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Abstract: The bi-dimensional F1-Transform was applied in image analysis to improve the perfor-
mances of the F-transform method; however, due to its high computational complexity, the multi-
dimensional F1-transform cannot be used in data analysis problems, especially in the presence of a
large number of features. In this research, we proposed a new classification method based on the
multidimensional F1-Transform in which the Principal Component Analysis technique is applied to
reduce the dataset size. We test our method on various well-known classification datasets, showing
that it improves the performances of the F-transform classification method and of other well-known
classification algorithms; furthermore, the execution times of the F1-Transform classification method
is similar to the ones obtained executing F-transform and other classification algorithms.
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1. Introduction

The Fuzzy Transform technique (for short F-transform) [1] is a fuzzy regression method
introduced to approximate a continuous function of k variables f (x1,x2, . . . , xk) defined in
the domain [a1,b1] × [a2,b2] × . . . × [ak,bk] ⊂ Rk. If this function is known in N points
pj = (pj1, pj2, . . . ,pjk) j = 1, . . . N, it can be approximated by a weighted average whose
weights are constants given by the components of the direct F-transform.

F-transform was applied in many image and data analysis problems. An exten-
sive description of the F-transform-based techniques used in image and data analysis is
given in [2].

In [3] a generalization of the F-transform, called high degree F-transform and labelled
with Fs-transform (s ≥ 0) was proposed, where the F-transform is given by the zero-
degree F0-transform. In the Fs-transform, with s > 0, the constant components of the direct
F-transform, were replaced by s-degree polynomial components with the aim to capture
more information about the original function. The greater the polynomial degree, the finer
the approximation of the original function; however, as the polynomial degree increases, the
computational complexity of the algorithm that uses the FS transform increases considerably.
In addition, the meeting of the constraint of sufficient data density with respect to fuzzy
partitions further requires additional consumption of memory resources and CPU time [2,4].

Some researchers apply the F1-transform in image analysis, in which only two input
variables are used, and the sufficient data density constraint is always met. In [5,6] an
algorithm based on the F1-transform in two variables was applied in an image processing
edge detection problem. In [7] a lossy image compression method based on the F1-transform
in two variables is proposed; the authors show that this method improves the decoded
image quality obtained using the F-transform image compression [8]. In [9] a hybrid
deep neural network in which the Fs-transform is used in image analysis to construct in a
preprocessing phase the convolution kernels in the first two layers of the network.
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Generally, when the multidimensional F-transform is applied in classification, re-
gression, and prediction problems, as the dimensionality of the data increases, the com-
putational complexity greatly increases; for this reason, the application of high-order
F-transforms in data regression or classification has a high computational complexity, in
terms of memory and time consumption, especially in the presence of massive multidi-
mensional data [4]. An application of the first-order unidimensional fuzzy transform was
proposed in [10] where the unidimensional F1-transform is applied to seasonal time series
weather datasets in a seasonal forecasting model. Comparison tests show that this model
improves the forecasting time series performances obtained by applying the F0-transform
model proposed in [11,12]. In [13] the F1-transform is applied to remove seasonal compo-
nents and noise in time series.

Recently, in [14] a new classification algorithm based on the multidimensional F0-transform
for massive datasets called Multi-dimensional F-transform Classification (for short, MFC),
was proposed. In MFC the K-fold cross-validation technique is applied to avoid overfitting
in the data; the multidimensional direct F0-transform is applied to each fold and a weighted
mean of the multi-dimensional inverse F0-transform calculated from the direct F0-transform
components obtained in each fold is used to classify data points. Comparisons with well-
known classification algorithms showed that MFC has better classification performances
than Naive Bayes [15] and Lazy Bk [16] and is comparable with respect to the ones obtained
by using Decision tree J48 [17] and Multilayer Perceptron [18] algorithms. On the other
hand, the main drawback of this method is the high computational complexity that is
reached when the number of features increases.

In [19] a hybrid fast classification method based on F-transform and Principal Com-
ponent Analysis (for short, PCA) [20–23] is proposed. This method is tested to classify
images; the results show that it improves the success rate and computation time obtained
by applying the F-transform algorithm.

PCA is a well-known dimensionality reduction multivariate statistics technique whose
goal is to reduce the number of features of a dataset by losing the least amount of informa-
tion possible. PCA is one of the most used feature extraction techniques in data analysis.
Its strong point is to be able to reduce the dimensionality of the data, while preserving their
information content.

