients at x0, x0 + s1, · · · , x0 + sm, respectively.
The generalized simplex Hessian of f at x0 over S and {Di} is denoted by ∇2

s f (x0; S, {Di})
and defined by

∇2
s f (x0; S, {Di}) = (S>)†δ∇c f (x0; S, {Di}), (8)

where

δ∇c f (x0; S, {Di}) =


(∇c f (x0 + s1; D1)−∇c f (x0; D0))>

(∇c f (x0 + s2; D2)−∇c f (x0; D0))>

...
(∇c f (x0 + sm; Dm)−∇c f (x0; D0))>

 ∈ Rm×n. (9)
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In Section 3, in order to prove convergence of our method, we make use of the cosine
measure as defined in [9].

Definition 4 (Cosine measure). Let D =
[
d1 d2, · · · , dm] ∈ Rn×m form a positive basis.We

say D forms a positive basis if {x : x = ∑m
i=1 λdi, λ ≥ 0} = Rn but no proper subset of D has the

same property. The cosine measure of D is defined by,

cm(D) = min
ω∈Rn

{
max
d∈D

{
ω>d
‖ω‖‖d‖

}
: ‖ω‖ = 1

}
. (10)

2. DQL Method

In this section, we introduce the framework of the DQL method. At each iteration,
the method starts from an initial search point xk

0 and a search step length δk. Note that
at the first iteration, the initial search point and the search step length are given by the
inputs x0 and δ0, so x1

0 = x0 and δ1 = δ0. The initial search point and the search step length
are used to initiate three distinct search steps: the direct step, the quadratic step, and the
linear step. A variable xk

best is used to track the current best solution at iteration k. If an
improvement is found in the search step length at iteration k, the method updates xk

best.
Three Boolean values are used to track the results from each search step: DIRECT_FLAG,
QUADRATIC_FLAG, and LINEAR_FLAG. If a search step succeeds at finding an improve-
ment, it sets the corresponding FLAG to TRUE; otherwise, the corresponding FLAG is set
to FALSE. These search steps are then followed by the update step. In the update step,
the search step length is updated according to the search results and the method uses the
current best solution as the starting search point of the next iteration.

As mentioned, the DQL method utilizes two different stages: the exploration stage
and the convergence stage. In the exploration stage, the method enables all the search steps,
and it accepts the improvement whenever the evaluation candidate yields a lower value
than the current best solution. If the iteration counter k reaches the given MAX_SEARCH,
then the method proceeds with the convergence stage, the method disables the quadratic
and the linear step and the solution acceptance implements a sufficient decrease rule.

This framework allows various search strategies to be implemented. We provide some
basic strategies for performing the search steps. The analysis of the convergence and the
performance of these search steps are discussed in the next section.

2.1. Solution Acceptance Rule

In the DQL method, each search step returns a set of candidate(s). Then, these
candidate(s) are evaluated and compared to the current best solution xk

best. If the best
candidate is accepted by the solution acceptance rule, then xk

best is updated. There are
two solution acceptance rules that are used in the DQL method. The first rule is used in
the exploration stage and updates xk

best whenever an improvement is found. The second
rule is used in the convergence stage and updates xk

best only when the candidate makes
sufficient decrease. Specifically, in the convergence stage of the DQL method, a candidate
xcurrent ∈ CANDIDATE_SET is accepted as xk

best only if

f (xcurrent) < f (xk
best)− (δk)

2
, (11)

where δk is the current search step length. We show that this sufficient decrease rule is
crucial for the convergence of the DQL method in the next section. The algorithm of the
solution acceptance is denoted as

IMPROVEMENT_CHECK(CANDIDATE_SET, xk
BEST , δk)

and is shown in Algorithm 1.



Algorithms 2023, 16, 92 5 of 23

Algorithm 1 IMPROVEMENT_CHECK(CANDIDATE_SET, xk
BEST , δk)

1: Evaluate CANDIDATE_SET
2: xcurrent ← arg min{function evaluations of CANDIDATE_SET}
3: if k ≤ MAX_SEARCH then
4: if f (xcurrent) < f (xk

best) then
5: xk

best ← xcurrent
6: end if
7: else
8: if f (xcurrent) < f (xk

best)− (δk)
2

then
9: xk

best ← xcurrent
10: end if
11: end if

2.2. Direct Step
2.2.1. Framework of the Direct Step

In the direct step, the method searches from the starting search point xk
0 in the positive

and negative coordinate directions or a rotation thereof. We denote the set of search
directions at iteration k as D̄k. The positive and negative coordinate directions can be
written as the columns of an n × 2n matrix

[
In −In

]
. The method applies an n × n

rotation matrix Dk =
[
dk

1 dk
2 · · · dk

n
]
∈ Rn×n, so D̄k can be written as

[
Dk −Dk].

We first need to determine how we want to rotate the search directions. We have
two possible situations. First, if the method predicts a direction for which improvement
is likely to be found, then we call this direction a desired direction. Notice that, since we
search on both positive direction and negative direction, we also search the direction where
an improvement is unlikely to be found. Conversely, if the method predicts a direction
that is highly unlikely to provide improvement, then we call the corresponding direction
an undesired direction. Denoting the predicted direction by rk, we have the following
2 possibilities.

• If rk is a desired direction, then we construct Dk such that it rotates one of the search
directions to align with rk.

• If rk is an undesired direction, then we construct Dk such that it rotates the vector[
1 · · · 1

]
to align with rk. In this way, the coordinate directions are rotated to point

away from rk as much as possible.

Figure 1 shows how the method rotates the search direction matrix D̄k towards a
desired direction or away from an undesired direction for an R2 problem.

(a) (b)

Figure 1. An example of rotating search direction D̄k (black) for (a) a desired direction (red) and (b)
an undesired direction (green). (a) Align D̄k towards the desired direction rk. (b) Align D̄k away from
the undesired direction rk.

