
Citation: Chen, J.-S.; Kuo, C.-M.;

Hung, R.-W. An Efficient GNSS

Coordinate Recognition Algorithm

for Epidemic Management.

Algorithms 2023, 16, 132. https://

doi.org/10.3390/a16030132

Academic Editors: Dmytro

Chumachenko and Sergiy Yakovlev

Received: 15 December 2022

Revised: 18 February 2023

Accepted: 20 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An Efficient GNSS Coordinate Recognition Algorithm for
Epidemic Management
Jong-Shin Chen 1,* , Chun-Ming Kuo 1 and Ruo-Wei Hung 2,*

1 Department of Information and Communication Engineering, Chaoyang University of Technology,
Taichung 413310, Taiwan

2 Department of Computer Science and Information Engineering, Chaoyang University of Technology,
Taichung 413310, Taiwan

* Correspondence: jschen26@cyut.edu.tw (J.-S.C.); rwhung@cyut.edu.tw (R.-W.H.)

Abstract: Many highly contagious infectious diseases, such as COVID-19, monkeypox, chickenpox,
influenza, etc., have seriously affected or currently are seriously affecting human health, economic
activities, education, sports, and leisure. Many people will be infected or quarantined when an
epidemic spreads in specific areas. These people whose activities must be restricted due to the
epidemic are represented by targets in the article. Managing targets by using targeted areas is an
effective option for slowing the spread. The Centers for Disease Control (CDC) usually determine
management strategies by tracking targets in specific areas. A global navigation satellite system
(GNSS) that can provide autonomous geospatial positioning of targets by using tiny electronic
receivers can assist in recognition. The recognition of targets within a targeted area is a point-in-
polygon (PtInPy) problem in computational geometry. Most previous methods used the method
of identifying one target at a time, which made them unable to effectively deal with many targets.
An earlier method was able to simultaneously recognize several targets but had the problem of the
repeated recognition of the same targets. Therefore, we propose a GNSS coordinate recognition
algorithm. This algorithm can efficiently recognize a large number of targets within a targeted area,
which can provide assistance in epidemic management.

Keywords: GNSS; recognition; point-in-polygon; computational geometry; infectious disease; isolate

1. Introduction

Infectious diseases are diseases caused by microorganisms [1]. Many infectious dis-
eases are highly contagious, such as COVID-19, monkeypox, chickenpox, influenza, and
so on, and these have seriously affected or are currently seriously affecting human health,
economic activities, education, sports, and leisure. Restriction, tracing, and isolation of
people’s movements when an epidemic spreads are effective ways to slow its spread [2,3].
A GNSS allows a tiny electronic receiver to determine its position, including its longitude,
latitude, and altitude (elevation), with an accuracy of a few centimeters to a few meters by
using time signals transmitted by a satellite radio along the line of sight [4,5]. Since GNSSs
can provide the precise location information of targets, they have been widely used in
various remote sensing applications [6–12], such as in epidemic monitoring and geographic
information systems. In this study, we design a method of using longitude and latitude
coordinates to calculate if a large number of targets are in an area while considering a large
number of targets and a wide range of the target area. Under the demand of epidemic
prevention, we want to know in real-time whether the targets are in a specific range or
stay within the official designation. Therefore, we only need to define this range, and our
method can obtain the answer.

In geography, an area can be represented by a polygon. A target is a geographic point,
which is a point with latitude and longitude coordinates. Determining if a geographic point

Algorithms 2023, 16, 132. https://doi.org/10.3390/a16030132 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16030132
https://doi.org/10.3390/a16030132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8402-7128
https://orcid.org/0000-0001-5803-2265
https://doi.org/10.3390/a16030132
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16030132?type=check_update&version=1

Algorithms 2023, 16, 132 2 of 20

is within an area is a PtInPy problem. Much of the literature on such issues is focused on
special conditions relating to points and polygons [13–18]. In simple terms, every method
contains a PtInPy function and uses a geographical point and a polygon as its input. This
PtInPy function can confirm if the point is an inner point of this polygon or an outer point
of this polygon. When the number of targets is huge, it is inefficient to confirm them one by
one by using a PtInPy function. However, there may be many targets to be tracked in many
areas, such as in epidemic management.

Take the coronavirus disease 2019 as an example. It is a contagious disease caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was
in Wuhan, China, in December 2019. After that, the disease spread worldwide, leading to
the COVID-19 pandemic. According to the World Health Organization’s weekly report,
as of 22 May 2022, over 522 million confirmed cases and over 6 million deaths had been
reported globally [19]. This example generated many targets that were distributed over
broad and numerous areas. The CDC often determines its management strategy by tracking
targets within such areas. To find the targets in a specific area, they can be confirmed one
by one by using a PtInPy function. However, this way could be more efficient because the
number of targets is large, and the targets within an area represent only a tiny fraction of the
total targets. The number of times that a PtInPy function is used reflects the performance of
a method in finding targets within a given area.

In [20,21], methods for reducing the use of PtInPy functions were proposed. In [20],
the authors covered an area with a rectangle, and a PtInPy function was used only for
the targets within this rectangle. However, because the range of the rectangle could be
much more extensive than the range of the target area, the use of the PtInPy function
was still very high. In [21], the authors considered that the number of targets was huge.
Therefore, they also included a way to reduce the number of points that were confirmed
by the PtInPy function. However, this method has two main areas for improvement. First,
the range of a small area is significant, but there needs to be a plan in the technique.
Second, the small areas planned by this method overlapped. These shortcomings caused a
bottleneck in the performance of this method. The topic of PtInPy has been discussed in
many fields in the past, especially in the GIS field. Some methods can obtain good results
with area preprocessing if these target areas are fixed. However, targets with areas are a lot
in epidemic tracking and may continuously change. Therefore, when considering many
targets and regions and evolving rapidly, this research needs to include those skills.

In light of the above discussion, we propose an efficient GNSS coordinate recognition
algorithm for epidemic management. This research is applicable to the positioning of two-
dimensional coordinates, not only GNSS coordinates. However, for epidemic management,
the coordinates of GNSS latitude and longitude need to be known in order to map this
to the location in the real world. The main novelty of this algorithm is the dynamic
blocking and real-time setting of range. This algorithm can be applied in order to recognize
targets within a targeted area, even if the targeted area’s range is very large and there are
numerous targets. Furthermore, for most targets, it is not necessary to use a PtInPy function
to confirm whether these targets are inside or outside of a targeted area in order to save
computation time. In addition, this method also considers the capacities of database access
and computation to achieve efficient recognition.

The planning of a simulation requires areas with an extensive range as the targeted
areas and many geographical points with latitude and longitude coordinates as the targets.
For our samples, we used the check-in locations on a well-known social networking site
as targets—corresponding to about one million geographical points—and three adminis-
trative cities as the targeted areas. These check-in places were locations where people had
socialized in the past. These conditions made our simulations more realistic. In addition,
these check-in places had their names, textual descriptions, and check-in counts, i.e., a quan-
titative measure of their popularity, as well as their latitude and longitude values, on the
website. Many valuable applications have also been based on these check-in places [22–26].

Algorithms 2023, 16, 132 3 of 20

The rest of this paper is organized as follows. In Section 2, we introduce the related
work. Section 3 introduces the system architecture and describes the PtInPy problem.
Section 4 describes the recognition algorithm where we use a city as the range to show
the steps of the algorithm. Section 5 provides the simulated environment and performs a
demonstration. This demonstration offers targets within three selected fields of hundreds to
thousands of square kilometers calculated from more than one million targets. In Section 6,
we offer the simulation results. Finally, in Section 7, we give a conclusion.

2. Related Work

Many infectious diseases are highly contagious and seriously affect human health,
economic activities, education, sports, and leisure [1]. Restricting the movement of peo-
ple (e.g., with a quarantine) is an effective infection control measure when an epidemic
spreads [2,3]. GNSSs, such as the US Global Positioning System (GPS) [27] and the Russian
Global Navigation Satellite System (GLONASS) [28], can provide autonomous geospatial
positioning. They are widely used in various applications [6–12], such as prevention and
control. In [6], some methods were proposed for the regional and global surveillance
of infectious diseases; for example, they used GPS data to track the detailed movement
patterns of individuals. The positions obtained from GPS can also be entered directly
into a geographic information system (GIS). A GIS can locate highly endemic areas and
high-risk groups and can help make resource allocation decisions [7]. In [9], the aim was to
emphasize the use of GNSS satellites in environmental monitoring. In [10], smartphones
were used to track COVID-19 patients and diagnosed people. In [11], mapping inundation
dynamics and the extent of flooding were found to be essential in various applications,
such as the prediction of the spread of infectious diseases, and a GNSS can help with this
application. Finally, in [12], an Indian COVID-19 tracker was analyzed.

The confirmation of whether a target is inside or outside of a targeted area can be
mapped as a PtInPy problem. Many works in the literature discussed related issues in the
past [13–18]. In [13], a detailed discussion of the PtInPy problem for arbitrary polygons
was presented. No single algorithm is the best in all categories, so this study compared the
capabilities of the better algorithms. The variables examined, including different types of
polygons, the amount of memory used, and the preprocessing costs, were discussed in [14].
In [15], the authors outlined a fast and efficient method for determining if a coordinate
point lies within a closed region or polygon that is defined by any number of coordinate
points. In [16], an efficient polygon clipping algorithm, as opposed to a rectangularly
clipped window, was proposed. It used a parametric representation of polygon edges. By
using the concept of point clipping, it found the required intersection points of the edges of
a polygon with clip window boundaries. In [17], an extension of a winding number and
PtInPy algorithm was presented. In [18], a provably correct implementation of a PtInPy
method that was based on the computation of the winding number was presented.

Simply, a PtInPy function can also be used to represent a function whose inputs
are a geographical point and a polygon. Applying a PtInPy function will assert that the
geographical point is an inner point or an outer point of the polygon. In addition, O_PtInPy
(Only PtInPy) can also be used; it is a type of PtInPy method in which each target has to be
confirmed by applying a PtInPy function to obtain a result. The methods used in [13–18]
were of the O_PtInPy type, and they could not handle many targets. In [20,21], methods that
did not require every target to be confirmed by applying a PtInPy function were proposed.
In [20], the authors planned a large rectangle that could cover the entire target area, and the
targets outside the rectangle did not need to be confirmed by a PtInPy function. In short,
L_Rect (large rectangle) was used to represent this method.

However, the range of the rectangle may be much larger than the range of the specific
area, and the number of targets confirmed by the PtInPy function will still be very high.
When the number of targets is very high, it is unreasonable to load the data of all of the
targets into the program. In addition, the computer’s computational capabilities also need
to be considered. A more feasible method is to store the data of the targets in a database

Algorithms 2023, 16, 132 4 of 20

and then load amounts of data that can be processed into the program one by one according
to the capacity of the computer. In [21], the authors considered that the number of targets
was very high, so the targeted data were stored in a database system. Then, several small
areas were planned, and the ranges of these small areas could cover the entire targeted area.
Since each small area had the shape of a circle, the method was represented as c_. Then, the
targets within a small area were retrieved from the database. In addition, this method also
included a mechanism that allowed some targets within a small area not to be confirmed
by the PtInPy function. However, this method had a major disadvantage because the small
areas overlapped. This led to a bottleneck in its performance.