In this research, we propose a hybrid classification method applied to massive data
including the PCA and the multidimensional F1-transform techniques. The main goals of
the proposed method are:

- Improve the MFC classification performances; the application of the multidimensional
direct and inverse F1-transform allows to increase the accuracy and precision of the
classifier with respect to the use of the multidimensional F-transform.

- Significantly reduce the time and memory consumption executing the PCA feature
extraction algorithm in the preprocessing phase to reduce the dimensionality of
the data.

In Section 2, the concepts of multidimensional direct and invers F1-transform are
introduced and the PCA algorithm is synthetized. Section 3 is focused on the analysis of
the architecture and functional characteristics of our classification method based on the
multidimensional F1-transform. The results of experimental tests are discussed in Section 4.
Finally, in Section 5 the conclusions and future perspectives are included.

2. Preliminaries
2.1. Principal Component Analysis

Data dimensionality reduction techniques are divided into feature selection and feature
extraction techniques. Feature selection techniques, such as random forest or grid search
algorithms, select a subset of the original features in order to reduce the complexity and
computational efficiency of the model. Conversely, feature extraction techniques extract
information from the original features set and create a new features subspace. While
feature selection techniques aim to select the most significant features, discarding the less
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significant ones from the set of original features, feature extraction techniques construct a
new reduced set of features, starting from the existing ones, able to synthesize most of the
information contained in the original set of features.

The use of feature selection techniques is preferable when the explainability of the
model and the semantic meaning of the features are required; feature extraction techniques
are used to reduce the model complexity, improving its predictive performance.

PCA is one of the most used feature extraction techniques in data analysis. Its strong
point is to be able to reduce the dimensionality of the data, while preserving their informa-
tion content.

Let D be the original dataset with s features X1, . . . , Xs and N instances. The ith
instance is characterized by a vector (xi1, xi2, . . . , xis)T where xij is the value of the ith
instance in correspondence to the jth feature.

Let mj be the mean value of the jth feature, given by:

mj =
1
N ∑N

i=1 xij j = 1, . . . , s (1)

and stj the standard deviation is given by:

stj =

√
1
N ∑N

i=1

(
zij −mj

)2 j = 1, . . . , s (2)

To remember this definition, we can break it down into eight steps:

1. The aim of this phase is to standardize the range of the initial variables so that each
one of them contributes equally to the analysis. For each instance xij, its normalized
value is computed, given by:

zij =
xij −mj

sj
i = 1, . . . , N j = 1, . . . , s (3)

2. The relationships among features are analyzed by computing the symmetric covari-
ance matrix C = ZTZ, where ZT is the transpose of the normalized matrix Z. The
components of C are given by

Cjk =
1

N− 1 ∑N
i=1 zji·zik j, k = 1, . . . , s (4)

3. In this phase, the s eigenvalues and the s eigenvectors of the covariance matrix are
extracted. The eigendecomposition of C is where we decompose C into VDV−1, where
V is the matrix of eigenvectors and D is a diagonal matrix in which the diagonal
components are the eigenvalues λi i =1, . . . ,s and the other elements are equal to 0.

4. The eigenvalues on the diagonal of D will be associated with the corresponding
column in P—that is, the first element of D is λ1 and the corresponding eigenvector
is the first column of P. This holds for all elements in D and their corresponding
eigenvectors in P. We will always be able to calculate PDP−1 in this fashion.

5. In this phase the s eigenvalues are sorted in descending order; in the same way the
corresponding eigenvectors in the matrix V are ordered, obtaining the matrix V′,
whose columns correspond to the ordered eigenvectors.

6. The normalized data matrix Z is transformed in the matrix of the principal components
Z′ multiplying Z by the ordered matrix of the eigenvectors V′: Z′ = ZV′.

7. The significant principal components are selected by analyzing the eigenvalues, sorted
in descending order. Three heuristic criteria are generally used for the choice of the
number of components:

- Select only the main components corresponding to the eigenvalues whose sum,
compared to the sum of all the eigenvalues, is greater than or equal to a specific
threshold, for example, 80% or 90%.
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- Adopt the Kaiser criterion, in which only those components are selected which
correspond to an eigenvalue greater than or equal to 1, or, equivalently, the
components that have variance greater than the average.

- Build the eigenvalue graph, called Scree Plot, and select the number of compo-
nents corresponding to the elbow point beyond which the graph the eigenvalues
stabilizes.

8. The reduced dataset is constructed considering only the significant principal compo-
nents.

2.2. Multidimensional F-Transform

Let f : X ⊆ Rn → Y⊆ R be a continuous n-dimensional function defined in a closed
interval X = [a1,b1] × [a2,b2] × . . . × [an,bn] ⊆ Rn and known in a discrete set of N points
P = {(p11, p12, . . . , p1n), (p21, p22, . . . , p2n), . . . , (pN1, pN2, . . . ,pNn)}.