For an n-dimensional rotation (n > 3), the rotation is described as rotating by an
angle of α on an n− 1 dimension hyperplane that is spanned by a pair of orthogonal unit
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vectors u and v ∈ Rn. According to Masson, such a rotation matrix D can be defined as
follows [19],

L(α, u, v) = In + (vu> − uv>) sin α + (uu> + vv>)(cos α− 1). (12)

For a desired direction rk, the rotation matrix Dk can be found by rotating the coor-
dinate directions on the hyperplane spanned by one coordinate direction, e.g., e1, and rk

by the angle between e1 and rk. Notice that if e1 and rk are linearly dependent, then rk lies
on the coordinate direction e1, so Dk is the identity matrix. In conclusion, if rk is a desired
direction, the search directions Dk is calculated as follows,

Dk = L(arccos (rk>e1), rk, e1). (13)

For an undesired direction rk, the method needs to keep the search directions as far
from rk as possible. In order to do so, it first constructs a normalized one-vector 1̂, which is
calculated as follows,

1̂ =
Σn

i=1ei∥∥Σn
i=1ei

∥∥ =
Σn

i=1ei√
n

. (14)

Then, the method aligns 1̂ with the undesired direction rk. The rotation matrix Dk for an
undesired direction rk is calculated as follows,

Dk = L(arccos (rk>1̂), rk, 1̂). (15)

After the search directions D̄k are built, the search candidates from the direct step at
iteration k can be determined as

Dk = {xk
0 + δkdk : dk ∈ D̄k}. (16)

We then check if any of the candidates yield improvement by

IMPROVEMENT_CHECK(Dk , xk
BEST , δk).

If an improvement is found, then the DIRECT_FLAG is set to be TRUE. Otherwise, the DI-
RECT_FLAG is set to be FALSE.

The pseudocode of the direct step in the DQL method is shown in Algorithm 2. The di-
rect step is always initiated at every iteration, and it produces

∣∣∣Dk
∣∣∣ = 2n candidates, so

it requires 2n function evaluations to perform. Since these candidates are independent
from each other, the function evaluations proceed in parallel. Although this step is com-
putationally expensive, it is necessary to prove convergence of our method as shown in
Theorem 4. The freedom of choosing the rotation direction is essential to the development
of the SMART DQL method. This allows us to develop a variety of rotation strategies that
are discussed in the next section.

Algorithm 2 DIRECT_STEP(xk
0, δk)

1: Determine the rotation direction rk ∈ Rn

2: if rk is a desired direction then
3: Align Dk towards rk

4: else
5: Align Dk away from rk

6: end if
7: The direct search candidates Dk = {xk

0 + δkdk : dk ∈ D̄k}
8: IMPROVEMENT_CHECK(Dk , xk

0, δk)
9: Update DIRECT_FLAG accordingly
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Direct Step Strategy

The first direct step strategy is inspired by the direct step in the RQLIF method [15].
The rotation directions alternate between two options:

• A coordinate direction being the desired direction;
• A random direction being the desired direction.

At odd iterations, the method searches on the positive and negative coordinate direc-
tions. At even iterations, the method searches on the random rotations of the coordinate
directions. We denote this strategy as direct step strategy 1. In Section 4, when developing
the SMART DQL method, we introduce new rotation strategies.

2.3. Quadratic Step
2.3.1. Framework of Quadratic Step

If the direct step fails to find an improvement, then the method proceeds to the
quadratic step. Note that after a failed direct step, the best point remains at xk

0. In the
quadratic step, the method first selects the points that have been previously evaluated
within some radius qk ≥ βδk of the point of centre xk

0 for some β ≥ 1. These points are used
to construct a quadratic model of the objective function. The radius condition qk ≥ βδk

ensures that all the points from the direct search are taken into account. The method extracts
the quadratic information from these calculated points using a least-squares quadratic
model or Hessian approximation. The pseudocode of the quadratic step is shown in
Algorithm 3. Note that in the third line of Algorithm 3, the methods of extracting and
utilizing the quadratic information varies for different strategies. The idea of the quadratic
step is to use these previously evaluated points {xi} to predict a candidate by using
quadratic approximations.

Algorithm 3 QUADRATIC_STEP(xk
0, β, δk , {xi})

1: qk ← βδk

2: Determine the set of evaluated points within the trust region Qk = {xi :
∥∥∥xi − xk

0

∥∥∥ ≤ qk}
3: Determine the quadratic search candidates Qk using the quadratic information from Qk

4: IMPROVEMENT_CHECK(Qk , xk
0, δk)

5: Update QUADRATIC_FLAG accordingly

Quadratic Step Strategies

Our first option for the quadratic step begins by constructing a least-squares quadratic
model. We use the QUADPROG and TRUST functions from MATLAB [20] to find the least-
squares quadratic model and its optimum within the trust region. We label this quadratic
step strategy as quadratic step strategy 1.

Our second option for the quadratic step is to take one iteration of an approximated
Newton’s method. Approximation techniques are introduced to obtain the required gra-
dient and Hessian. Notice that at the end of the direct step, the centred simplex gradient
approximation is performed, so we take

∇ f (xk
0) ≈ ∇c f (xk

0; δkDk). (17)

To approximate the Hessian at xk
0, we need all the points within radius qk that have

a gradient approximation. Since the gradient approximations are performed in previous
unsuccessful direct steps, we can reuse those approximation. First, the points that have
gradient approximation and are within the radius qk are determined. We denote these by xj

h
(j = 1, 2, · · · , m). The corresponding search directions and search step lengths are denoted
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by Dj
h and δ

j
h (j = 1, 2, · · · , m). We take D0

h and δ0
h as the search direction and search step

length in the direct step of the current iterate. We obtain

S =
[
x1

h − xk
0 x1

h − xk
0 · · · xm

h − xk
0
]
. (18)

The Hessian at xk
0 can be approximated as,

∇2 f (xk
0) ≈ ∇2

s f (xk
0; S, {δj

hDj
h}) = (S>)†δ∇c f (xk

0; S, {δj
hDj

h}), (19)

where δ∇c f (xk
0; S, {δj

hDj
h}) is defined in Definition 3.