GIS is a broad subject, combining geography and cartography, and has been widely
used in map production, information management, and registration management of
geographic-related data in various businesses. The key to any GIS is a database con-
taining representations of geographic phenomena, modeling their geometry (location and
shape) and their properties or attributes. A GIS database can be stored in many forms, such
as collecting individual data files or a single spatially enabled relational database because it
has pre-collected and managed these data and cooperated with the development of many
tools. When new information from the real world enters the system, the system can quickly
reflect the answer. Its characteristic is that the pre-processed data are stable, and the value
of the data is inquiring about changing rapidly. However, in our research, the time–space
relationship between targets and areas is easy to change. Therefore, it is hard to use prior
modeling to achieve time efficiency.

The planning of a simulation requires an extensive range of areas to be used as targeted
areas and many geographical points to be used as targets. Well-known check-in places
posted on a social network service (SNS) were used as targets, and three administrative
cities in Taiwan were used as the targeted areas. According to this study’s methods,
administrative regions could also be used as check-in places. These check-in places were
locations where people had socialized in the past. The positioning and classification of
the administrative areas for many check-in places can also be extended to many valuable
applications [22–26], such as finding delicious food or locations related to religious beliefs.
In [22], what drives users to check in on Facebook was discussed. For example, belief
in Wang-Ye is one of the most popular folk religions among the Chinese people. In [23],
check-in places were used as an example to find locations related to this belief. In [26], a
method for collecting big data from Facebook check-in places and finding places related to
Taiwanese beef noodles was proposed.

3. System Architecture and Problem Description

In this section, we introduce the system architecture and describe the PtInPy problem.
Figure 1 presents the system architecture. We assume that each target has a mobile device
with a GNSS receiver. The mobile device can receive GNSS signals, convert them into
coordinate data, and send the data to database-based storage according to the transmission
mechanism of a wired or wireless network. Therefore, the targets’ real-time latitude and
longitude coordinates are stored in a database. By using Structured Query Language (SQL),
the latitude and longitude coordinates in the database and the queried data can be sent
back to a computer. The data related to a specific geographical area are also stored in the
computer. A geographical area is represented as a polygon. The computer performs the
operation of coordinate recognition with the input of a geographical area P and can obtain
the targets in the area P. Under the demand of epidemic prevention, we want to know in
real-time whether the targets are in a specific range or stay within the official designation.
Therefore, we only need to define this range as a polygon. Then, using this polygon as
input, our method can obtain the answer.

A target g is a geographic point with latitude g.x and longitude g.y coordinates. A
targeted area is a polygon. A polygon is composed of edges with geographical points.
These edges enclose a measurable interior. Accordingly, a polygon P with n points is

Algorithms 2023, 16, 132 5 of 20

defined as P = {p0, p1, . . . , pn−1, pn}, where p0 = pn, and the straight line segment from point
pi to pi+1 is the edge for i = 0, 1, . . . , n−1.

Algorithms 2023, 15, x FOR PEER REVIEW 5 of 20

Figure 1. System architecture. Each target has a mobile device with a GNSS receiver. The mobile
device can receive GNSS signals, convert them into coordinate data, and send the data to data-
base-based storage. A computer performs the operation of coordinate recognition with the input of
a geographical area P and can obtain the targets in the area P.

A target g is a geographic point with latitude g.x and longitude g.y coordinates. A
targeted area is a polygon. A polygon is composed of edges with geographical points.
These edges enclose a measurable interior. Accordingly, a polygon P with n points is de-
fined as P = {p0, p1,…, pn−1, pn}, where p0 = pn, and the straight line segment from point pi to
pi+1 is the edge for i = 0, 1, …, n−1.

A ray from a point is a straight line that starts from that point and goes on in any
fixed direction. In this article, ray(g) is a horizontal extension segment starting from point
g = (g.x, g.y) and going to the point (0, g.y). If the number of intersections between the edges
of polygon P and ray(g) is odd, this indicates that point g is an inner point of polygon P.
Otherwise, if the number is even, this indicates that point g is an outer point of polygon P.
For example, let P and P’ be two different polygons, with the space of P being much
larger than the space of P’. There are three statuses of spatial overlap between polygons P
and P’. The first status is that in which polygon P’ is an inner polygon of polygon P. This
means that the entire space of P’ is part of P. This second status is that in which polygon
P’ is a polygon intersecting with polygon P. This means that a certain part of the space of
P’ is part of the space of P. The third status is that in which polygon P’ is an outer polygon
of polygon P. This means that no part of the space of P’ is part of the space of P. If P’ is a
polygon intersecting with P, P’ has at least one edge that intersects with the edges of P. If
polygon P’ is an inner polygon of P, it must satisfy the following two conditions.
• For any point p of P’, p is an inner point of P.
• For each edge e of P’, edge e and all edges of P have no intersections.

Figure 2 provides an example of a polygon with point and space statuses. This pol-
ygon P is composed of six points (p0, p1, …, and p6), where p0 = p6, and the straight line
segment from point pi to pi+1 is the edge for i = 0, 1, …, 5. There are three geographic points
(g0, g1, and g2) with their corresponding rays (ray(g0), ray(g1), and ray(g2)). The number of
intersections between ray(g0) and the edges of P is 1 (odd number), meaning that g0 is an
inner point of P. The numbers of intersections of ray(g1) and the edges of P and those of
ray(g1) and the edges of P, respectively, are two and zero; both numbers are even. This
means that point g1 and point g2 are both outer points of P. There are three different
polygons (S0, S1, and S2). The entire space of S0 is a subspace of P, so S0 is an inner polygon
of P. A certain part of the space (not all of the space) of S1 is part of the space of P, so S1 is
a polygon intersecting with P. No space of S2 is part of the space of P, so S2 is an outer
polygon of P. In order to determine a polygon’s architecture with point and space sta-
tuses, the calculation of the intersections of segments is necessary. It is necessary to cal-
culate whether two segments have an intersection or not. In [29], a computer-friendly
method was proposed. Suppose that there are two lines. The first line crosses over both
point ga and point gb. The other line crosses over both point gc and point gd. First, as
shown in (1), α can be evaluated.

α = (ga.x − gb.x) × (gc.y − gd.y) − (ga.y − gb.y) × (gc.x − gd.x). (1)

Figure 1. System architecture. Each target has a mobile device with a GNSS receiver. The mobile
device can receive GNSS signals, convert them into coordinate data, and send the data to database-
based storage. A computer performs the operation of coordinate recognition with the input of a
geographical area P and can obtain the targets in the area P.

A ray from a point is a straight line that starts from that point and goes on in any
fixed direction. In this article, ray(g) is a horizontal extension segment starting from point
g = (g.x, g.y) and going to the point (0, g.y). If the number of intersections between the edges
of polygon P and ray(g) is odd, this indicates that point g is an inner point of polygon P.
Otherwise, if the number is even, this indicates that point g is an outer point of polygon
P. For example, let P and P’ be two different polygons, with the space of P being much
larger than the space of P’. There are three statuses of spatial overlap between polygons P
and P’. The first status is that in which polygon P’ is an inner polygon of polygon P. This
means that the entire space of P’ is part of P. This second status is that in which polygon P’
is a polygon intersecting with polygon P. This means that a certain part of the space of P’
is part of the space of P. The third status is that in which polygon P’ is an outer polygon
of polygon P. This means that no part of the space of P’ is part of the space of P. If P’ is a
polygon intersecting with P, P’ has at least one edge that intersects with the edges of P. If
polygon P’ is an inner polygon of P, it must satisfy the following two conditions.

• For any point p of P’, p is an inner point of P.
• For each edge e of P’, edge e and all edges of P have no intersections.

Figure 2 provides an example of a polygon with point and space statuses. This polygon
P is composed of six points (p0, p1, . . . , and p6), where p0 = p6, and the straight line segment
from point pi to pi+1 is the edge for i = 0, 1, . . . , 5. There are three geographic points
(g0, g1, and g2) with their corresponding rays (ray(g0), ray(g1), and ray(g2)). The number
of intersections between ray(g0) and the edges of P is 1 (odd number), meaning that g0
is an inner point of P. The numbers of intersections of ray(g1) and the edges of P and
those of ray(g1) and the edges of P, respectively, are two and zero; both numbers are even.
This means that point g1 and point g2 are both outer points of P. There are three different
polygons (S0, S1, and S2). The entire space of S0 is a subspace of P, so S0 is an inner polygon
of P. A certain part of the space (not all of the space) of S1 is part of the space of P, so S1
is a polygon intersecting with P. No space of S2 is part of the space of P, so S2 is an outer
polygon of P. In order to determine a polygon’s architecture with point and space statuses,
the calculation of the intersections of segments is necessary. It is necessary to calculate
whether two segments have an intersection or not. In [29], a computer-friendly method
was proposed. Suppose that there are two lines. The first line crosses over both point ga
and point gb. The other line crosses over both point gc and point gd. First, as shown in (1),
α can be evaluated.

α = (ga.x − gb.x) × (gc.y − gd.y) − (ga.y − gb.y) × (gc.x − gd.x). (1)

Algorithms 2023, 16, 132 6 of 20

Algorithms 2023, 15, x FOR PEER REVIEW 6 of 20

If the value of α is 0, the two lines are parallel. Otherwise, there is an intersection
between the two lines. Next, κ1 and κ2 can be evaluated as in (2) and (3), respectively.

κ1 = ((ga.x − gc.x) × (gc.y − gd.y) − (ga.y − gc.y) ×(gc.x − gd.x)) / α (2)

κ2 = ((ga.x − gb.x) × (ga.y − gc.y) − (ga.y − gb.y) ×(ga.x − gb.x)) / α (3)

If the value of κ1 is between 0 and 1, the intersection is between ga and gb. If the val-
ue of κ2 is between 0 and 1, the intersection is between gc and gd. In other words, if seg-
ment (ga, gb) and segment (gc, gd) intersect, the value of κ1 is between 0 and 1, and the
value of κ2 is between 0 and 1.

Figure 2. Example of a polygon with point and space statuses.

Figure 3 provides examples of lines (or segments) with intersections. There are
three lines (l1, l2, and l3). Line l1 passes through points (1, 3) and (4, 3). Line l2 passes
through points (1, 1) and (4, 1). Line l3 passes through points (3, 4) and (2, 3). In lines l1
and l2, α is 0, which means that the two lines are parallel. In lines l2 and l3, α is −6, κ1 is
0.17, and κ2 is 1.5, which means that the intersection is between (1, 1) and (4, 1). In lines l1
and l3, α is −6, κ1 is 0.5, and κ2 is 0.5, which means that the intersection is between (1, 3)
and (4, 3), and there is also an intersection between (2, 2) and (3, 4).

