f_f algorithms

Article

Acoustic Echo Cancellation with the Normalized Sign-Error
Least Mean Squares Algorithm and Deep Residual Echo

Suppression

Eran Shachar *, Israel Cohen *

check for
updates

Citation: Shachar, E.; Cohen, L;
Berdugo, B. Acoustic Echo
Cancellation with the Normalized
Sign-Error Least Mean Squares
Algorithm and Deep Residual Echo
Suppression. Algorithms 2023, 16, 137.
https:/ /doi.org/10.3390/a16030137

Academic Editor: Xiang Zhang and

Xiaoxiao Li

Received: 30 December 2022
Revised: 1 February 2023
Accepted: 7 February 2023
Published: 3 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Baruch Berdugo *

Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering, Technion-Israel Institute of Technology,

Technion City, Haifa 3200003, Israel

* Correspondence: eranshachar@campus.technion.ac.il (E.S.); icohen@ee.technion.ac.il (I.C.);
bbaruch@technion.ac.il (B.B.)

Abstract: This paper presents an echo suppression system that combines a linear acoustic echo
canceller (AEC) with a deep complex convolutional recurrent network (DCCRN) for residual echo
suppression. The filter taps of the AEC are adjusted in subbands by using the normalized sign-
error least mean squares (NSLMS) algorithm. The NSLMS is compared with the commonly-used
normalized least mean squares (NLMS), and the combination of each with the proposed deep residual
echo suppression model is studied. The utilization of a pre-trained deep-learning speech denoising
model as an alternative to a residual echo suppressor (RES) is also studied. The results showed that
the performance of the NSLMS is superior to that of the NLMS in all settings. With the NSLMS output,
the proposed RES achieved better performance than the larger pre-trained speech denoiser model.
More notably, the denoiser performed considerably better on the NSLMS output than on the NLMS
output, and the performance gap was greater than the respective gap when employing the RES,
indicating that the residual echo in the NSLMS output was more akin to noise than speech. Therefore,
when little data is available to train an RES, a pre-trained speech denoiser is a viable alternative when
employing the NSLMS for the preceding linear AEC.

Keywords: residual echo suppression; acoustic echo cancellation; deep-learning; speech enhancement

1. Introduction

Acoustic echo cancellation is a long-standing problem in real-life telecommunication
scenarios where a near-end speaker communicates with a far-end speaker. A loudspeaker
plays the far-end signal, and a microphone captures the echo of the loudspeaker signal,
and the near-end signal and background noise [1].

Traditional acoustic echo cancellers (AECs) employ linear adaptive filters [2].
Linear AECs commonly use the least mean squares (LMS) algorithm [3,4] and its nor-
malized version, the normalized LMS (NLMS) [5,6]. The improvement introduced by
the normalization is that the step size can be set independently of the reference signal’s
power [7]. Variants of the LMS and NLMS algorithms are the sign-error LMS (SLMS),
and normalized SLMS (NSLMS) algorithms [8]. In contrast to the NLMS, the NSLMS
adjusts the weight for each filter tap, based on the polarity (sign) of the error signal. Several
studies have shown the advantages of the NSLMS over the NLMS. For example, Freire
and Douglas [9] used the NSLMS adaptive filter to cancel geomagnetic background noise
in magnetic anomaly detection systems and demonstrated its superiority over the NLMS.
Pathak et al. [10] utilized the NSLMS adaptive filter to perform speech enhancement in
noisy magnetic resonance imaging (MRI) environments. According to their experiments,
the NSLMS achieved faster convergence than the NLMS, and residual noise produced by
the NSLMS had characteristics of white noise. In contrast, residual noise produced by the
NLMS was more structured.
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The linear AECs lack the ability to cancel the nonlinear components of the echo.
Therefore, further suppression of the residual echo is required, and a residual echo sup-
pressor (RES) is typically employed. While traditional residual echo suppression relies
on filter-based techniques [11,12], recent advances in deep learning have shifted the focus
toward neural network-based approaches [13-16]. Under challenging real-life conditions,
for example, low signal-to-echo ratios (SERs) and changing acoustic echo paths, the perfor-
mance of the linear AEC preceding the RES model has a significant impact on the overall
performance. Hence, it may be beneficial to investigate the AECs in conjunction with
deep-learning models for residual echo suppression.