If the approximated Hessian is positive definite, then the search candidate is deter-
mined via

xQ = xk
0 − (∇2

s f (xk
0; S, {δj

hDj
h}))

−1∇c f (xk
0; δkDk). (20)

If the approximate Hessian is not positive definite, we can perform a trust-region search by
building a quadratic model with the approximate gradient and Hessian at xk

0.
We label this quadratic step strategy as quadratic step strategy 2.

Discussion on Quadratic Step Strategies

Both quadratic step strategies try to build a quadratic model and extract the op-
tima from the quadratic model. However, there are some major differences between the
two strategies.

• The points chosen to construct the model are different. In the quadratic step strategy
1, any evaluated points that are within the trust region are chosen. In the quadratic
step strategy 2, the chosen points have an additional requirement that they should
also have a gradient approximation.

• In the quadratic step strategy 1, xQ lies within the trust region. In the quadratic step
strategy 2, if the approximated Hessian is positive definite, then xQ may lie outside of
the trust region.

We demonstrate in the numerical benchmarking that these differences lead to distinct
behaviours and performances.

2.4. Linear Step
2.4.1. Framework of Linear Step

If the quadratic step fails to find an improvement, then the method performs the linear
step. The idea of the linear step is to find evaluation candidate(s) in a desired direction
d ∈ Rn at some step length(s) αj ∈ Rn. The search candidates can be obtained as

xj
l = xk

0 + αjd, (21)

and we denote the set of all candidates as Lk. The idea of the linear step is to perform a
quick search in the direction that is likely to be a descent direction. The pseudocode of the
linear step in the DQL method is shown in Algorithm 4. Note that in order to perform Line
2 of Algorithm 4, there are two components we need to determine: the desired direction
and the step length(s). We discuss this in the next section.

Algorithm 4 LINEAR_STEP (xk
0, δk)

1: Determine the search direction d ∈ Rn

2: Determine the step lengths
{

αj ∈ R
}

3: The linear search candidates Lk = {xk
0 + αjdj}

4: IMPROVEMENT_CHECK(Lk , xk
0, δk)

5: Update LINEAR_FLAG;
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The linear step is an efficient and quick method to quickly search for an improvement.
Not only does it not require as many function calls as the direct step, but it also does
not require as much computational power to determine the candidate as the quadratic
step. However, it is not as robust as the direct step or as precise as the quadratic step.
If a linear step fails, then it indicates that we are either converging to a solution, or the
method to determine the desired direction is not performing well for the current problem.
In either case, the result from the linear step can provide some crucial information for
future iterations, which is discussed in Section 4.

Linear Step Strategies

We propose two methods to find the linear search directions. The first method is to
use the centred-simplex gradient from the direct step. In particular, d = −∇c f (xk

0; δkDk) is
the approximated steepest descent direction.

The second method is to use the last descent direction as the desired direction. If the
method was able to find an improvement in this direction, then it is likely that an improve-
ment can be found again in this direction. This direction can be calculated as d = xk

0 − xs
0,

where the index s is the most recent successful iteration before xk
0.

To determine the step length, the simplest way is to use δk as the search step length,
that is Lk = {xk

0 + δkd}. The other method is to consider (approximately) solving the
following problem

min
α
{F(α) : α ≥ 0}, (22)

where F(α) = f (xk
0 + αd). To solve this problem, we utilize the safeguarded bracketing line

search method [21]. Combining the two ways of determining the search directions and the
two ways of determining the search step, we obtain four linear search strategies, as shown
in Table 1.

Table 1. Linear Search Strategies

Label Search Direction ddd Search Step ααα

Strategy 1 −∇c f (xk
0; δkDk) {δk}

Strategy 2 −∇c f (xk
0; δkDk) {0, 1/2δk, δk} ∪ ABRACKET_SEARCH

Strategy 3 xk
best − xs

best {δk}
Strategy 4 xk

best − xs
best {−δk, 0, δk} ∪ ABRACKET_SEARCH

2.5. Update Step

Depending on the search results from the direct, quadratic and linear steps, the method
updates the search step length for the next iterate δk+1 in different ways. If an improvement
is found in the direct step, then the search step length is increased for the next iteration. If an
improvement is not found in the direct step, then the method proceeds with the quadratic
step. If an improvement is found in the quadratic step, then the search step length remains
the same. If no improvement is found in either quadratic or direct steps, then the method
initiates the linear step. If an improvement is still not found, then the search step length is
decreased. Otherwise, if an improvement is found in the linear step, then the search step
length remains the same. Algorithm 5 shows the pseudocode for the update step of the
DQL method. Notice that an update parameter γ needs to be selected to perform the DQL
method.

2.6. Pseudocode for DQL Method

The input of the DQL method requires the objective function f , the initial point x0,
the initial search step length δ0, and the update parameter γ. In addition, a maximum
iteration threshold for the exploration stage, MAX_SEARCH is required for the convergence
of the method. The method implements a sufficient decrease rule for the search candidates
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and stops searching in the quadratic and direct step after the maximum iteration threshold
MAX_SEARCH. The necessity of this threshold is discussed in the next section.

The stopping condition(s) need to be designed for specific applications. For example,
the method can be stopped when it reaches a certain maximum number of iterations,
maximum number of function calls, or maximum run-time. In addition, a threshold for the
search step length and the norm of the approximate gradient can be set to stop the method.
The pseudocode for the DQL method is shown in Algorithm 6.