Figure 3. Example of lines with intersections.

Assume that G is the set of all geographical points. All points in G are stored in a
database and can be retrieved with Structured Query Language (SQL) by using a data-
base management system [27,28]. In this study, MySQL [30], an open-source relational
data-stream management system, was applied.

4. Coordinate Recognition Algorithm
This section describes the recognition algorithm and uses a city as the range to

show the steps of the algorithm. The purpose of our research is to assist the epidemic
control. Therefore, we use pseudocode style to describe our method, which is to make
this method easier to implement.

Figure 2. Example of a polygon with point and space statuses.

If the value of α is 0, the two lines are parallel. Otherwise, there is an intersection
between the two lines. Next, κ1 and κ2 can be evaluated as in (2) and (3), respectively.

κ1 = ((ga.x − gc.x) × (gc.y − gd.y) − (ga.y − gc.y) ×(gc.x − gd.x))/α (2)

κ2 = ((ga.x − gb.x) × (ga.y − gc.y) − (ga.y − gb.y) ×(ga.x − gb.x))/α (3)

If the value of κ1 is between 0 and 1, the intersection is between ga and gb. If the value
of κ2 is between 0 and 1, the intersection is between gc and gd. In other words, if segment
(ga, gb) and segment (gc, gd) intersect, the value of κ1 is between 0 and 1, and the value of κ2
is between 0 and 1.

Figure 3 provides examples of lines (or segments) with intersections. There are three
lines (l1, l2, and l3). Line l1 passes through points (1, 3) and (4, 3). Line l2 passes through
points (1, 1) and (4, 1). Line l3 passes through points (3, 4) and (2, 3). In lines l1 and l2, α is 0,
which means that the two lines are parallel. In lines l2 and l3, α is −6, κ1 is 0.17, and κ2 is
1.5, which means that the intersection is between (1, 1) and (4, 1). In lines l1 and l3, α is −6,
κ1 is 0.5, and κ2 is 0.5, which means that the intersection is between (1, 3) and (4, 3), and
there is also an intersection between (2, 2) and (3, 4).

Algorithms 2023, 15, x FOR PEER REVIEW 6 of 20

If the value of α is 0, the two lines are parallel. Otherwise, there is an intersection
between the two lines. Next, κ1 and κ2 can be evaluated as in (2) and (3), respectively.

κ1 = ((ga.x − gc.x) × (gc.y − gd.y) − (ga.y − gc.y) ×(gc.x − gd.x)) / α (2)

κ2 = ((ga.x − gb.x) × (ga.y − gc.y) − (ga.y − gb.y) ×(ga.x − gb.x)) / α (3)

If the value of κ1 is between 0 and 1, the intersection is between ga and gb. If the val-
ue of κ2 is between 0 and 1, the intersection is between gc and gd. In other words, if seg-
ment (ga, gb) and segment (gc, gd) intersect, the value of κ1 is between 0 and 1, and the
value of κ2 is between 0 and 1.

Figure 2. Example of a polygon with point and space statuses.

Figure 3 provides examples of lines (or segments) with intersections. There are
three lines (l1, l2, and l3). Line l1 passes through points (1, 3) and (4, 3). Line l2 passes
through points (1, 1) and (4, 1). Line l3 passes through points (3, 4) and (2, 3). In lines l1
and l2, α is 0, which means that the two lines are parallel. In lines l2 and l3, α is −6, κ1 is
0.17, and κ2 is 1.5, which means that the intersection is between (1, 1) and (4, 1). In lines l1
and l3, α is −6, κ1 is 0.5, and κ2 is 0.5, which means that the intersection is between (1, 3)
and (4, 3), and there is also an intersection between (2, 2) and (3, 4).

Figure 3. Example of lines with intersections.

Assume that G is the set of all geographical points. All points in G are stored in a
database and can be retrieved with Structured Query Language (SQL) by using a data-
base management system [27,28]. In this study, MySQL [30], an open-source relational
data-stream management system, was applied.

4. Coordinate Recognition Algorithm
This section describes the recognition algorithm and uses a city as the range to

show the steps of the algorithm. The purpose of our research is to assist the epidemic
control. Therefore, we use pseudocode style to describe our method, which is to make
this method easier to implement.

Figure 3. Example of lines with intersections.

Assume that G is the set of all geographical points. All points in G are stored in a
database and can be retrieved with Structured Query Language (SQL) by using a database
management system [27,28]. In this study, MySQL [30], an open-source relational data-
stream management system, was applied.

4. Coordinate Recognition Algorithm

This section describes the recognition algorithm and uses a city as the range to show
the steps of the algorithm. The purpose of our research is to assist the epidemic control.
Therefore, we use pseudocode style to describe our method, which is to make this method
easier to implement.

4.1. The Proposed Algorithm

In this section, a coordinate recognition algorithm will be introduced. We also assume
that there is a large number of geographical points (targets) that are stored in table ‘G’ of
a unique database, and there is also a unique polygon P = {p0, p1, . . . , pn} that refers to a

Algorithms 2023, 16, 132 7 of 20

targeted area. This algorithm will be used to calculate the inner points of polygon P from
table ‘G’, and several functions (SegSegInt, PtInPy, SqrInPy, RectOfPy, and RectPtnToSqr)
are used. These functions are listed in Table 1.

Table 1. Functions.

Function Description

SegSegInt The input required by this function is two line segments, which
can be used to calculate whether the two line segments intersect.

PtInPy

The input required by this function is a geographical point and a
polygon. First, the function uses SegSegInt to calculate the
intersections among the ray of this point and the edges of this
polygon. Then, it calculates whether the geographical point is
inside the polygon based on the result.

SqrInPy

The input required by this function is a square and a polygon. In
this function, PtInPy is used to calculate whether the four points
of the square are inside the polygon. According to this result, the
spatial relationship between the square and the polygon is
divided into inner, outer, and intersected.

RectOfPy The input required by this function is a polygon, and it will
identify a minimum rectangle that can cover this polygon.

RectPtnToSqr
The input required by this function is a coordinate range that can
identify a rectangle, and it will divide the range of this rectangle
into a square set.

The input required by this method is a polygon, a set of geographical points, and
the side length of a square. Because the size of geographical points is very large, these
geographical points are stored in a database and can be retrieved through the query
command of the database. Our method will first define a rectangle that can cover this
polygon. Then, it will partition the range of this rectangle into several squares whose side
length is SL. Then, for each square, it will calculate the space–overlap status between the
square and the polygon. When the range of the square is inside the polygon or is intersected
with the polygon, it will retrieve the geographical points within the square range from the
database. In the inner status, the retrieved points are the polygon’s inner points without
being confirmed through PtInPy. In the intersected status, these points must be confirmed
again through PtInPy.

Algorithm 1 is the SegSegInt algorithm. It is a segment–segment intersection algorithm
whose input comprises four points: ga, gb, gc, and gd. The four points compose the segment
from ga to gb and the segment from gc to gd. Applying it will result in a value of 1 or 0 to
represent that the two segments intersect or do not intersect.

Algorithm 1. SegSegInt(point ga, point gb, point gc, point gd)

1. α:= (ga.x − gb.x) × (gc.y − gd.y) − (ga.y − gb.y) × (gc.x − gd.x);
2. if α = 0 then return 0;
3. else
4. κ1 := ((ga.x − gc.x) × (gc.y − gd.y) − (ga.y − gc.y)×(gc.x − gd.x))/α;
5. κ2 := ((ga.x − gb.x) × (ga.y − gc.y) − (ga.y − gb.y)×(ga.x − gb.x))/α;
6. if (κ1 ≥ 0 and κ1 ≤ 1) and (κ2 ≥ 0 and κ2 ≤ 1) then return 1;
7. else return 0;
8. end if
9. end if

Algorithm 2 is the PtInPy algorithm. It is a point-in-polygon algorithm whose inputs
are a point g and a polygon P = {p0, p1, . . . , pn}. This algorithm is used to evaluate whether
a point g is an inner point of polygon P or if that point g is an outer point of polygon P.

Algorithms 2023, 16, 132 8 of 20

Applying it will result in a value of 1 or 0, which will indicate if g is an inner point of P or if
g is an outer point of P. In this algorithm, the count variable is used to count the number
of intersections between the rays of g and the n edges of P. Here, mod(count, 2), which
is a modulo operation that returns the remainder after count is divided by 2, is used. It
combines each edge (pi, pi+1) of P, where i = 0, 1, . . . , n−1, and point g into the segment (ga,
gb) and the segment (gc, gd). If the two segments intersect, the value of count is increased by
1. Finally, if the value of count is even (i.e., mod(count, 2) = 1), it returns 0. Otherwise, it
returns 1.

Algorithm 2. PtInPy(point g, polygon P)

1. count := 0;
2. for i := 0 to n − 1 do
3. ga := pi; gb := pi+1; gc := g; gd.x := 0; gd.y := g.y;
4. if (SegSegInt (ga, gb, gc, gd) = 1) then
5. count := count + 1;
6. end if
7. if (mod(count, 2) = 1) then return 1;
8. else return 0;
9. end if
10. end for

Algorithm 3 is the SqrInPy algorithm. It is a square-in-polygon algorithm whose
inputs are a square S = {s0, s1, . . . , s4} and a polygon P = {p0, p1, . . . , pn}. This algorithm is
used to evaluate the space–overlap relationship between square S and polygon P. Applying
it will result in a value of 0, 1, or 2, representing that S is an inner square of P, S is square
intersecting with P, or S is an outer area of P. Lines 1 to 6 are used to calculate how many
points of S are inner points of P, which is where PtInPy is applied, and the count_pt variable
is used to count the number of inner points. Lines 7 to 18 are used to count the intersections
between S and P, which is where SegSegInt is applied, and count_edge is used to count the
number of intersections.

Lines 19 to 22 are used to evaluate the coverage relationships between the square S and
polygon P. If the four vertices of square S are all outer points of polygon P (i.e., count_pt = 0)
and the four edges of S and n edges of the polygon do not intersect (i.e., count_edge = 0),
square S is an outer square of polygon P. On the other hand, if all four vertices of square S
are inner points of polygon P (i.e., count_pt = 4) and the four edges of square S and n edges
of the polygon do not intersect (i.e., count_edge = 0), square S is an inner area of polygon P.
Otherwise, S intersects with polygon P.