For each i = 1, . . . ,n let xi1, xi2, . . . , ximi with mi ≥ 2 be a set of mi points of [ai,bi],
called nodes, such that xi1 = ai < xi2 < . . . < ximi = bi.

For each i = 1, . . . ,n let Ai1, Ai2, . . . , Aimi: [ai, bi]→ [0,1] be a family of fuzzy sets
forming a fuzzy partition of [ai,bi], where:

1. Aih(xih) = 1 for every h =1,2, . . . , mi;
2. Aih(x) = 0 if x is not in (xih−1, xih+1), where we assume xi0 = xi1 = ai and xin+1 = xin = bi

by commodity of presentation;
3. Aih(x) strictly increases on [xih−1, xih] for h =2, . . . , mi and strictly decreases on

[xih, xih+1] for h = 1, . . . , mi − 1;
4. ∑mi

h=1 Aih(x) = 1 for every x ∈ [ai, bi].

The fuzzy sets Ai1, Ai2, . . . , Aimi are called basic functions.
Let ci = (bi − ai)/(mi − 1). The basic functions Ai1, Ai2, . . . , Aimi form a uniform fuzzy

partition of [ai,bi] if:

5. mi ≥ 3 and the nodes are equidistant, i.e., xih = ai + di · (h− 1), where di = (bi − ai)/(mi − 1)
and h = 1, 2, . . . , mi.

6. Aih(xih − x) = Aih(xih + x) ∀ x ∈ [0,h] and ∀ h = 2, . . . , mi − 1;
7. Aih + 1(x) = Aih(x − di) ∀ x ∈ [xih, xih + 1] and ∀ h = 1,2, . . . , mi − 1.

We say that the set P = {(p11, p12, . . . , p1n), (p21, p22, . . . , p2n), . . . ,(pN1, pN2, . . . ,pNn)}
is sufficiently dense w.r.t. the set of fuzzy partitions

{
A11A12 . . . A1m1

}
, . . . ,

{
Ai1Ai2 . . . Aimi

}
,

. . . , {An1An2 . . . Anmn} if for each combination A1h1A2h2 . . . Anhn exists at least a point
pj = (pj1, pj2, · · · , pjn) ∈ P, such that A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn) > 0. In this case,
we can define the direct multidimensional F-transform of f with the (h1,h2, . . . ,hs)th
component Fh1h2 ...hn given by

Fh1h2 ...hn =
∑N

j=1 f (pj1, pj2, . . . pjn) ·A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

∑N
j=1 A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

(5)

The multidimensional inverse F-transform, calculated in the point pj, is given by:

f F
n1n2 ...ns(pj1, pj2, . . . , pjn) =

m1

∑
h1=1

m2

∑
h2=1

. . .

mn

∑
hn=1

Fh1h2 ...hn ·A1h1(pj1) · . . . ·Anhn(pjn) (6)

It approximates the function f in the point pj. In [11,12] the multidimensional inverse
F-transform (6) is applied in regression analysis to find dependencies between attributes
in datasets.

To highlight the use of the multidimensional F-transform, consider, as an example, a
dataset, given by two input features defined in the close intervals, respectively, [1.1, 4.9]
and [0.1, 1.0].
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Suppose we create for each of the two input variables a fuzzy partition consisting of
three basic functions, setting m1 = 3 and m2 = 3. We obtain c1 = 1.9 and c2 = 0.45.

Table 1 shows the values of the three nodes for the two input variables.

Table 1. Set of nodes of the two input variables in the example.

Input Variable Node Value

First variable
x1 1.1
x2 3.0
x3 4.9

Second variable
y1 0.1
y2 0.55
y3 1.0

Figure 1 shows the points in the input variable plane. The four rectangles are drawn to
show that the dataset is sufficiently dense with respect to the set of the two fuzzy partitions
{A11, A12, Ai3} and partitions {A21, A22, A23}. In fact, in each rectangle in the figure, there
is at least one point; this implies that for every combination of basic functions A1i, A2i
i = 1,2,3, there exists at least one point pj = (pj1,pj2) such that A1i (pj1) A2i (pj1) 6= 0.
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Since the data are sufficiently dense with respect to the sets of fuzzy partitions, it
is possible to apply Equation (5) to calculate the components of the multidimensional
direct F-transform Fh1h2 h1, h2 = 1,2,3. Finally, Equation (6) can be applied to calculate
the multidimensional inverse F-transform in a point p; it approximates the function f in
that point.