Algorithm 5 PARAMETER_UPDATE (δk , 0 < γ < 1, DIRECT_FLAG, QUADRATIC_FLAG,
LINEAR_FLAG)

1: if DIRECT_FLAG == TRUE then
2: set δk+1 = γ−1δk

3: else
4: if QUADRATIC_FLAG == FALSE AND
5: LINEAR_FLAG == FALSE THEN
6: SET δk+1 = γδk

7: ELSE
8: SET δk+1 = δk

9: END IF
10: END IF
11: SET k← k + 1

Algorithm 6 DQL( f , x0, δ0, 0 < γ < 1, β > 1, MAX_SEARCH)

1: Initiate k← 1, δ1 ← δ0, STOP_FLAG← FALSE
2: while STOP_FLAG == FALSE do
3: Initiate DIRECT/QUADRATIC/LINEAR_FLAGS← FALSE;
4: Initiate xk

0 ← xk−1
best (x1

0 ← x0)
5: DIRECT_STEP(xk

0 , δk)
6: if an improvement is found in the direct step then
7: DIRECT_FLAG← TRUE
8: else
9: DIRECT_FLAG← FALSE

10: end if
11: if stopping conditions are met then
12: STOP_FLAG← TRUE
13: Program terminates
14: end if
15: if k ≤ MAX_SEARCH then
16: if DIRECT_FLAG == FALSE then
17: QUADRATIC_STEP(xk

0 , β, δk , {xi})
18: if an improvement is found in the quadratic step then
19: QUADRATIC_FLAG← TRUE
20: else
21: QUADRATIC_FLAG← FALSE
22: LINEAR_STEP(xk

0 , δk)
23: if an improvement is found in the direct step then
24: LINEAR_FLAG← TRUE
25: else
26: LINEAR_FLAG← FALSE
27: end if
28: end if
29: end if
30: end if
31: PARAMETER_UPDATE(δk , γ, DIRECT_FLAG, ...
32: QUADRATIC_FLAG, LINEAR_FLAG)
33: end while
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3. Analysis of the DQL Method
3.1. Convergence Analysis

In this section, we show that the DQL method converges to a critical point at the limit
of the iteration and its direct step is crucial for the convergence. To analyze the convergence
of the DQL method, we introduce another well-studied method, the directional direct
search method ([9] p. 115).

3.1.1. Directional Direct Search Method

There are three steps in a directional direct search method. First, in the search step, it
tries to find an improvement by evaluating at a finite number of points. If it fails, then in
the poll step, it chooses a positive basis D̄k from a set D and tries to find an improvement
among Dk =

{
xk

0 + δkd : d ∈ D̄k
}

. Last, the algorithm updates the search step length
depending on the result of the poll step. The pseudocode for the directional direct search
method can be found in ([9] p. 120).

Notice that the linear and the quadratic step of the DQL method can be treated as the
search step of the directional direct search method. In addition, the update step from the
DQL method only decreases the search step length in an unsuccessful iteration, which is
identical to the update step from the directional direct search method. The direct step from
the DQL method can be seen as the poll step from the directional direct search method,
with the set D being an infinite set that consists of all the rotations of the coordinate
directions. As such, the DQL method fits under the framework of the directional direct
search method.

3.1.2. Convergence of the Directional Direct Search Method

The convergence theorem of the directional direct search method is cited from ([9] p. 122).
The convergence of the directional direct search method uses the following assumptions.

Assumption 1. The level set L(x0) = {x ∈ Rn : f (x) ≤ f (x0)} is compact.

Assumption 2. If there exists an α > 0 such that αk > α, for all k, then the algorithm visits only
a finite number of points.

Assumption 3. Let ξ1, ξ2 > 0 be some fixed positive constants. The positive bases Dk used in the
algorithm are chosen from the set

D =
{

D̄ positive basis : cm(D̄) > ξ1,
∥∥d̄
∥∥ ≤ ξ2, d̄ ∈ D̄

}
. (23)

Assumption 4. The gradient ∇ f is Lipschitz continuous in an open set containing L(x0) (with
Lipschitz constant v > 0).

Notice that Assumption 2 holds if the directional direct search method uses a finite set
of positive bases. However, as we desired the ability to use an infinite set of positive basis,
we implemented a sufficient decrease rule to ensure Assumption 2 held.

Theorem 1. Suppose the directional direct search method only accepts new iterates if f (xk+1) <
f (xk)− (δk)2 holds. Let Assumption 1 hold. If there exists an α > 0 such that δk > α, for all k,
then the DQL method visits only a finite number of points, i.e., Assumption 2 holds.

Proof. See Theorem 7.11 of [9].

We have the following convergence theorem.
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Theorem 2. Let Assumptions 1–4 hold. Then,

lim inf
k→+∞

‖∇ f (xk)‖ = 0, (24)

and the sequence of iterates {xk} has a limit point x? for which

∇ f (x?) = 0. (25)

Proof. See Theorem 7.3 of [9].

3.1.3. Convergence of the DQL Method

The DQL method’s approach, as previously stated, is a two-stage procedure. When
k ≤ MAX_SEARCH, all the direct, quadratic and linear steps are enabled, and the method
focuses on the efficiency of finding a better solution. When k > MAX_SEARCH, the method
disables the quadratic and linear steps and switches the solution acceptance rule to the
sufficient decrease rule. This switch allows us to prove the convergence of the method.
In particular, if the objective function f is a function that satisfies Assumptions 1 and 4,
then the method fits under Assumptions 2 and 3. Thus, Theorem 2 applies to the DQL
method.

The following Theorem shows that Assumption 2 holds for the DQL method.

Theorem 3. Let Assumption 1 hold. If there exists an α > 0 such that δk > α, for all k, then the
DQL method visits only a finite number of points.

Proof. Since the number of points evaluated in an iteration is finite and the number of
iterations in the exploration stage is finite, the evaluated points in the exploration stage of
the DQL method is finite.