Algorithm 4 is the RectOfPy algorithm. It is a rectangle-of-polygon algorithm whose
input is a polygon P = {p0, p1, . . . , pn}. This algorithm is used to evaluate a minimal
rectangular space that completely covers polygon P. Applying it will result in four values,
i.e., xmin, xmax, ymin, and ymax. The dataset R contains these four values, and R[0], R[1], R[2],
and R[3] represent these values. In this algorithm, these values are stored in the variables
xmin, xmax, ymin, and ymax. The algorithm first assigns the coordinate values of point p0 to
these variables. Then, in lines 2 to 7, the values of pj.x and pj.y of each point pj are compared
with the values of these variables. If the value of pj.x is smaller (or larger) than the value
of xmin (or xmax), the value of xmin (or xmax) is assigned as the value of pj.x. Similarly, if the
value of pj.y is smaller (or larger) than the value of ymin (or ymax), the value of ymin (or ymax)
is assigned as the value of pj.y. Finally, the values of these four variables are assigned to
dataset R. The values of xmin, xmax, ymin, and ymax can define a minimal rectangle that can
completely cover polygon P.

Algorithms 2023, 16, 132 9 of 20

Algorithm 3. SqrInPy(square S, polygon P)

1. count_pt := 0;
2. for i := 0 to 3 do
3. if (PtInPy(si, P) = 1)
4. then count_pt := count_pt + 1;
5. end if
6. end for
7. count_edge := 0;
8. for j := 0 to n − 1 do
9. for i := 0 to 3 do
10. ga := pj;
11. gb := pj+1;
12. gc := si;
13. gd := si+1;
14. if(SegSegInt(ga, gb, gc, gd) = 1)
15. then count_edge := count_edge+1;
16. end if
17. end for
18. end for
19. if (count_pt = 4 and count_edge = 0) then status := 0;
20. else if (count_pt = 0 and count_edge = 0) then status := 2;
21. else status := 1;
22. end if
23. return status;

Algorithm 4. RectOfPy(polygon P)

1. xmin := p0.x; xmax := p0.x; ymin := p0.y; ymax := p0.y;
2. for j := 1 to n do
3. if pj.x < xmin then xmin := pj.x; end if
4. if pj.x > xmax then xmax := pj.x; end if
5. if pj.y < ymin then ymin := pj.y; end if
6. if pj.y > ymax then ymax := pj.y; end if
7. end for
8. R := {xmin, xmin, ymin, ymax};
9. return (R);

The application of Algorithm 4 results in a dataset R. The values of dataset R define
the range of a polygon. The dataset R contains four values, and R[0], R[1], R[2], and R[3]
represent these values. Algorithm 5 is used to divide this polygon into several squares
of equal size, where the side length of each square is sl. Algorithm 5 is the RectPtnToSqr
algorithm. It is a rectangle-partition-to-square algorithm, and its inputs are the five values
of xmin, xmax, ymin, ymax, and sl. It uses the values of xmin, xmax, ymin, and ymax to define the
range of a rectangle into its length and width, respectively ((xmax − xmin) and (ymax − ymin)).
It then partitions the range into a set SS of numx×numy squares, where ceiling() is applied.
The ceiling() function is a least-integer function. Its input is a real number, and its output is
an integer that is not smaller than the input value. This set defines each square S by using
its upper-left vertex (s0.x, s0.y). Accordingly, square S can be defined by using s0 and the
side length sl.

Algorithms 2023, 16, 132 10 of 20

Algorithm 5. RectPtnToSqr(xmin, xmax, ymin, ymax, sl)

1. numx := ceiling ((xmax − xmin)/r);
2. numy := ceiling ((ymax − ymin)/r);
3. SS := ∅;
4. for i := 0 to numx − 1 do
5. for j := 0 to numy − 1 do
6. s0.x := xmin + i ×sl;
7. s0.y := ymin + j ×sl;
8. SS := SS∪{s0};
9. end for
10. end for
11. return (SS)

Algorithm 6 is the CoordRecognit algorithm. It is a coordinate recognition algorithm,
and its inputs are a polygon P, a point set G, and the side length r of a square. Applying it
will return all inner points of polygon P. This algorithm first defines a rectangle R, which
can cover polygon P, through RectOfPy. Next, this rectangle R is partitioned into SS, a set of
squares SS with a side length sl, through RectPtnToSquare. For each square s0 of SS, where
s0 is the upper-left vertex of the square, its vertices are composed of a square S = {s0, s1, s2,
s3, s4(=s0)}. Then, the space–overlap status between square S and polygon P is evaluated
through SqrInPy. If S is an inner square of or a square intersecting with polygon P, i.e.,
status = 0 or status = 1, the SQL statement is queried in order to retrieve the inner points
from table ‘Q’, and they are stored in set GT. If S is an inner square of P, i.e., status = 0, set
GT is directly stored in set GP. If S is a square intersecting with P, i.e., status = 1, each point
g of GP must be confirmed through PtInPy. If point g is an inner point of P, incrementally,
point g is stored in GP. Finally, GP is the set of all inner points of P.

Algorithm 6. CoordRecognit (polygon P, point set G, side length sl)

1. R := RectOfPy(P);
2. xmin := R[0]; xmax := R[1]; ymin := R[2]; ymax := R[3];
3. SS := RectPtnToSqr (xmin, xmax, ymin, ymax, sl);
4. GP := ∅; GT := ∅;
5. for each s0 in SS do
6. s0 := (s0.x, s0.y);
7. s1:= (s0.x + sl, s0.y);
8. s2 := (s0.x − sl, s0.y − sl) ;
9. s3 := (s0.x, s0.y − sl);
10. s4 := s0;
11. S :={s0, s1, s2, s3, s4};
12. status := SqrInPy(S, P);
13. if status = 0 or status = 1 then
14. GT:={SELECT * FROM ‘G’ WHERE ‘x’ ≥s0.x AND ‘y’ ≥ s0.y

AND ‘x’ > (s0.x + r) AND ‘y’ > (s0.y + r);};
15. end if
16. if status = 0 then
17. GP:= GP ∪ GT;
18. end if
19. if status = 1 then
20. for each g in GT do
21. if PtInPy(g, P) = 1 then GP:= GP ∪ {g}; end if
22. end for
23. end if
24. end for
25. return (GP);

Algorithms 2023, 16, 132 11 of 20

4.2. Example

As an example, we took an area with a longitude ranging from 120.6 to 122.9 East
and a latitude ranging from 24.8 to 25.4 North. We collected 267,858 geographic points,
which were check-in places obtained from a well-known social network service platform,
in this area [25]. This range also contained the capital of Taipei City. We used the city
as the targeted area and the check-in places as the targets to calculate the inner points of
this city. Figure 4 provides the distribution of 10,000 targets that were randomly selected
from the 267,858 points. The results related to the layouts of target distributions in this
study, such as those shown in Figures 4 and 5, and others, were obtained by using Ajax and
the Google Maps API [31]. The city’s polygon P had 2054 points that were selected along
the outermost area, as shown in Figure 5a. A dataset R was obtained by using RectOfPy
with the polygon P as input, where R contained an xmin value of about 121.457, an xmax
value of about 121.666, a ymin value of about 24.960, and a ymax value of about 25.210.
Figure 5b provides the corresponding shape, which formed four points (r0(=(xmin, ymin)),
r1(=(xmax, ymin)), r2(=(xmax, ymax)), and r3(=(xmin, ymax))) that were the four vertices of a
rectangle, i.e., the minimal rectangle covering polygon P. Figure 5b provides the shape of
this rectangle.

Algorithms 2023, 15, x FOR PEER REVIEW 11 of 20

study, such as those shown in Figures 4 and 5, and others, were obtained by using Ajax
and the Google Maps API [31]. The city’s polygon P had 2054 points that were selected
along the outermost area, as shown in Figure 5a. A dataset R was obtained by using
RectOfPy with the polygon P as input, where R contained an xmin value of about 121.457,
an xmax value of about 121.666, a ymin value of about 24.960, and a ymax value of about
25.210. Figure 5b provides the corresponding shape, which formed four points (r0(=(xmin,
ymin)), r1(=(xmax, ymin)), r2(=(xmax, ymax)), and r3(=(xmin, ymax))) that were the four vertices of a
rectangle, i.e., the minimal rectangle covering polygon P. Figure 5b provides the shape
of this rectangle.

Figure 4. An area as an example for evaluating the targeted points in a city.

(a) (b)

Figure 5. Polygon of the city and a minimal rectangle covering the polygon. (a) Polygon of the city;
(b) Minimal rectangle covering the polygon.

Then, by using RectPtnToSquare, this rectangle could be divided into a set SS of
squares. Figure 6 shows that rectangle R was divided into a square set SS with 7×6
squares. For each square S of SS, the space–overlap status of P was calculated through
SqrInPy. When square S was an inner square of or a square intersecting with polygon P,
the inner points of square S were calculated through the corresponding SELECT state-
ment. If S was an inner square, the inner points of square S were also the inner points of
polygon P and were directly stored in the set GP without confirmation through PtInPy. If
S was a square that intersected, the points that PtInPy confirmed as inner points of P
were stored in the set GP. Finally, the set GP contained all inner points of P. In this ex-
ample, there were 89,209 inner points in the targeted city. Figure 7 provides the distribu-
tion of the 10,000 inner points that were randomly selected from 89,209 points.

Figure 4. An area as an example for evaluating the targeted points in a city.

Algorithms 2023, 15, x FOR PEER REVIEW 11 of 20

study, such as those shown in Figures 4 and 5, and others, were obtained by using Ajax
and the Google Maps API [31]. The city’s polygon P had 2054 points that were selected
along the outermost area, as shown in Figure 5a. A dataset R was obtained by using
RectOfPy with the polygon P as input, where R contained an xmin value of about 121.457,
an xmax value of about 121.666, a ymin value of about 24.960, and a ymax value of about
25.210. Figure 5b provides the corresponding shape, which formed four points (r0(=(xmin,
ymin)), r1(=(xmax, ymin)), r2(=(xmax, ymax)), and r3(=(xmin, ymax))) that were the four vertices of a
rectangle, i.e., the minimal rectangle covering polygon P. Figure 5b provides the shape
of this rectangle.

Figure 4. An area as an example for evaluating the targeted points in a city.

(a) (b)

Figure 5. Polygon of the city and a minimal rectangle covering the polygon. (a) Polygon of the city;
(b) Minimal rectangle covering the polygon.

Then, by using RectPtnToSquare, this rectangle could be divided into a set SS of
squares. Figure 6 shows that rectangle R was divided into a square set SS with 7×6
squares. For each square S of SS, the space–overlap status of P was calculated through
SqrInPy. When square S was an inner square of or a square intersecting with polygon P,
the inner points of square S were calculated through the corresponding SELECT state-
ment. If S was an inner square, the inner points of square S were also the inner points of
polygon P and were directly stored in the set GP without confirmation through PtInPy. If
S was a square that intersected, the points that PtInPy confirmed as inner points of P
were stored in the set GP. Finally, the set GP contained all inner points of P. In this ex-
ample, there were 89,209 inner points in the targeted city. Figure 7 provides the distribu-
tion of the 10,000 inner points that were randomly selected from 89,209 points.

Figure 5. Polygon of the city and a minimal rectangle covering the polygon. (a) Polygon of the city;
(b) Minimal rectangle covering the polygon.