2.3. High Degree F-Transform

This paragraph introduces the concept of higher degree fuzzy transform or Fr-transform.
One-dimensional square-integrable functions will now be considered.

Let Ah, h = 1, . . . ,n, be the hth basic function defined on [a,b] and L2([xh−1,xh+1]) be the
Hilbert space of square-integrable functions f,g: [xh−1,xh+1] −→ R with the inner product:

〈 f , gh〉 =

∫ xh+1
xh−1

f (x)g(x)Ak(x)dx∫ xh+1
xh−1

Ah(x)dx
(7)
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Let Lr
2([xh−1,xh+1]), with r positive integer, be a linear subspace of the Hilbert space

L2([xh−1,xh+1]) with orthogonal basis given by polynomials {P0
h, P1

h, . . . ,Pr
h} obtained

applying the Gram-Schmidt orthonormalization to the linear independent system of poly-
nomials {1, x, x2, . . . , xr} defined in the interval [xh−1,xh+1]. We have:

P0
h = 1

Ps+1
h = xs+1 −

s
∑

j=1

〈xs+1, Pj
h〉

〈Pj
h, Pj

h〉
s = 1, . . . , r− 1 (8)

The following Lemma holds (Cfr. Perfilieva et al., 2011 [3], Lemma 1) :

Lemma 1. Let Fr
k be the orthogonal projection of the function f on Lr

2([xh−1,xh+1]). Then:

Fr
h(x) =

r

∑
s=1

ch,iPs
h(x) (9)

where

ch,s =

〈
f, Ps

kh
〉

k〈
Ps

h, Ps
h
〉

h
=

∫ xk+1
xk−1

f (x)Ps
h(x)Ah(x)dx∫ xk+1

xk−1
(Ps

h(x))
2Ah(x)dx

(10)

Fr
h it is the h-th component of the direct Fr-transform of f Fr[f] = (Fr

1, Fr
2, . . . ,Fr

n).
The inverse Fr-transform of f in a point x ∈ [a,b] is:

f r
F,n(x) =

n

∑
k=1

Fr
hAk(x) (11)

For r = 0 we have P0
h = 1 and the F0-transform is given by the F-transform in one

variable (F0
h(x) = ch,0).

For r = 1 we have P1
h = (x − xh) and the h-th component of the F1-transform is given

by the formula:
F1

h(x) = ch,0 + ch,1 (x − xh) = F0
h(x) + ch,1 (x − xh) (12)

If the function f is known in a set of N data points p1, . . . pN, ch,0 and ch,1 can be
discretized in the form:

ch,0 =
∑n

i=1 f (pi)Ah(pi)

∑n
i=1 Ah(pi)

(13)

ck,1 =
∑n

i=1 f (pi)(pi − xh)Ah(pi)

∑n
i=1 Ah(pi)(pi − xh)

2 (14)

Likewise, let L2 ([xk1−1, xk1+1] × [xk2−1,xk2+1] × . . . × [xkn−1, xkn+1]) be the Hilbert
space of square- integrable n-variables functions f : [xk1−1, xk1+1] × [xk2−1,xk2+1] × . . . ×
[xkn−1, xkn+1]→ R with the weighted inner product:

f , gh1h2···hn =

xh1+1∫
xh1−1

xh2+1∫
xh2−1

· · ·
xhn+1∫

xhn−1

f (x1, x2, · · · , xn)g(x1, x2, · · · , xn)Ah1(x1)Ah2(x2) · · ·Ahn(xn)dx1 · · ·dxn (15)

Two function f , g ∈ L2([xh1−1, xh1+1] × [xh2−1,xh2+1] × . . . × [xhn−1, xhn+1]) are or-
thogonal if 〈 f , g〉h1h2···hn = 0 .

Let f : X ⊆ Rn → Y⊆ R be a continuous n-dimensional function defined in a closed set
[a1,b1] × [a2,b2] × . . . × [an,bn]. Let Ahk, k = 1, . . . ,nk, be the kth basic function defined
on the interval [ah,bh] and L2([xh,k−1,xh,k+1]) be the Hilbert space of square-integrable
functions f,g: [xh,k−1,xh,k+1] −→ R.
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The inverse F1-transform of f in a point x = (x1, x2, . . . , xn) ∈ [a1,b1] × [a2,b2] × . . . ×
[an,bn] is:

f 1
F,n(x) =

m1

∑
h1=1

m2

∑
h2=1

. . .

mn

∑
hn=1

F1
h1h2 ...hn

·A1h1(x1) · . . . ·Anhn(xn) (16)

where F1
h1h2 ...hn

(x) is the (h1, h2, . . . , hn)th component of the direct F1-transform, given by
the formula:

F1
h1h2 ...hn

(x) = c0
h1h2 ...hn

+

n

∑
s=1

c1s
h1h2 ...hn

· (xs − xht) (17)

If f is known in a set of N n-dimensional data points p1, . . . pN where pi = (pi1, pi2,
. . . , pin), we obtain:

c0
h1h2 ...hn

= Fh1h2 ...hn =
∑N

j=1 f (pj1, pj2, . . . pjn) ·A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

∑N
j=1 A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

(18)

c1s
h1h2 ...hn

=
∑N

j=1 f (pj1, pj2, . . . pjn) · (pjs − xhs) ·A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

∑N
j=1(pjs − xhs)

2 ·A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)
(19)

where c0
h1h2 ...hn

is the component Fh1h2 ...hn of the multidimensional discrete direct F trans-
form of f, given by (5).

3. The F1-Transform Classification Method

The proposed classification method executes the multidimensional F1-transform to
classify data points. The method is schematized in Figure 2.
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(pj1) ⋅ A2h2
(pj2) ⋅. . .⋅ Anhn

(pjn)N
j=1

   (19) 
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In a pre-processing phase, PCA is executed in order to reduce the number of features.
The scree plot method is applied to detect the principal components. The eigenvalues
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are sorted in ascending order to create the Scree Plot; then, the elbow point is set; the
features corresponding to the eigenvalues under the elbow point on the y-axis will be
deleted. Output of the pre-processing phase is the new reduced dataset in the transformed
coordinates.

The F1-transform classifier follows the strategy adopted in the MFC algorithm [14].
Initially the classification accuracy threshold is set to θ and coarse-grained fuzzy partitions
are created (n = 3). After creating the fuzzy partitions of the domains of each feature the
algorithm checks that the data are sufficiently dense with respect to the fuzzy partitions; if
they are, then the direct and inverse F1-transforms are computed, otherwise, the algorithm
terminates because the cardinality of the fuzzy partitions is too fine compared to the density
of data points in the feature space and the direct F1-transform cannot be computed.

The Calculate CA index component measures the accuracy of the classification. To
classify a data point we adopt the following method applied in [9].

Let C be the number of classes and let l1, l2, . . . , lC be the labels of the C classes. Let
pj = (pj1, pj2, . . . , pjn, mj) the jth data point, where mj is the position of the corresponding class.

The components of the F1-transform (18) and (19) are given by:

c0
h1h2 ...hn

= Fh1h2 ...hn =
∑N

j=1 mj ·A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

∑N
j=1 A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

(20)

c1s
h1h2 ...hn

=
∑N

j=1 mj · (pjs − xhs) ·A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)

∑N
j=1(pjs − xhs)

2 ·A1h1(pj1) ·A2h2(pj2) · . . . ·Anhn(pjn)
(21)

Let f 1
F,n(pj) the inverse F1-transform computed by (16). The index of the class assigned

to the data point pj is given by an integer m̂j in {1,2, . . . ,C} given by:

m̂j =

[
min

m=1,...,C

(∣∣∣f1
F,n(pj)−m

∣∣∣)] (22)

where [a] stands for the greatest integer containing the positive real number a.
The classification accuracy CA is given by the ratio between the number of data points

correctly classified and the total number of data points.
If CA is less than the threshold θ, then finer fuzzy partitions with n + 1 fuzzy sets are

created and the process is iterated. Otherwise, the F1-transform classifier ends, storing the
coefficients of the final direct F1-transform: c0

h1h2 ...hn
and c11

h1h2 ...hn
· · · c1n

h1h2 ...hn
computed,

respectively by (18) and (19).
A new input data x = (x1, x2, . . . , xn) will be classified computing the inverse F1-

transform f 1
F,n(x) by (16) and assigning it the wth class by (20).

The F1-transform classification algorithm is schematized below (Algorithm 1):

Algorithm 1. F1-transform classification

1. Execute the PCA feature reduction algorithm
2. Use the Scree plot method to reduce the number of features
3. Create the reduced dataset
4. Set the accuracy threshold θ

5. n:=3
6. CA:=0 // initialize the CA index to 0
7. While CA < θ

8. Create the n-size fuzzy partitions of the feature domains
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Algorithm 1. Cont.