In the convergence stage, the DQL method accepts an improvement x if f (x) <

f (xk)− (δk)
2
. Therefore, Theorem 1 can be applied to the convergence stage of the DQL

method. Therefore, the DQL method visits only a finite number of points.

Let Dk be the rotation matrix produced by the DQL method at the iteration k. We
denote the set of the columns of

[
Dk −Dk] as D̄k. We have the following proposition.

Proposition 1. Let D̄k be the set of search directions generated by the DQL method at the iteration
k and n be the dimension of the search space. Then,
(a)
∥∥d̄
∥∥ = 1 for any d̄ ∈ D̄k,

(b) cm(D̄k) = 1√
n .

Proof. This is easy to confirm.

Proposition 1 indicates that in the DQL method, the cosine measure of the set of search
directions and the norm of the search directions are constant, so we can find a lower bound
ε1 for the cosine measure of the set of search directions and a upper bound ε2 for the norm
of the search directions. Therefore, Assumption 3 holds for the DQL method.

We present the following convergence theorem for the DQL method.

Theorem 4. Let {xk} be the sequence of iterations produced by the DQL method to a function
f : Rn → Rn with a compact level set L(x0). In addition, let ∇ f be Lipschitz continuous in an
open set containing L(x0). Then, the DQL method results in

lim inf
k→+∞

‖∇ f (xk)‖ = 0, (26)
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and the sequence of iterates {xk} has a limit point x? for which

∇ f (x?) = 0. (27)

Proof. Theorem 2 applies, since Assumptions 1–4 hold for the DQL method.

3.2. Benchmark for Step Strategies

We have two strategies for the quadratic step and four strategies for the linear step.
We denote a combination of strategies using three indexes as strategy ###. The first index is
the index of the strategy used in the direct step. (We currently have only one option for
the direct step, but we introduce more in the next Section. Hence, we use three indices to
identify each strategy.) The second index is used to indicate the quadratic step, and the
last index is used for the linear step. For example, strategy 111 means the combination of
strategies of the direct step strategy 1, quadratic step strategy 1, and linear step strategy 1.
Moreover, we can disable the quadratic or linear steps, and we denote the disabled step
with 0. This gives us 1× 3× 5 = 15 combinations in total. Notice that the direct step cannot
be disabled because it is crucial to the convergence of the method. We would like to select
the best strategy combination among them.

3.2.1. Stopping Conditions

In order to benchmark these strategy combinations, we need to define the stopping
conditions. For our application, we hope to find an approximate solution that is close to an
actual solution and stable enough for us to conclude that it is close to a critical point. We
therefore stop when both the search step length and infinity norm of the centred simplex
gradient are small enough. Three tolerance parameters ε∇, εMAX_STEP, and εMIN_STEP are
used to define the stopping conditions.

The first parameter ε∇ defines the tolerance for the infinity norm of the centred simplex
gradient. If ∥∥∥∇c f (xk

best; δkDk)
∥∥∥

∞
= max

i

{∥∥∥∇c f (xk
best; δkDk)i

∥∥∥} < ε∇, (28)

then the current solution meets our stability requirement. However, if the current search
step length is too large, then the gradient approximation is not accurate enough to stop.
Thus, we use εMAX_STEP to restrict the search step length. When

δk < εMAX_STEP, (29)

the search step length meets our accuracy requirement. When both stability and accuracy
requirements (Equations (28) and (29)) are met, the method stops. The last parameter
εMIN_STEP is a safeguard parameter to stop the method whenever the search step length is
so small that it could lead to floating-point errors. When

δk < εMIN_STEP, (30)

the method terminates immediately. In addition, the methods stop when the number of
function calls reaches MAX_CALL. This safeguard prevents the method from exceeding the
evaluation budget.

In our benchmark, the parameter settings are shown in Table 2. Since the accuracy of
the centred simplex gradient is in O((δk)

2
) [17], we take ε∇ to be ε2

MAX_STEP.
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Table 2. Parameters for the Performance Benchmark

Parameter Value

ε∇ 10−6

εMAX_STEP 10−3

εMIN_STEP 10−12

MAX_SEARCH 10, 000

δ0 10
γ 0.3
β 3

3.2.2. Performance Benchmark

We used the 59 test functions from Section 2 of [22] and [23]. These problems were
transformed to the sum of square problems to fit into our code environment. The dimen-
sions of these problems range from 2 to 20. A large portion (26%) of the problems are in R5,
which is identical to the first solid-tank design problem discussed in Section 5. We note
that Problem 2.13 and 2.17 from [22] were omitted due to scaling problems.

The benchmarking and analysis followed the processes recommend in [24].
We first solved all the problems using the same accuracy and stability requirement by

the FMINCON function from MATLAB. We used these solutions as a reference to the quality
of our solutions. Then, we solved the problems by each strategy combination and recorded
their number of function calls and the STOP_FLAG.

Since the direct step strategy uses a random rotation, we performed each method
multiple times to obtain its average performance. We denoted the function calls used by
strategy combination s for problem p at trial r as ts,p,r and the average performance of
strategy combination s for problem p as ts,p. If a method failed at some trial, we proceeded
with the next trial until a successful trial or until the evaluation budget was exhausted. If the
method found a solution, then we considered the function calls it used as the summation
among all the previously failed trials plus this successful trial. Therefore, the average
performance of strategy combination s for problem p was defined as

ts,p =
∑r ts,p,r

rtotal − rfail
, (31)

where rtotal is the number of total trials and rfail is the number of failed trials.
If ts,p was larger than MAX_SEARCH, then we said that the strategy combination could

not find the target solution within the evaluation budget and reset ts,p = ∞.
We used the performance profile described in [25] to compare the performance among

the strategy combinations. The performance profile first evaluated the performance ratio,

rs,p =
ts,p

min {ts,p : s ∈ S} , (32)

where S is the set of all strategy combinations. This ratio told us how the performance of
strategy s at problem p compared to the best performance of the strategy at the problem.
Then, we plotted the performance profile of strategy s as

ρs(τ) =
1
|P| |{p ∈ P : rs,p ≤ τ}|, (33)

where P is the set of all problems and | · | denotes the number of elements in a set. The perfor-
mance profile told us the portion of the problems solved by strategy s when the performance
ratio was not greater than a factor τ ∈ R. In all results, we validated the performance profile
by also creating profiles with fewer strategies to check if the switching effect occurred [26].
The switching effect never occurred.
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3.2.3. Discussion on the Experiment Results

The performance profile for all the DQL strategies is shown in Figure 2. From Figure 2,
we can see that the performance profile formed three clusters. The best performing strategy
combinations were strategies 123, 122, 121, 120, and 124. The underperforming strategy
combinations were strategies 102, 103, 101, 100, and 104. In addition, this ranking held for
any τ. We therefore drew the following conclusions.