Then, by using RectPtnToSquare, this rectangle could be divided into a set SS of
squares. Figure 6 shows that rectangle R was divided into a square set SS with 7×6 squares.
For each square S of SS, the space–overlap status of P was calculated through SqrInPy.
When square S was an inner square of or a square intersecting with polygon P, the inner
points of square S were calculated through the corresponding SELECT statement. If S
was an inner square, the inner points of square S were also the inner points of polygon
P and were directly stored in the set GP without confirmation through PtInPy. If S was a

Algorithms 2023, 16, 132 12 of 20

square that intersected, the points that PtInPy confirmed as inner points of P were stored
in the set GP. Finally, the set GP contained all inner points of P. In this example, there
were 89,209 inner points in the targeted city. Figure 7 provides the distribution of the
10,000 inner points that were randomly selected from 89,209 points.

Algorithms 2023, 15, x FOR PEER REVIEW 12 of 20

Figure 6. Partitioning a rectangle into a set of squares.

Figure 7. The distribution of the targeted points in Taipei City.

5. Simulated Environment and Demonstration
This section first introduces the simulated environment and then demonstrates the

results of applying this algorithm to calculate the inner points of targeted areas. Next,
we offer targets within three selected fields of hundreds to thousands of square kilome-
ters calculated from more than one million targets.

5.1. Simulated Environment
The simulated geographic area was mainly the island of Taiwan, which is located

between 120 and 122 degrees East for the longitude and 22 and 25 degrees North for the
latitude. It covers an area of 35,808 km2 and has a population of 23.7 million inhabitants.

Figure 8 presents the simulated environment. Figure 8a shows the distribution of
residents per kilometer in villages in 2019 [32]. The targeted points for the simulation
were based on geographical points acquired from a famous social network service plat-
form, with a total of 1,112,188 points [24]. Figure 8b presents the distribution of the tar-
geted points, which included 10,000 points that were randomly selected from all target-
ed points. Through a comparison of Figure 8a,b, The area currently contains six munici-
palities, of which three—Taipei City, Taichung City, and Kaohsiung City—were selected
as the targeted areas. Taipei City is Taiwan’s political, economic, educational, and cul-
tural center, and it is one of the major hubs in East Asia. Taichung City, which is located
in central Taiwan, plays an essential role in Taiwan’s economic development and trans-
portation systems. Kaohsiung City is a special municipality in southern Taiwan, and it is
Taiwan’s third most populous city and the largest city in southern Taiwan. For brevity,
Taipei City, Taichung City, and Kaohsiung City are called City 1, City 2, and City 3, re-
spectively.

Figure 6. Partitioning a rectangle into a set of squares.

Algorithms 2023, 15, x FOR PEER REVIEW 12 of 20

Figure 6. Partitioning a rectangle into a set of squares.

Figure 7. The distribution of the targeted points in Taipei City.

5. Simulated Environment and Demonstration
This section first introduces the simulated environment and then demonstrates the

results of applying this algorithm to calculate the inner points of targeted areas. Next,
we offer targets within three selected fields of hundreds to thousands of square kilome-
ters calculated from more than one million targets.

5.1. Simulated Environment
The simulated geographic area was mainly the island of Taiwan, which is located

between 120 and 122 degrees East for the longitude and 22 and 25 degrees North for the
latitude. It covers an area of 35,808 km2 and has a population of 23.7 million inhabitants.

Figure 8 presents the simulated environment. Figure 8a shows the distribution of
residents per kilometer in villages in 2019 [32]. The targeted points for the simulation
were based on geographical points acquired from a famous social network service plat-
form, with a total of 1,112,188 points [24]. Figure 8b presents the distribution of the tar-
geted points, which included 10,000 points that were randomly selected from all target-
ed points. Through a comparison of Figure 8a,b, The area currently contains six munici-
palities, of which three—Taipei City, Taichung City, and Kaohsiung City—were selected
as the targeted areas. Taipei City is Taiwan’s political, economic, educational, and cul-
tural center, and it is one of the major hubs in East Asia. Taichung City, which is located
in central Taiwan, plays an essential role in Taiwan’s economic development and trans-
portation systems. Kaohsiung City is a special municipality in southern Taiwan, and it is
Taiwan’s third most populous city and the largest city in southern Taiwan. For brevity,
Taipei City, Taichung City, and Kaohsiung City are called City 1, City 2, and City 3, re-
spectively.

Figure 7. The distribution of the targeted points in Taipei City.

5. Simulated Environment and Demonstration

This section first introduces the simulated environment and then demonstrates the
results of applying this algorithm to calculate the inner points of targeted areas. Next, we
offer targets within three selected fields of hundreds to thousands of square kilometers
calculated from more than one million targets.

5.1. Simulated Environment

The simulated geographic area was mainly the island of Taiwan, which is located
between 120 and 122 degrees East for the longitude and 22 and 25 degrees North for the
latitude. It covers an area of 35,808 km2 and has a population of 23.7 million inhabitants.

Figure 8 presents the simulated environment. Figure 8a shows the distribution of
residents per kilometer in villages in 2019 [32]. The targeted points for the simulation were
based on geographical points acquired from a famous social network service platform,
with a total of 1,112,188 points [24]. Figure 8b presents the distribution of the targeted
points, which included 10,000 points that were randomly selected from all targeted points.
Through a comparison of Figure 8a,b, The area currently contains six municipalities, of
which three—Taipei City, Taichung City, and Kaohsiung City—were selected as the targeted
areas. Taipei City is Taiwan’s political, economic, educational, and cultural center, and it

Algorithms 2023, 16, 132 13 of 20

is one of the major hubs in East Asia. Taichung City, which is located in central Taiwan,
plays an essential role in Taiwan’s economic development and transportation systems.
Kaohsiung City is a special municipality in southern Taiwan, and it is Taiwan’s third most
populous city and the largest city in southern Taiwan. For brevity, Taipei City, Taichung
City, and Kaohsiung City are called City 1, City 2, and City 3, respectively.

Algorithms 2023, 15, x FOR PEER REVIEW 13 of 20

(a) (b)

Figure 8. The simulated environment. (a) The distribution of residents per square kilometer by
village; (b) the distribution of the targeted points for the simulation.

5.2. Demonstration
Figure 9 provides the corresponding polygons of City 1, City 2, and City 3 with 2054,

6080, and 7946 vertices. By applying the CoordRecongnit algorithm, the corresponding
numbers of inner points could be calculated, which were 89,209, 156,928, and 146,626.
Figures 7 and 10a,b, respectively, provide the distributions of the 10,000 random targets
in City 1, City 2, and City 3. In addition, some information, such as the area and popula-
tion of the cities, can be merged for various applications. These cities cover about 272,
2215, and 2595 km2 and contain populations of about 2.65 million, 2.82 million, and 2.77
million people, respectively. In addition to the numbers of targets in specific areas, the
average number per square kilometer or the average number of targets per million peo-
ple in each area may be more helpful information. Table 2 provides the densities with
geographical information. For the area density per square kilometer and the population
density per million people, City 1 has 328 and 33,644, respectively, City 2 has 71 and
55,648, respectively, and City 3has 56 and 52,804, respectively. Regarding the area den-
sity, City 1 is the first, City 2 is the second, and City 3 is the third. In terms of population
density, City 2 is the first, City 3 is the second, and City 1 is the third. If the targets are
people who need to be managed during an epidemic, these data may be used to manage
the epidemic in real time.

Figure 9. The polygons of targeted cities. The red areas are the corresponding polygons of City 1,
City 2, and City 3.

Figure 8. The simulated environment. (a) The distribution of residents per square kilometer by
village; (b) the distribution of the targeted points for the simulation.

5.2. Demonstration

Figure 9 provides the corresponding polygons of City 1, City 2, and City 3 with 2054,
6080, and 7946 vertices. By applying the CoordRecongnit algorithm, the corresponding
numbers of inner points could be calculated, which were 89,209, 156,928, and 146,626.
Figures 7 and 10a,b, respectively, provide the distributions of the 10,000 random targets in
City 1, City 2, and City 3. In addition, some information, such as the area and population
of the cities, can be merged for various applications. These cities cover about 272, 2215,
and 2595 km2 and contain populations of about 2.65 million, 2.82 million, and 2.77 million
people, respectively. In addition to the numbers of targets in specific areas, the average
number per square kilometer or the average number of targets per million people in each
area may be more helpful information. Table 2 provides the densities with geographical
information. For the area density per square kilometer and the population density per
million people, City 1 has 328 and 33,644, respectively, City 2 has 71 and 55,648, respectively,
and City 3has 56 and 52,804, respectively. Regarding the area density, City 1 is the first,
City 2 is the second, and City 3 is the third. In terms of population density, City 2 is the
first, City 3 is the second, and City 1 is the third. If the targets are people who need to be
managed during an epidemic, these data may be used to manage the epidemic in real time.

Table 2. Targets in cities with their geographical information. For a targeted city, the “target”
represents the number of targets, “area” provides the area in square kilometers, “population” refers
to the population in millions of people, “area density” refers to the number of targets per square
kilometer, and “population density” refers to the number of targets per million people.

Target Area Population Area Density Population Density

City 1 89,209 272 2.65 328 33,664
City 2 156,928 2215 2.82 71 55,648
City 3 146,266 2592 2.77 56 52,804

Algorithms 2023, 16, 132 14 of 20

Algorithms 2023, 15, x FOR PEER REVIEW 13 of 20

(a) (b)

Figure 8. The simulated environment. (a) The distribution of residents per square kilometer by
village; (b) the distribution of the targeted points for the simulation.

5.2. Demonstration
Figure 9 provides the corresponding polygons of City 1, City 2, and City 3 with 2054,

6080, and 7946 vertices. By applying the CoordRecongnit algorithm, the corresponding
numbers of inner points could be calculated, which were 89,209, 156,928, and 146,626.
Figures 7 and 10a,b, respectively, provide the distributions of the 10,000 random targets
in City 1, City 2, and City 3. In addition, some information, such as the area and popula-
tion of the cities, can be merged for various applications. These cities cover about 272,
2215, and 2595 km2 and contain populations of about 2.65 million, 2.82 million, and 2.77
million people, respectively. In addition to the numbers of targets in specific areas, the
average number per square kilometer or the average number of targets per million peo-
ple in each area may be more helpful information. Table 2 provides the densities with
geographical information. For the area density per square kilometer and the population
density per million people, City 1 has 328 and 33,644, respectively, City 2 has 71 and
55,648, respectively, and City 3has 56 and 52,804, respectively. Regarding the area den-
sity, City 1 is the first, City 2 is the second, and City 3 is the third. In terms of population
density, City 2 is the first, City 3 is the second, and City 1 is the third. If the targets are
people who need to be managed during an epidemic, these data may be used to manage
the epidemic in real time.

Figure 9. The polygons of targeted cities. The red areas are the corresponding polygons of City 1,
City 2, and City 3.
Figure 9. The polygons of targeted cities. The red areas are the corresponding polygons of City 1,
City 2, and City 3.