9. If data are sufficiently dense with respect to the n-dimensional fuzzy partitions Then
10. Calculate the direct F1-transform by (17)
11. Calculate the inverse F1-transform by (16)
12. Calculate the CA index
13. If CA ≥ θ Then
14. Store the direct F1-transform coefficients c0

h1h2 ...hn
and c11

h1h2 ...hn
· · · c1n

h1h2 ...hn

15. Return “Data classified”
16. End if
17. ld>17. Else
18. Return “Data cannot be classified”
19. ld>19. End if
20. n:= n+1
21. End While

4. Experimental Results

We tested the F1-transform classification method on various classification datasets
extracted from the UC Irvine Machine Learning Repository. Table 2 shows the size and the
number of features of the classification datasets used in these comparison tests.

Table 2. Datasets in the UCI machine learning datasets used in the comparison analysis.

Dataset Number of Data Points Number of Features

Adult 48,842 14
Balance Scale 625 4
Bank Marketing 41,188 17
Breast cancer 286 9
Echocardiogram 132 12
Ecoli 336 7
Heart disease 303 14
Hepatitis 155 19
Thyroid disease 7200 21
Wine quality—red wine 1599 12
Wine quality—white wine 4898 12

To measure the classification performances, we compared the F1-transform method
with the Support Vector Machine (SVM) [24], Random Forest (RF) [25], Artificial Neural
Network (ANN) [26], and the MFC classification algorithm (MFC) [14].

Our comparison tests were executed using an Intel Core I7 processor having a 5.4 GHz
clock frequency.

After removing ambiguous data points, each dataset was randomly segmented into a
training and a test set, containing 80% and 20% of the data points, respectively.

While running RF the number of decision trees is set to 100. The Radial Basis kernel
function is used to execute SVM, setting the parameters c and gamma, respectively, to 1.0
and 0.1. ANN is executed by constructing a network having two hidden layers, and setting
to 100 the maximum number of epochs.

For brevity, we show the complete results obtained for three classification datasets:
the two datasets Red and White Wine Quality and the dataset Adult.

4.1. Red and White Wine Quality Classification Dataset

The red and white wine quality datasets are two classification datasets used to classify
the quality of red and white variants of the Portuguese vinho verde wine.

The data points are vectors given by 11 physicochemical features. In Table 3 all the
features are described.
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Table 3. Red and white wine datasets: Description of the features.

Feature Name Description Type of Field

fixed acidity tartaric acid (g/dm3) Continuous
volatile acidity Acetic acid (g/dm3) Continuous
citric acid Citric acid (g/dm3) Continuous
residual sugar Residual sugar (g/dm3) Continuous
chlorides Sodium chloride(g/dm3) Continuous
free sulfur dioxide Free sulfur dioxide (mg/dm3) Continuous
total sulfur dioxide Total sulfur dioxide (mg/dm3) Continuous
density Density (g/cm3) Continuous
pH pH Continuous
sulphates Potassium sulphate (g/dm3) Continuous
alcohol Alcohol (vol.%) Continuous
quality Wine quality List (an integer from 0 to 10)

The last feature, called quality, is the output feature containing the class of wine quality
in a scale between 0 (very bad) to 10 (excellent).

The white wine quality dataset contains 4898 data points, and the red wine quality
dataset contains 1599 data points. The two datasets are unbalanced, with over 70% of the
data points classified with quality five and six. Paragraphs 4.1.1 and 4.1.2 show the results
obtained, respectively, for the white and for the red wine quality datasets.

4.1.1. White Wine Quality Dataset—Classification Results

Now we show the results obtained on the white wine-quality dataset.
In the preprocessing phase, the PCA algorithm was executed on the training set.

In Figure 3 the scree plot is shown. The orange line highlights the elbow point. In the
transformed training set, the size of the data points is reduced from eleven to five. Then, the
F1-transform classification algorithm is executed on the transformed training set. Finally, the
stored final F1-transform coefficients are used to classify the data points in the transformed
test set.
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elbow point.

We compare the classification results with the ones obtained executing SVM, RF, ANN,
and MFC on the original training set.

Table 4 shows the accuracy, precision, recall, and F1-score measures computed on the
training and test sets executing the five classification methods.
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Table 4. White wine dataset: Classification performance comparison.

Phase Method Accuracy Precision Recall F1-Score

Training

SVM 0.75 0.77 0.74 0.75
RF 0.73 0.76 0.71 0.73
ANN 0.78 0.79 0.77 0.78
MFC 0.76 0.77 0.75 0.76
F1-transform 0.83 0.82 0.83 0.82

Test

SVM 0.74 0.75 0.74 0.74
RF 0.73 0.74 0.71 0.72
ANN 0.77 0.80 0.77 0.79
MFC 0.76 0.76 0.74 0.76
F1-transform 0.82 0.81 0.82 0.81

The results in Table 3 show that the best performances are obtained by executing the
F1-transform classification method. The F1-transform method improves the classification
accuracy obtained by executing ANN by about 5% on the training and test sets; it improves
the one obtained by executing MFC by about 7% on the training set and 6% on the test set.