• Quadratic step strategy 2 outperformed quadratic step strategy 1, which outperformed
disabling the quadratic step. This showed that the quadratic step led to a performance
improvement.

• Linear step strategy 4 was the worst strategy in every cluster. This strategy slowed
down the performance. In addition, linear step strategies 1, 2, and 3 and disabling
the linear step showed a mixed performance. Their performance differences were too
small to find a clear winner.

These conclusions above gave us the insight to develop the SMART DQL method. In the
SMART DQL method, we allow the method to choose the appropriate strategy dynamically
and adaptively. First, since both quadratic step strategies were better than disabling the
quadratic step, we decided to include both quadratic step strategies in the SMART DQL
method. For the linear step strategies, we decided to remove linear step strategy 4 and we
allowed the method to choose appropriate linear step strategies. In addition, we developed
a better rotation strategy that selected the rotation direction using the results of previous
iterations. The SMART DQL method is discussed in the next section.

Figure 2. The performance profile for the DQL method with different strategy combinations.

4. SMART DQL METHOD

In this section we introduce the SMART DQL method. The SMART DQL method
fits under the same framework as the DQL method. However, while the DQL method
applies a static strategy, the SMART DQL method chooses the search strategies dynamically
and adaptively.
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4.1. Frameworks of Smart Steps
4.1.1. Smart Quadratic Step

In the smart quadratic step, we aim to combine both quadratic step strategy 1 and
quadratic step strategy 2. We know that quadratic step strategy 2 performs best compared to
other options, so the method should choose to perform quadratic step strategy 2 whenever
the conditions are met. To perform quadratic step strategy 2, we require that both gradient
and Hessian approximation at xk

0 are well-defined. This can be checked by examining
whether∇2

s f (xk
0; S, {δj

hDj
h}) ∈ Rn×n. If this does not hold, then the method should perform

quadratic step strategy 1. To do so, we require that the 2n + 1 evaluated points from
the previous direct step are well-defined. This can be checked by examining whether
∇c f (xk

0; δkDk) ∈ Rn. The pseudocode for the smart quadratic step is shown in Algorithm 7.

Algorithm 7 SMART_QUADRATIC_STEP(∇c f (xk
0; δkDk), ∇2

s f (xk
0; S, {δj

hDj
h}))

1: if ∇2
s f (xk

0; S, {δj
hDj

h}) ∈ Rn×n then
2: Find Qk using quadratic step strategy 2
3: else
4: if ∇c f (xk

0; δkDk) ∈ Rn then
5: Find Qk using quadratic step strategy 1
6: else
7: Qk ← φ
8: end if
9: end if

10: Return Qk

4.1.2. Smart Linear Step

In the smart linear step, the method should choose among the linear step strategies.
Linear step strategy 4 ranked worse than disabling the linear step. Therefore, we removed
linear step strategy 4 from our strategy pool. Our goal was to design an algorithm that
chose among linear step strategies 1, 2, and 3 to give the method a higher chance to find an
improvement at the current iterate.

We propose that when the last descent distance
∥∥∥xk

0 − xs
0

∥∥∥ is larger than the current
search step length, it is likely that the solution is even further, so the method should
initiate an exploration move. Since linear step strategy 3 had better exploration ability, this
strategy should be initiated under this condition. Notice that linear step strategy 2 had
better exploitation ability, however, it was more computationally expensive than linear
step strategy 1. Thus, linear step strategy 2 should perform better when xk

0 is close to an
approximate solution and linear step strategy 1 should perform better when xk

0 is still far
away from an approximate solution. The comparison between εMAX_STEP and the search
step length is a good indicator for this situation. When the search step length was smaller
than εMAX_STEP, we found that xk

0 was close to an approximate solution, so spending more
effort on local exploitation, i.e., using linear step strategy 2, might give the better result.
In the case when the search step length is larger than εMAX_STEP, the method should spend
less computational power on local exploitation. In some case, such as the first iteration,
the conditions for any of above the linear step strategies do not hold. In this case, the linear
step is disabled. The pseudocode for the smart linear step is shown in Algorithm 8.



Algorithms 2023, 16, 92 17 of 23

Algorithm 8 SMART_LINEAR_STEP(xk
0, xs

0, ∇c f (xk
0; δkDk))

1: if k ≥ 2 and
∥∥∥xk

0 − xs
0

∥∥∥ ≥ δk then

2: Find Lk using linear step strategy 3
3: else
4: if ∇c f (xk

0; δkDk) ∈ Rn then
5: if δk ≤ εMAX_STEP then
6: Find Lk using linear step strategy 2
7: else
8: Find Lk using linear step strategy 1
9: end if

10: else
11: Lk ← φ
12: end if
13: end if
14: Return Lk

4.1.3. Smart Direct Step

In the smart direct step, we aimed to design a rotation strategy that outperformed
random rotation. Particularly, this smart direct step should be a deterministic strategy
such that the method returns the same result for the same problem setup. To design such
an algorithm, we first studied the results from a successful or failed direct, quadratic, or
linear step.