Algorithms 2023, 15, x FOR PEER REVIEW 14 of 20

(a)

(b)

Figure 10. The distribution of targets. (a) The distribution of targets in City 2; (b) The distribution
of targets in City 3.

In these three examples, the time consumed for each example was only tens of sec-
onds. The results show that our method is capable of handling a large number of targets
in a wide range.

Table 2. Targets in cities with their geographical information. For a targeted city, the “target” rep-
resents the number of targets, “area” provides the area in square kilometers, “population” refers to
the population in millions of people, “area density” refers to the number of targets per square
kilometer, and “population density” refers to the number of targets per million people.

Target Area Population Area Density Population Density
City 1 89,209 272 2.65 328 33,664
City 2 156,928 2215 2.82 71 55,648
City 3 146,266 2592 2.77 56 52,804

6. Simulation Result
In this section, we compare the performance of O_PtInPy, L_Rect, c_, and our algo-

rithm. Since a targeted area will be partitioned into a set of square areas in our algorithm,
“sqr” is used to refer to our algorithm. Moreover, c_ uses a set of circles to cover a tar-
geted area. This placement of circles starts from a seed point. The position of the seed
point is selected as follows. First, a large rectangle that can cover a targeted area is de-
fined. Then, this large rectangle is divided into 3×4 smaller rectangles of the same size. If
the center points of the smaller rectangles are in the targeted area, these center points are
used as seed points. Various seed points generate various numbers of small areas. Briefly,
c_max, c_min, and c_avg are used to represent the maximum, minimum, and average
numbers of small areas, respectively. The points retrieved from the database are simply
called candidate points. Candidate points are divided into inner points and outer points.
For a candidate point, it may or may not be necessary to execute PtInPy to confirm if this
point is an inner point. The points that need to be confirmed through PtInPy are termed
confirmed points. For convenience, ncand, ninner, nouter, nconf, and narea are used to refer to the
numbers of candidate points, inner points, outer points, confirmed points, and subareas,
respectively.

Table 3 compares ncand, nconf, and ncand/ninner for O_PtInPy and L_Rect in City 1, City 2,
and City 3. For O_PtInPy, in City 1, City 2, and City 3, the values of ncand were all
1,112,188. Since each candidate point needed to be confirmed by using PtInPy, the value
of nconf was also 1,112,188. In City 1, 89,209 target points were finally obtained, but a total
(ncand) of 1,112,188 candidate points were retrieved from the database. The ratio of ncand to
ninner was about 12.47. The ratios for City 2 and City 3 were about 7.09 and 7.60. For
L_Rect, in City 1, City 2, and City 3, the values of ncand were, 13,869, 19,057, and 256,725,
respectively. Since each candidate point also needed to be confirmed by using PtInPy,
nconf was equal to ncand. Accordingly, the rates were about 1.55, 1.21, and 1.76, respectively.

Figure 10. The distribution of targets. (a) The distribution of targets in City 2; (b) The distribution of
targets in City 3.

In these three examples, the time consumed for each example was only tens of seconds.
The results show that our method is capable of handling a large number of targets in a
wide range.

6. Simulation Result

In this section, we compare the performance of O_PtInPy, L_Rect, c_, and our algo-
rithm. Since a targeted area will be partitioned into a set of square areas in our algorithm,
“sqr” is used to refer to our algorithm. Moreover, c_ uses a set of circles to cover a targeted
area. This placement of circles starts from a seed point. The position of the seed point is
selected as follows. First, a large rectangle that can cover a targeted area is defined. Then,
this large rectangle is divided into 3 × 4 smaller rectangles of the same size. If the center
points of the smaller rectangles are in the targeted area, these center points are used as seed
points. Various seed points generate various numbers of small areas. Briefly, c_max, c_min,
and c_avg are used to represent the maximum, minimum, and average numbers of small
areas, respectively. The points retrieved from the database are simply called candidate
points. Candidate points are divided into inner points and outer points. For a candidate
point, it may or may not be necessary to execute PtInPy to confirm if this point is an inner
point. The points that need to be confirmed through PtInPy are termed confirmed points.

Algorithms 2023, 16, 132 15 of 20

For convenience, ncand, ninner, nouter, nconf, and narea are used to refer to the numbers of
candidate points, inner points, outer points, confirmed points, and subareas, respectively.

Table 3 compares ncand, nconf, and ncand/ninner for O_PtInPy and L_Rect in City 1, City 2,
and City 3. For O_PtInPy, in City 1, City 2, and City 3, the values of ncand were all 1,112,188.
Since each candidate point needed to be confirmed by using PtInPy, the value of nconf was
also 1,112,188. In City 1, 89,209 target points were finally obtained, but a total (ncand) of
1,112,188 candidate points were retrieved from the database. The ratio of ncand to ninner was
about 12.47. The ratios for City 2 and City 3 were about 7.09 and 7.60. For L_Rect, in City 1,
City 2, and City 3, the values of ncand were, 13,869, 19,057, and 256,725, respectively. Since
each candidate point also needed to be confirmed by using PtInPy, nconf was equal to ncand.
Accordingly, the rates were about 1.55, 1.21, and 1.76, respectively.

Table 3. Comparison of candidate points, confirmation points, and inner points. The rate is ncand

divided by ninner.

City
O_PtInPy L_Rect

ncand nconf Rate ncand nconf Rate

City 1 1,112,188 1,112,188 12.47 138,678 138,678 1.55

City 2 1,112,188 1,112,188 7.09 190,507 190,507 1.21

City 3 1,112,188 1,112,188 7.60 256,725 256,725 1.76

Next, the performance of sqr, c_max, c_min, and c_avg in City 1 was compared.
Moreover, for c_, the radiuses of the small areas were 1/16, 1/32, 1/64, 1/128, and 1/256
based on one degree of latitude and longitude. We let both methods configure circles and
squares with the same area. If the radius of a circle is r, the side length of the corresponding
square is sl, as shown in (4), where π is the ratio of the circumference of a circle to its
diameter.

sl:=
√

π× r2 (4)

6.1. Subareas

A set of subareas in c_ and sqr was defined for a targeted area. Based on the subareas
having the same area, the numbers (narea) of subareas generated by c_ and sqr were
compared as follows. Table 4 provides the values of narea. When the radius was 1/16 to
1/256, narea of c_max ranged from 10 to 707, narea of c_min ranged from 7 to 694, and narea
of c_avg ranged from about 8 to 702. Based on the same radius, narea of sqr ranged from 4
to 552, which was less than that of c_max, c_min, and c_avg. When the radius was 1/16,
compared with c_max and sqr, sqr reduced the number to 6 (=10 − 4) subareas, and the
reduction rate was 60% (=6/10). Figure 11 provides the subarea reduction rates for c_max
and sqr, c_min and sqr, and c_avg and sqr, which are represented by c_max#sqr, c_min#sqr,
and c_avg#sqr, respectively. When the radius was 1/16, the reduction rates were about
60%, 43%, and 51%. When the radius was reduced to 1/256, the reduction rates were about
22%, 20%, and 21%, respectively. Overall, the subarea reduction rate was between 60% and
20%.

Table 4. The number of subareas.

Radius c_max c_min c_avg sqr

1/16 10 7 8 4
1/32 22 19 20 13
1/64 63 57 60 41
1/128 199 192 196 146
1/256 707 694 702 552

Algorithms 2023, 16, 132 16 of 20

Algorithms 2023, 15, x FOR PEER REVIEW 15 of 20

Table 3. Comparison of candidate points, confirmation points, and inner points. The rate is ncand
divided by ninner.

City
O_PtInPy L_Rect

ncand nconf Rate ncand nconf Rate
City 1 1,112,188 1,112,188 12.47 138,678 138,678 1.55
City 2 1,112,188 1,112,188 7.09 190,507 190,507 1.21
City 3 1,112,188 1,112,188 7.60 256,725 256,725 1.76

Next, the performance of sqr, c_max, c_min, and c_avg in City 1 was compared.
Moreover, for c_, the radiuses of the small areas were 1/16, 1/32, 1/64, 1/128, and 1/256
based on one degree of latitude and longitude. We let both methods configure circles and
squares with the same area. If the radius of a circle is r, the side length of the corre-
sponding square is sl, as shown in (4), where π is the ratio of the circumference of a circle
to its diameter. 𝑠𝑙 ≔ √π × 𝑟ଶ, (4)

6.1. Subareas
A set of subareas in c_ and sqr was defined for a targeted area. Based on the subar-

eas having the same area, the numbers (narea) of subareas generated by c_ and sqr were
compared as follows. Table 4 provides the values of narea. When the radius was 1/16 to
1/256, narea of c_max ranged from 10 to 707, narea of c_min ranged from 7 to 694, and narea of
c_avg ranged from about 8 to 702. Based on the same radius, narea of sqr ranged from 4 to
552, which was less than that of c_max, c_min, and c_avg. When the radius was 1/16,
compared with c_max and sqr, sqr reduced the number to 6 (=10 − 4) subareas, and the
reduction rate was 60% (=6/10). Figure 11 provides the subarea reduction rates for c_max
and sqr, c_min and sqr, and c_avg and sqr, which are represented by c_max#sqr,
c_min#sqr, and c_avg#sqr, respectively. When the radius was 1/16, the reduction rates
were about 60%, 43%, and 51%. When the radius was reduced to 1/256, the reduction
rates were about 22%, 20%, and 21%, respectively. Overall, the subarea reduction rate
was between 60% and 20%.

Table 4. The number of subareas.

Radius c_max c_min c_avg sqr
1/16 10 7 8 4
1/32 22 19 20 13
1/64 63 57 60 41

1/128 199 192 196 146
1/256 707 694 702 552

0%

10%

20%

30%

40%

50%

60%

70%

1/16 1/32 1/64 1/128 1/256

c_max#sqr

c_min#sqr
c_avg#sqr

Figure 11. The subarea reduction rates.
Figure 11. The subarea reduction rates.

6.2. Candidate Points and Outer Points

The number of candidate points ncand and the number of outer points nouter are
discussed in the following. Table 5 provides the values of ncand for each algorithm used
in the comparison. When the radius went from 1/16 to 1/256, ncand of c_max went from
179,853 to 109,639, ncand of c_min went from 148,369 to 108,609, and ncand of c_avg went
from about 162,264 to 109,121. With the same radius, ncand of sqr went from 123,374 to
89,841, which was less than the values for c_max, c_min, and c_avg. In c_max, when the
radius is 1/16, ncand was 179,853 with a value of ninner of 89,209, and the ratio of ncand to
ninner was about 2.02. When the radius was from 1/16 to 1/256, the ratio of c_max ranged
from about 2.02 to 1.23, the ratio of c_min went from about 1.67 to 1.22, and the ratio of
c_avg went from about 1.82 to 1.22. Based on the same radius, the ratio of sqr went from
1.38 to 1.01, which was less than the values for c_max, c_min, and c_avg.

Table 5. The number of candidate points.