4.1.2. Red Wine Quality Dataset—Classification Results

The PCA algorithm was executed on the training set. Figure 4 shows the scree plot.
The orange line highlights the elbow point.
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Figure 4. Scree plot obtained for the red wine quality training set; the orange line shows the
elbow point.

As well as for the white wine quality training set, the size of the data points in the
transformed training set is reduced from eleven to five.

Table 5 shows the Accuracy, Precision, Recall, and F1-score measures computed on the
training and test sets executing the five classification methods.

The results of the tests applied on the red wine quality dataset confirm that the
best performances are obtained executing the F1-transform classification method The
F1-transform method improves the classification accuracy of MFC by about 5% on both
training and test sets.
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Table 5. Red wine dataset: Classification performance comparison.

Phase Method Accuracy Precision Recall F1-Score

Training

SVM 0.68 0.68 0.67 0.67
RF 0.70 0.68 0.66 0.67
ANN 0.72 0.71 0.69 0.72
MFC 0.69 0.69 0.68 0.69
F1-transform 0.76 0.74 0.75 0.75

Test

SVM 0.69 0.69 0.67 0.68
RF 0.69 0.68 0.67 0.68
ANN 0.72 0.73 0.72 0.72
MFC 0.70 0.70 0.71 0.70
F1-transform 0.75 0.76 0.75 0.75

The F1-transform method improves the classification accuracy obtained by executing
ANN by about 4% on the training set and 3% on the test set; it improves the one obtained
by executing MFC by about 7% on the training set and 5% on the test set.

4.2. Adult Classification Dataset

The Adult dataset contains information extracted from the United States census bureau
database, which includes information on residents of various states to determine whether a
citizen earns more or less than 50K USD per year.

The training set contains 32,561 unambiguous data points; the data points are vectors
formed by fourteen input features, four continuous and ten categorical. The test set contains
16,282 unambiguous data points. Table 6 shows the description of each feature.

Table 6. Adult dataset: Description of the features.

Feature Name Description Type of Field

age Age Continuous
workclass Work class List
fnlwgt Survey weight Continuous
education Education List
education-num Education number Continuous
marital status Marital status List
occupation Occupation List
relationship Type of relationship List
race Race List
sex Gender List: (Female, Male)
capital-game Capital-game Continuous
capital-loss Capital-loss Continuous
hours-per-week Hours of work per week Continuous
native-country Native country List:
class Annual income List: (<=50 K, <50 K)

The output class feature, called class, assumes two values, depending on whether the
person makes over 50K or under 50K USD a year. The dataset is unbalanced, where over
75% of the data points are classified with an annual income under 50K USD.

To execute F1-transform, all the categorical features were transformed into integers
assigning to each term in the list of values an integer starting from 1 to the number of
unique values.

PCA is executed in order to reduce the number of features. Figure 5 shows the scree
plot and the elbow point set to 2.5. The first nine components are selected and the input
features are reduced from fourteen to nine.
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Then, the F1-transform classification method is applied to the reduced training set.
The comparison results with SVM, RF, ANN, and MFC are shown in Table 7.

Table 7. Adult dataset: Classification performance comparison.

Phase Method Accuracy Precision Recall F1-Score

Training

SVM 0.87 0.85 0.84 0.84
RF 0.85 0.84 0.83 0.83
ANN 0.88 0.86 0.86 0.86
MFC 0.86 0.85 0.85 0.85
F1-transform 0.93 0.89 0.90 0.89

Test

SVM 0.87 0.86 0.85 0.85
RF 0.85 0.83 0.82 0.67
ANN 0.88 0.87 0.86 0.86
MFC 0.87 0.86 0.86 0.86
F1-transform 0.92 0.91 0.90 0.90

Even in this case, the best performances are obtained executing F1-transform.
The F1-transform method improves the classification accuracy obtained by executing

ANN by about 4% on the training set and 3% on the test set; it improves the one obtained
by executing MFC by about 5% on the training set and 4% on the test set.

Table 8 shows, for each dataset, the final classification accuracy and the CPU time
measured executing the five algorithms.

Table 8. Classification Accuracy and CPU time comparison results.