A successful direct step skips both quadratic and linear step and proceeds with the
direct step in the next iteration. In this case, the same search directions should be used
because these directions have proven to be successful.

If the direct step fails, then the method proceeds with the quadratic step. For both
quadratic step strategies, the method builds a quadratic model. If the quadratic step
succeeds, then it is likely that this quadratic model is accurate. Therefore, the method uses
the gradient of this model as desired rotation direction for the direct step.

If the gradient of the quadratic model was 0, then the quadratic step would fail. If the
quadratic step fails, then the method proceeds with the linear step. For any linear step
strategy, if the linear step succeeds, then the direction used in the linear step is likely to be
a good descent direction. Therefore, the direct step uses the same direction as the previous
linear step as the desired direction. Otherwise, if the linear step fails, then we know that
the linear step direction at xk

0 is a nondecreasing direction. Therefore, at iteration k + 1,
the linear step direction at xk+1

0 is set as an undesired direction.
Algorithm 9 provides the pseudocode of the process to determine rk in the direct step.

Note that since the linear step decision process requires information from the previous iter-
ation, at the first iteration, the method uses the coordinate direction as the desired direction.

4.2. Benchmark for SMART DQL Method
4.2.1. Experiment Result

We marked the smart strategy as strategy S, so the strategy SSS of the DQL method is
the SMART DQL method. We performed the numerical experiment with the same setup as
the benchmark for the step strategies from the previous section. Then, we constructed the
performance profile as shown in Figure 3.

4.2.2. Discussion

As we can see from Figure 3, the SMART DQL method preformed best at any given
τ. The SMART DQL method solved more than 45% of the problems as the fastest method.
In addition, it solved more than 75% of the problems, which was more than any DQL
method. Therefore, we attained a considerable improvement over the original DQL method.
In the next section, we apply the SMART DQL method in a real-world application.
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Algorithm 9 DETERMINE_ROTATION_DIRECTION( Dk−1, mk−1(x), dk−1)

1: if k = 1 then
2: rk = e1 is a desired direction
3: else
4: if the direct step at iteration k− 1 succeeds then
5: rk = rk−1

6: else
7: if the quadratic step at iteration k− 1 succeeds then
8: if ∇mk−1(xk

0) = 0 then
9: rk = e1 is a desired direction

10: else
11: rk = ∇mk−1(xk

0) is a desired direction
12: end if
13: else
14: if the linear step at iteration k− 1 succeeds then
15: rk = dk−1 is a desired direction
16: else
17: rk = dk−1 is an undesired direction
18: end if
19: end if
20: end if
21: end if
22: Returnrk

Figure 3. The performance profile for the SMART DQL method and all the DQL methods.

5. Solid-Tank Design Problem
5.1. Background

The solid-tank design problem [16] aims to create a design for a solid-tank fan-beam
optical CT scanner with minimal matching fluid, while maximizing light collection, min-
imizing image artifacts, and achieving a uniform beam profile, thereby maximizing the
usable dynamic range of the system. For a given geometry, a ray-path simulator designed
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by the UBCO gel dosimetry group is available in MATLAB and outputs tank design qual-
ity scores. The simulator is computationally expensive, so the efficiency of the method is
crucial for solving this problem.

In the original problem, there are five parameters that control the geometry design.
As shown in Figure 4, these are block length xbl , bore position xbc, fan-laser position xlp,
lens block face’s semi-major axis length xma, and the lens block face’s eccentricity xbe.

Figure 4. The geometry of the solid-tank fan-beam optical CT scanner.

These parameters give us an input x ∈ R5. The following bounds are the constraints for
the problem.

x =
[
xbl xbc xlp xma xbe

]> ∈ R5 (34)

xbl ≤ 400 (35)

xbl ≥ 2l + 2|xbc| (36)

xbc ∈ [−30, 30] (37)

xlp ∈ [40, 100] (38)

xma ∈ [40, 80] (39)

xbe ∈ [0, 1], (40)

where l = 52 mm (bore radius) + 5 mm (safeguard distance). The parameters xbl , xbc, xlp,
and xma are in mm and xbe is dimensionless.

An advanced version of the simulation software tool is currently being developed. This
version introduces three new variables (xbe2, xecc2 and xd3), resulting in an eight-variable
problem with the following constraints.

x =
[
xbl xbc xlp xma xbe xbe2 xecc2 xd3

]> ∈ R8 (41)

xbl ∈ [2l + 2|xbc|, 400] (42)

xbc ∈ [−40, 40] (43)

xlp ∈ [40, 100] (44)

xma ∈ [40, 160] (45)

xbe ∈ [0, 1] (46)

xbe2 ∈ [70, 120] (47)

xecc2 ∈ [0, 2.5] (48)

xd3 ∈ [0, 400− xbl ], (49)

where l = 52 mm (bore radius) + 5 mm (safeguard distance). The parameters xbl , xbc, xlp,
xma, xbe2, and xd3 are in mm and xbe and xecc2 are dimensionless.
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At this time, the five-variable model is ready for public use. The eight-variable model
is still undergoing detailed physics validation, but will be released along with the solid-tank
simulation software tool. (See Data and Software Availability Statement for release details.)

In this section, we optimize the solid-tank design problems using the DQL and SMART

DQL methods.

5.2. Transforming the Optimization Problem

We defined fsimu : Rn → R as the simulating scores at a given geometry, where n = 5
for the original problem and n = 8 for the redesigned problem. The output was normalized
to give a final value between zero and one. Since the DQL and SMART DQL methods were
designed for minimizing unconstrained problems, we transformed the problems as follows,

−min
{
− fsimu(ProjC(x)) : x ∈ Rn} (50)

where ProjC(x) is the projection of the input x onto the constraints C. For ease of interpre-
tation, we shall report the optimized results as a value between zero and one with the goal
of maximizing this value.