Radius
c_max c_min c_avg Sqr

ncand Rate ncand Rate ncand Rate ncand Rate

1/16 179,853 2.02 148,369 1.66 162,264 1.82 123,374 1.38

1/32 144,919 1.62 122,179 1.37 134,579 1.51 102,322 1.15

1/64 121,457 1.36 115,708 1.30 119,440 1.34 93,721 1.05

1/128 113,037 1.27 110,719 1.24 111,776 1.25 91,204 1.02

1/256 109,639 1.23 108,609 1.22 109,121 1.22 89,841 1.01

The rate is ncand divided by ninner.

Table 6 provides the number of outer points nouter. When the radius was 1/16, nouter
of c_max was 90,644, i.e., ncand − ninner. When the radius went from 1/16 to 1/256, nouter of
c_max went from 90,644 to 20,430, nouter of c_min went from 59,160 to 19,400, nouter of c_avg
went from about 73,055 to 19,912, and nouter of sqr went from 34,165 to 632. When the radius
was 1/16, nouter of c_max was 90,644, and nouter of sqr was 34,165. The number of outer
points was reduced to 56,479, and the reduction rate was about 62.3% (=56,479/90,644).
Figure 12 provides the reduction rates of c_max#sqr, c_min#sqr, and c_avg#sqr. When the
radius was 1/16, the reduction rates of c_max#sqr, c_min#sqr, and c_avg#sqr were about
62.3%, 25.6%, and 53.2%. When the radius was reduced to 1/256, the reduction rates of
c_max#sqr, c_min#sqr, and c_avg#sqr were about 96.9%, 91.9%, and 96.8%. Accordingly,
sqr resulted in a reduction rate of the outer points between 25.6% and 96.9% with respect to
c_max, c_min, and c_avg.

Algorithms 2023, 16, 132 17 of 20

Table 6. The numbers of outer points.

Radius c_max c_min c_avg Sqr

1/16 90,644 59,160 73,055 34,165
1/32 55,710 32,970 45,370 13,113
1/64 32,248 26,499 30,231 4512
1/128 23,828 21,510 22,567 1995
1/256 20,430 19,400 19,912 632

Algorithms 2023, 15, x FOR PEER REVIEW 17 of 20

re
du

ct
io

n
 r

at
e

radius

0%

20%

40%

60%

80%

100%

120%

1/32 1/64 1/128 1/256 1/512

c_max#sqr c_min#sqr
c_avg#sqr

Figure 12. The reduction rate of outer points.

6.3. Confirmed Points
The number of confirmed points nconf is discussed in the following. Table 7 provides

the values of nconf. When the radius went from 1/16 to 1/256, nconf of c_max went from
142,054 to 4953, nconf of c_min went from 107,065 to 2869, and nconf of c_avg went from
about 121,540 to 3466. With the same radius, the nconf of sqr went from 56,237 to 2054,
which was less than the values for c_max, c_min, and c_avg. When the radius was 1/16,
nconf of c_max was 142,054, and nconf of sqr was 56,237. This was a reduction of 85,817
points, and the reduction rate of c_max#sqr was about 60.4% (=85,817/142,054). Figure 13
provides the reduction rates. When the radius was 1/16, the reduction rates of c_max#sqr,
c_min#sqr, and c_avg#sqr were about 60.4%, 47.5%, and 53.7%. When the radius was
reduced to 1/256, the reduction rates of c_max#sqr, c_min#sqr, and c_avg#sqr were about
58.5%, 28.4%, and 40.7%. Moreover, sqr resulted in a reduction rate of the confirmed
points between 28.4% and 60.4%.

Table 7. The confirmed points.

Radius c_max c_min c_avg sqr
1/16 142,054 107,065 121,540 56,237
1/32 75,034 56,775 65,475 23,126
1/64 30,428 24,948 28,017 16,520

1/128 12,478 8965 11,007 5081
1/256 4953 2869 3466 2054

0%

10%

20%

30%

40%

50%

60%

70%

80%

1/32 1/64 1/128 1/256 1/512

c_max#sqr
c_min#sqr
c_avg#sqr

Figure 13. The reduction rates of confirmation points.

6.4. Discussion
For a given targeted area, the performance of O_PtInPy, L_Rect, c_, and sqr in iden-

tifying inner points was compared. For City 1, O_PtInPy generated 12.47 times the can-
didate points with respect to the inner points, and L_Rect generated 1.55 times the can-
didate points with respect to the inner points. The values for c_ and sqr in City 1 ranged
from 2.02 to 1.22 and from 1.38 to 1.01. For c_ and sqr, different subarea plans generated

Figure 12. The reduction rate of outer points.

6.3. Confirmed Points

The number of confirmed points nconf is discussed in the following. Table 7 provides
the values of nconf. When the radius went from 1/16 to 1/256, nconf of c_max went from
142,054 to 4953, nconf of c_min went from 107,065 to 2869, and nconf of c_avg went from
about 121,540 to 3466. With the same radius, the nconf of sqr went from 56,237 to 2054, which
was less than the values for c_max, c_min, and c_avg. When the radius was 1/16, nconf of
c_max was 142,054, and nconf of sqr was 56,237. This was a reduction of 85,817 points, and
the reduction rate of c_max#sqr was about 60.4% (=85,817/142,054). Figure 13 provides the
reduction rates. When the radius was 1/16, the reduction rates of c_max#sqr, c_min#sqr,
and c_avg#sqr were about 60.4%, 47.5%, and 53.7%. When the radius was reduced to 1/256,
the reduction rates of c_max#sqr, c_min#sqr, and c_avg#sqr were about 58.5%, 28.4%, and
40.7%. Moreover, sqr resulted in a reduction rate of the confirmed points between 28.4%
and 60.4%.

Table 7. The confirmed points.

Radius c_max c_min c_avg sqr

1/16 142,054 107,065 121,540 56,237
1/32 75,034 56,775 65,475 23,126
1/64 30,428 24,948 28,017 16,520
1/128 12,478 8965 11,007 5081
1/256 4953 2869 3466 2054

Algorithms 2023, 15, x FOR PEER REVIEW 17 of 20

re
du

ct
io

n
 r

at
e

radius

0%

20%

40%

60%

80%

100%

120%

1/32 1/64 1/128 1/256 1/512

c_max#sqr c_min#sqr
c_avg#sqr

Figure 12. The reduction rate of outer points.

6.3. Confirmed Points
The number of confirmed points nconf is discussed in the following. Table 7 provides

the values of nconf. When the radius went from 1/16 to 1/256, nconf of c_max went from
142,054 to 4953, nconf of c_min went from 107,065 to 2869, and nconf of c_avg went from
about 121,540 to 3466. With the same radius, the nconf of sqr went from 56,237 to 2054,
which was less than the values for c_max, c_min, and c_avg. When the radius was 1/16,
nconf of c_max was 142,054, and nconf of sqr was 56,237. This was a reduction of 85,817
points, and the reduction rate of c_max#sqr was about 60.4% (=85,817/142,054). Figure 13
provides the reduction rates. When the radius was 1/16, the reduction rates of c_max#sqr,
c_min#sqr, and c_avg#sqr were about 60.4%, 47.5%, and 53.7%. When the radius was
reduced to 1/256, the reduction rates of c_max#sqr, c_min#sqr, and c_avg#sqr were about
58.5%, 28.4%, and 40.7%. Moreover, sqr resulted in a reduction rate of the confirmed
points between 28.4% and 60.4%.

Table 7. The confirmed points.

Radius c_max c_min c_avg sqr
1/16 142,054 107,065 121,540 56,237
1/32 75,034 56,775 65,475 23,126
1/64 30,428 24,948 28,017 16,520

1/128 12,478 8965 11,007 5081
1/256 4953 2869 3466 2054

0%

10%

20%

30%

40%

50%

60%

70%

80%

1/32 1/64 1/128 1/256 1/512

c_max#sqr
c_min#sqr
c_avg#sqr

Figure 13. The reduction rates of confirmation points.

6.4. Discussion
For a given targeted area, the performance of O_PtInPy, L_Rect, c_, and sqr in iden-

tifying inner points was compared. For City 1, O_PtInPy generated 12.47 times the can-
didate points with respect to the inner points, and L_Rect generated 1.55 times the can-
didate points with respect to the inner points. The values for c_ and sqr in City 1 ranged
from 2.02 to 1.22 and from 1.38 to 1.01. For c_ and sqr, different subarea plans generated

Figure 13. The reduction rates of confirmation points.

Algorithms 2023, 16, 132 18 of 20

6.4. Discussion

For a given targeted area, the performance of O_PtInPy, L_Rect, c_, and sqr in identify-
ing inner points was compared. For City 1, O_PtInPy generated 12.47 times the candidate
points with respect to the inner points, and L_Rect generated 1.55 times the candidate
points with respect to the inner points. The values for c_ and sqr in City 1 ranged from 2.02
to 1.22 and from 1.38 to 1.01. For c_ and sqr, different subarea plans generated different
results. In addition to database access, the amount of calculation was also one of the metrics
used to evaluate these methods. The number of confirmed points generated by applying a
method affected the computation required. For O_PtInPy, the confirmed points contained
all targets. Therefore, the amount of calculation needed for O_PtInPy was very large. For
L_PtInPy, the targets within the range of the rectangle were confirmed points. Compared
with O_PtInPy, the amount of calculation needed by L_PtInPy was reduced, but it was also
very large. Taking City 1 as an example, O_PtInPy generated 1,112,188 confirmed points,
and L_PtInPy generated 138,678 confirmed points, which was about 12.45% of the number
of confirmed points for O_PtInPy.

Then, the c_ and sqr methods were individually compared. For the subareas, sqr
reduced the number by 60% to 20% with respect to c_. This shows that sqr is better than
c_ in the allocation of subareas. For the outer points, sqr reduced the number by 96.9%
to 25.6% with respect to c_. When the area of the subareas was smaller, the number of
confirmed points would be closer to the number of inner points, and the ratio of candidate
points to inner points would be closer to 1. For example, when the radius was 1/256, the
ratio of sqr was about 1.01, and the ratio of c_ was between 1.23 and 1.22. When the area of
the subareas was smaller, the value of sqr would be closer to 1, but the value of c_ could
only stay at about 1.20. The reason is that the subareas of c_ overlapped with each other.
The points within the overlapped area were repeatedly retrieved from the database. The
subareas of c_ were in a circular area. However, within this circular area, only a regular
hexagonal area would not overlap with other subareas, and the overlap area was about
17.3%. So, even with very efficient database systems that can support the retrieval of data
within smaller partitions, c_ has limitations that sqr does not.