Dataset Method SVM RF ANN MFC F1-tr

Adult
Accuracy 0.87 0.85 0.88 0.86 0.93
CPU time (s) 858.22 849.74 915.19 881.86 877.37

Balance scale
Accuracy 0.95 0.92 0.96 0.95 0.98
CPU time (s) 26.48 26.19 28.41 27.63 26.92

Bank Marketing Accuracy 0.77 0.75 0.78 0.77 0.82
CPU time (s) 832.31 823.09 944.56 867.83 864.95

Breast cancer
Accuracy 0.90 0.88 0.91 0.90 0.94
CPU time (s) 31.67 31.78 33.59 32.06 31.78
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Table 8. Cont.

Dataset Method SVM RF ANN MFC F1-tr

Diabetes
Accuracy 0.73 0.73 0.76 0.75 0.77
CPU time (s) 44.77 43.46 47.09 45.02 44.91

Echocardiogram Accuracy 0.75 0.73 0.75 0.74 0.78
CPU time (s) 31.67 30.93 33.10 31.28 31.32

Ecoli
Accuracy 0.79 0.78 0.81 0.79 0.83
CPU time (s) 32.65 32.38 34.32 32.77 32.82

Heart disease
Accuracy 0.83 0.82 0.85 0.85 0.87
CPU time (s) 37.79 37.56 40.18 38.51 38.47

Hepatitis Accuracy 0.88 0.89 0.91 0.89 0.93
CPU time (s) 42.61 42.49 44.26 42.68 42.73

Thyroid disease Accuracy 0.95 0.94 0.97 0.96 0.99
CPU time (s) 103.34 102.85 113.93 102.98 102.87

Wine quality—red wine Accuracy 0.68 0.70 0.72 0.69 0.76
CPU time (s) 67.52 66.81 69.54 68.15 68.23

Wine quality—white wine Accuracy 0.75 0.73 0.78 0.76 0.83
CPU time (s) 58.60 58.46 59.87 58.72 58.85

In all cases the F1-transform method improves the final accuracy obtained execut-
ing SVM, RS, ANN, and MFC; the final accuracy obtained using F1-transform improves
that obtained using MFC by a value ranging between 2% (dataset Diabetes) and 7%
(dataset Adult).

The CPU times employed by executing F1-transform are compatible with the ones em-
ployed by executing the other four classification algorithms. In fact, even if the construction
of the multidimensional F1-transform in the proposed algorithm requires more computa-
tional expenditure than that necessary to construct the multidimensional F-transform in the
MFC algorithm, the application of the PCA algorithm in the preprocessing phase allows for
the reduction of the size of the data points, reducing, thus, the computational complexity.
The results show that the F1-transform classification method improves the classification
accuracy of all other classification methods, with CPU times comparable with those of
MFC. In fact, the classification accuracy of F1-transform improves that of MFC by a value
between 2% and 7% and the CPU times are similar to those obtained by running MFC.

In a nutshell, in all tests performed F1-transform produces classification accuracy better
than that obtained with other classifiers and compatible execution times. In particular, the
results in Table 8 show that:

- The F1-transform classifier improves the accuracy obtained with MFC by a percentage
in the range between 2% and 7%;

- Even if the computation times of the multidimensional F1-transform are higher than
those of the multidimensional F-transform, the proposed classification algorithm has
execution times similar to those of MFC.

A possible critical point of F1-transform consists of the choice of the elbow point in the
scree plot obtained by executing the PCA method in the preprocessing phase. In all the
tests performed in the scree plot obtained, there is a sudden change in slope which allows
the elbow point to be easily recognized. It could happen that this trend change in the scree
plot is not so evident, to the point of not allowing the precise definition of the elbow point.
In these cases, the solution could be to run F1-transform multiple times, each time choosing
a different number of main components and selecting the one that produces the greatest
accuracy. However, this solution can significantly increase the CPU times of the algorithm.
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5. Conclusions

We propose a classification method based on the multidimensional F1-transform in
which the PCA technique is applied in the preprocessing phase to reduce the size of the
features. The main aim of this research is to improve the accuracy of the MFC classification
algorithm based on the multidimensional F-transform, without further increasing the
processing times.

We compared the performances of the proposed classification method both with those
of MFC and with those of the well-known SVM, Random Forest, and ANN classification
algorithms; the comparative tests were performed on classification datasets of the UCI
machine learning repository.

The results show that the multidimensional F1-transform classification algorithm in-
creases the classification performances obtained executing SVM, Random Forest, ANN, and
MFC; in addition, the execution times are comparable with the ones obtained running MFC.

We intend to carry out future research to test the use of the classification method
based on the multidimensional F1-transform on a more extensive and varied set of datasets,
adapting the method to the management of ambiguous data points.
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