5.3. Experiment Result and Discussion

The stopping parameters for the solid-tank design problems are shown in Table 3; all
other parameters remained the same as in Table 2. The maximum accepted step length
εMAX_STEP was designed to be the target manufacturing accuracy of the design. The min-
imum accepted step length εMIN_STEP was designed to be the manufacturing error of the
design. ε∇ ensured the accuracy of the stability of the solution to be within 10−3.

Table 3. The Stopping Parameters for the Solid-Tank Design Problems

Parameter Value

ε∇ 2× 10−3

εMAX_STEP 0.5
εMIN_STEP 0.001

MAX_SEARCH (n = 5) 5000
MAX_SEARCH (n = 8) 8000

For each experiment, the method was assigned a random initial point within the
constraints. Then, if the method was able to find a solution with unused function calls, it
was assigned with a new initial point and began a new search. This process was repeated
until the evaluation budget was exhausted.

Each experiment was performed with three different profile settings: water, Flexy-
Dos3D, and ClearViewTM. These represented three standard dosimeters used in gel dosime-
try and each had unique optical parameters (index of refraction and linear attenuation
coefficient). As such, we had six related but distinct case problems.

To compare the performance of the DQL and SMART DQL methods, we ran the
experiment with both methods. For each individual case, both methods were assigned the
same list of initial points and evaluation budget. The optimum scores found by different
methods for distinct profiles are shown in Table 4. Recall that values were between zero
and one with the goal of maximizing these values.

Among the six individual tests, the SMART DQL method found a solution with a
higher score for five of them under the same evaluation budget and initial points. In two
cases (n = 8 water and n = 8 ClearViewTM), the SMART DQL method found a significant
improvement. For the only case where DQL returned a higher score (n = 8 FlexyDos3D),
the improvement was only 0.003. This showed that the SMART DQL method was more
reliable in this application than the DQL method. The experiment results agreed with our
conclusion from the performance benchmark.
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Table 4. Optimum Scores for Solid-Tank Design Problem

Dimension Method Water FlexyDos3D ClearViewTM

r 1 = 1.3316 r = 1.4225 r = 1.3447

n = 5 DQL 0.801 0.979 0.952
n = 5 SMART DQL 0.829 0.981 0.956
n = 8 DQL 0.767 0.977 0.686
n = 8 SMART DQL 0.857 0.974 0.831

1 The index of refraction of the corresponding dosimeter.

We show the optima from the SMART DQL method in Tables 5 and 6 for the five- and
eight-variable models, respectively.

Table 5. Optima for Solid-Tank Design Problem (n = 5).

xbl xbc xlp xma xbe
Profile (mm) (mm) (mm) (mm)

Water 252.4 19.2 71.8 70.1 0
FlexyDos3D 282.0 5.8 51.8 67.0 0
ClearViewTM 225.1 21.2 63.1 69.0 0

Table 6. Optima for Solid-Tank Design Problem (n = 8).

xbl xbc xlp xma xbe xbe2 xecc2 xd3
Profile (mm) (mm) (mm) (mm) (mm) (mm)

Water 122.6 −4.3 94.0 79.8 0.8 70.0 0 23.4
FlexyDos3D 114.0 0 100.0 68.3 0.1 70.0 0 0.5
ClearViewTM 114.0 0 100.0 93.3 1.0 70.8 0.3 46.1

We were not able to identify a uniform design that was competitive for all profiles.
The optimal design of the solid tank varied for different models and among different pro-
files. We noticed that in the eight-variable design, the method tried to minimize the block
length xbl and maximize the laser position xlp for both FlexyDos3D and ClearViewTM;
this suggested that further improvement may be gained by extending the range for
these parameters.

6. Conclusions

In this research, we presented a DFO framework that allowed for direct search methods
and model-based methods to be united into a single algorithm.

The DQL framework showed advantages over other methods in the literature. First,
unlike heuristic based methods, convergence was mathematically proven under reasonable
assumptions. Second, unlike more rigid DFO methods, the DQL framework was flexible,
allowing the combination of direct search, quadratic step, and linear step methods into a
single algorithm. This balance of mathematical rigour and algorithmic flexibility created a
framework with a high potential for future use.

The algorithm was further examined numerically. In particular, we benchmarked the
developed DQL method’s strategy combinations to determine the optimal combination.
The benchmark implied that there was no obvious winner. This motivated the development
of the SMART DQL method. We presented the pseudocode for the SMART DQL method
and conducted an additional benchmark. The SMART DQL method outperformed all other
DQL methods in the benchmark. Last, the SMART DQL method was used to solve the
solid-tank design problem. The SMART DQL method was able to produce higher-quality
solutions for this real-world application compared to the DQL method, which verified the
high performance of the decision-making mechanism.

While the DQL and SMART DQL methods both balanced mathematical rigour and
algorithmic flexibility, it is worth noting their drawbacks. The most notable one is that the
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implementations of DQL and SMART DQL are both at the prototype stage. In comparison
to more mature implementations (such as that of SID-PSM [13]), DQL and SMART DQL are
unlikely to compete at this time. Another drawback is the need to asymptotically focus on
direct search to ensure convergence. Further study will work to advance the SMART DQL
method both in the quality of its implementation and the requirements for convergence.
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Abbreviations and Nomenclature
The following abbreviations and nomenclature are used in this manuscript:

DFO Derivative-free optimization
BBO Black-box optimization
MBTR Model-based trust region
MBD Model-based descent
A† Moore–Penrose pseudoinverse Definition 1
∇c f Generalized centred simplex gradient Definition 2
∇2

s f Generalized simplex Hessian Definition 3
cm(D) Cosine measure Definition 4
δk Search step length Section 2
xk

0 Initial search point Section 2
xk

best Current best solution Section 2
D̄k Direct step search directions Section 2.2
Qk Quadratic step search candidates Section 2.3
Lk Linear step search candidates Section 2.4
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