In c_, different seed points also affected its performance, but in sqr, there was no such
shortcoming. In addition, the range of the subareas was also a problem. An improper range
may cause c_ to generate more candidate points than L_Rect. Accordingly, the method
could determine a reasonable length (sl) for the side of a square. Algorithm 7 is a SqrSide
algorithm, the inputs of which are a polygon P, a point set P, and a number ndb. This
algorithm first calculates a rectangle R with a range that can cover polygon P through
RectOfPy. Next, it calculates the area of this rectangle R. Then, it calculates the number ta of
inner points of rectangle R through an SQL statement. t1 and t2 are continuously calculated,
where t1 is the expected number of squares and t2 is the expected area of a square. Finally,
the algorithm calculates the length (sl) of a square’s side by using the power function pow(),
i.e., sl2= t2. Notably, in line 4, the select statement is similar to the MySQL statement for
obtaining the number of records that meet the query conditions.

Algorithm 7. SqrSide(polygon P, point set G, number ndb)

1. R := RectOfPy(P);
2. xmin := R[0]; xmax := R[1]; ymin := R[2]; ymax := R[3];
3. a := (xmax − xmin) × (ymax − ymin);
4. ta := {SELECT count(*) FROM ‘G’ WHERE ‘x’ ≥ xmin AND ‘x’ ≤ xmax AND ‘y’ ≥ ymin AND

‘y’ ≤ ymax};
5. t1 := ta/ndb;
6. t2 := a/t1;
7. sl := pow(t2, 0.5);
8. return (sl);

Algorithms 2023, 16, 132 19 of 20

Therefore, based on the above discussion, the performance of sqr is far superior to that
of the other methods that were discussed in this work. Moreover, it is an efficient GNSS
coordinate recognition algorithm.

7. Conclusions

Many infectious diseases are highly contagious and seriously affect human health,
economic activities, education, sports, and leisure. As an epidemic spreads, tracking targets
within specific administrative areas is an effective option for slowing the spread. In this
study, we presented an efficient GNSS coordinate recognition algorithm for epidemic
management. It can be used to efficiently track targets within specific administrative areas.
In the future, we will consider the limitations of using the gathering of personal information
and continue to discuss related issues.

Author Contributions: Conceptualization, J.-S.C. and R.-W.H.; methodology, J.-S.C., C.-M.K. and
R.-W.H.; software, C.-M.K.; validation, J.-S.C. and R.-W.H.; formal analysis, J.-S.C. and R.-W.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nath, T.C.; Bhuiyan, M.J.U.; Mamun, M.A.; Datta, R.; Chowdhury, S.K.; Hossain, M.; Alam, M.S. Common infectious diseases of

goats in Chittagong district of Bangladesh. Int. J. Sci. Res. Agric. Sci. 2014, 1, 43–49. [CrossRef]
2. Edmond, M. Isolation. Infect. Control. Hosp. Epidemiol. 1997, 18, 58–64. [CrossRef] [PubMed]
3. Li, T. Diagnosis and clinical management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: An

operational recommendation of Peking Union Medical College Hospital (V2. 0) working group of 2019 novel coronavirus, Peking
union medical college hospital. Emerg. Microbes Infect. 2020, 9, 582–585. [PubMed]

4. Zhu, N.; Marais, J.; Bétaille, D.; Berbineau, M. GNSS position integrity in urban environments: A review of literature. IEEE Trans.
Intell. Transp. Syst. 2018, 19, 2762–2778. [CrossRef]

5. Dow, J.M.; Neilan, R.E.; Rizos, C. The international GNSS service in a changing landscape of global navigation satellite systems.
J. Geod. 2009, 83, 191–198. [CrossRef]

6. Zhbankov, G.A.; Danilkin, N.P.; Maltseva, O.A. Influence of the ionosphere on the accuracy of the satellite navigation system.
Acta Astronaut. 2022, 190, 194–201. [CrossRef]

7. Gupta, R.; Jay, D.; Jain, R. Geographic information systems for the study and control of infectious diseases. In Proceedings of the
Map India Conference, New Delhi, India, 28–31 January 2003.

8. Awange, J.L. Environmental Monitoring Using Gnss: Global Navigation Satellite Systems; Springer: Berlin/Heidelberg, Germany, 2012.
9. Awange, J. Gnss Environmental Sensing; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10, pp. 978–983.
10. Cahyadi, M.N.; Susanto, L.O.F.; Rokhmana, C.A.; Sulistiawan, S.S.; Waloejo, C.S.; Raharjo, A.B.; Atok, M. Telemedicine technology

application for COVID-19 patient tracing using smartphone gnss. Int. J. Geoinformatics 2022, 18, 103–117.
11. Chew, C.; Small, E. Estimating inundation extent using cygnss data: A conceptual modeling study. Remote Sens. Environ. 2020,

246, 111869. [CrossRef]
12. Gupta, R.; Bedi, M.; Goyal, P.; Wadhera, S.; Verma, V. Analysis of COVID-19 tracking tool in India: Case study of Aarogya Setu

mobile application. Digit. Gov. Res. Pract. 2020, 1, 1–8. [CrossRef]
13. Hormann, K.; Agathos, A. The point in polygon problem for arbitrary polygons. Comput. Geom. 2001, 20, 131–144. [CrossRef]
14. Haines, E. Point in polygon strategies. Graph. Gems 1994, 4, 24–46.
15. Taylor, G. Point in polygon test. Surv. Rev. 1994, 32, 479–484. [CrossRef]
16. Dimri, S.C.; Tiwari, U.K.; Ram, M. An efficient algorithm to clip a 2D-polygon against a rectangular clip window. Appl. Math.-A J.

Chin. Univ. 2022, 37, 147–158. [CrossRef]
17. Kumar, G.N.; Bangi, M. An extension to winding number and point-in-polygon algorithm. IFAC-Pap. 2018, 51, 548–553. [CrossRef]
18. Moscato, M.M.; Titolo, L.; Feliú, M.A.; Munoz, C.A. Provably correct floating-point implementation of a point-in-polygon

algorithm. In International Symposium on Formal Methods; Springer: Berlin/Heidelberg, Germany, 2019; pp. 21–37.
19. Weekly Epidemiological Update on COVID-19—25 May 2022. Available online: https://www.who.int/publications/m/item/

weekly-epidemiological-update-on-COVID-19---25-may-2022 (accessed on 12 July 2022).
20. Chang, S.C.; Huang, H.Y.; Huang, Y.F.; Yang, C.Y.; Hsu, C.Y.; Chen, J.S. An Efficient Geographical Place Mining Strategy for Social

Networking Services. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),
Yilan, Taiwan, 20–22 May 2019; pp. 1–2.

http://doi.org/10.12983/ijsras-2014-p0043-0049
http://doi.org/10.2307/30141965
http://www.ncbi.nlm.nih.gov/pubmed/9013248
http://www.ncbi.nlm.nih.gov/pubmed/32172669
http://doi.org/10.1109/TITS.2017.2766768
http://doi.org/10.1007/s00190-008-0300-3
http://doi.org/10.1016/j.actaastro.2021.10.004
http://doi.org/10.1016/j.rse.2020.111869
http://doi.org/10.1145/3416088
http://doi.org/10.1016/S0925-7721(01)00012-8
http://doi.org/10.1179/sre.1994.32.254.479
http://doi.org/10.1007/s11766-022-4556-0
http://doi.org/10.1016/j.ifacol.2018.05.092
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-COVID-19---25-may-2022
https://www.who.int/publications/m/item/weekly-epidemiological-update-on-COVID-19---25-may-2022

Algorithms 2023, 16, 132 20 of 20

21. Lin, C.B.; Hung, R.W.; Hsu, C.Y.; Chen, J.S. A GNSS-based crowd-sensing strategy for specific geographical areas. Sensors 2020,
20, 4171. [CrossRef] [PubMed]

22. Kim, H.-S. What drives you to check in on Facebook? Motivations, privacy concerns, and mobile phone involvement for
location-based information sharing. Comput. Hum. Behav. 2016, 54, 397–406. [CrossRef]

23. Huang, Y.-F.; Chen, J.-S.; Lin, C.-B. A specific Targeted-Place Mining Method for a Famous Social Network: Take Wang-ye Worship
in Taiwan for example. In Proceedings of the 15th International Symposium on Pervasive Systems, Algorithms and Networks
(I-SPAN), Yichang, China, 16–8 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 263–266.

24. Chen, J.S.; Lin, C.B.; Yang, C.Y.; Huang, Y.F. An efficient Facebook place information extraction strategy. In International Symposium
on Mobile Internet Security; Springer: Singapore, 2017; pp. 131–139.

25. Chen, J.S.; Huang, Y.F.; Yang, C.Y.; Hung, R.W.; Lin, C.B. An efficient hot-spot analysis method for facebook places: Take Taipei
city in Taiwan for example. In Proceedings of the IEEE International Conference on Applied System Invention (ICASI), Tokyo,
Japan, 13–17 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 109–112.

26. Chen, J.S.; Hsu, C.Y.; Yang, C.Y.; Wei, C.C.; Ciang, H.G. A data mining method for Facebook social network: Take “new row
mian (beef noodle)” in Taiwan for example. In Proceedings of the IEEE 8th International Conference on Awareness Science and
Technology (iCAST), Taichung, Taiwan, 8–10 November 2017; pp. 165–169.

27. Beaulieu, A. Learning SQL, 2nd ed.; Treseler, M.E., Ed.; O’Reilly: Sebastopol, CA, USA, 2009; ISBN 978-0-596-52083-0.
28. MySQL. Sql Select Syntax. Available online: https://dev.mysql.com/doc/refman/8.0/en/select.html (accessed on 12 July 2022).
29. Antonio, F. Faster line segment intersection. In Graphics Gems III (IBM Version); Morgan Kaufmann: Burlington, MA, USA, 1992;

pp. 199–202.
30. Dubois, Paul, MySQL, Pearson Education. 2008. Available online: https://rog.asus.com/tw/compareresult/?productline=

laptops&webpathname=GV301QE-0022A5900HS&id=136348 (accessed on 12 July 2022).
31. Naz, R.; Khan, M.N.A. Rapid applications development techniques: A critical review. Int. J. Softw. Eng. Its Appl. 2015, 9, 163–176.

[CrossRef]
32. Demographics of Taiwa. Available online: https://en.wikipedia.org/wiki/Demographics_of_Taiwan (accessed on 12 July 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s20154171
http://www.ncbi.nlm.nih.gov/pubmed/32727101
http://doi.org/10.1016/j.chb.2015.08.016
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://rog.asus.com/tw/compareresult/?productline=laptops&webpathname=GV301QE-0022A5900HS&id=136348
https://rog.asus.com/tw/compareresult/?productline=laptops&webpathname=GV301QE-0022A5900HS&id=136348
http://doi.org/10.14257/ijseia.2015.9.11.15
https://en.wikipedia.org/wiki/Demographics_of_Taiwan

	Introduction
	Related Work
	System Architecture and Problem Description
	Coordinate Recognition Algorithm
	The Proposed Algorithm
	Example

	Simulated Environment and Demonstration
	Simulated Environment
	Demonstration

	Simulation Result
	Subareas
	Candidate Points and Outer Points
	Confirmed Points
	Discussion

	Conclusions
	References