The output of a linear AEC is expected to contain a distorted weaker version of the
echo signal, while keeping the near-end signal almost distortionless. Therefore, denoising
the estimated near-end signal with a designated speech denoiser might suppress the
residual echo, while eliminating other noises. Research on deep-learning-based speech
enhancement algorithms has seen significant progress over the last few years, with many
models exhibiting excellent performances [17-19]. For a speech denoiser to achieve good
performance as an RES, the AEC must produce residual echo that closely resembles noise,
rather than human speech.

In this paper, two aspects of residual echo suppression were investigated: the impact
of the preceding linear AEC on the performance of the residual echo suppression deep-
learning model and the utilization of a pre-trained speech denoiser as an alternative
to an RES. In addition, an echo suppression system, that employs NSLMS to perform
linear acoustic echo cancellation and a deep complex convolutional recurrent network
(DCCRN) [18] to achieve residual echo suppression, is proposed. The performances of the
NSLMS and the commonly-used NLMS algorithms were compared, and the utilization of a
speech denoiser to the output of the linear AEC to suppress the residual echo and additional
noises was evaluated. The results showed that the performances of systems using NSLMS
were superior to those using NLMS in all settings. This suggested that NSLMS was better
suited for acoustic echo cancellation and residual echo suppression tasks, emphasizing
the importance of choosing the right linear AEC. Additionally, the performance of the
pre-trained denoiser in combination with each linear AECs was investigated to determine
which of the outputs contained residual echo that resembled noise more closely than
speech. The results indicated that, contrary to the NLMS, the outputs of the NSLMS
were more akin to noise than speech. Therefore, the preceding linear AEC choice had
an even more significant impact when employing a pre-trained speech denoiser model
for the residual echo suppression task. With the NSLMS, a speech denoiser might be a
suitable alternative when insufficient data is available to train an RES model. Finally, the
advantages and efficacy of the proposed RES model over a larger pre-trained denoiser
model are shown. To summarize the contributions of the presented study, the main findings
are highlighted below:

¢ The performance of the NSLMS is superior to that of the common NLMS, both as a
standalone linear AEC and combined with a deep-learning residual echo suppressor.
More generally, the reported findings indicated that the linear AEC significantly
impacted the performance of the following residual echo suppressor and should be
carefully chosen.

*  When combined with a pre-trained speech denoiser, the NSLMS brings a more signifi-
cant performance improvement than when combined with a residual echo suppressor.
This indicated that the outputs of the NSLMS were less structured and more akin to
noise than the NLMS outputs. Therefore, with the NSLMS, employing a pre-trained
speech denoiser might be a viable alternative to training a residual echo suppressor.

*  The DCCRN architecture, initially proposed for speech enhancement, is offered to
perform residual echo suppression. While requiring only a minor modification to
adapt to the residual echo suppression task, the proposed residual echo suppressor
outperformed the larger, pre-trained speech denoiser.
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The presented study focused on challenging real-life scenarios, such as echo—path
changes, low signal-to-echo ratios (SERs), and real-time considerations.

Following is the outline of the manuscript. In Section 2, formulation of the residual
echo suppression problem is provided, the relevant signals are denoted, the different
systems and their components are described, and details regarding the datasets and ex-
perimental procedures are provided. In Section 3, the experimental results are provided.
The results are discussed and interpreted in this section as well. The manuscript is con-
cluded in Section 4.

2. Materials and Methods

This section is organized as follows. First, the different signals of concern are denoted
and explained. A high-level overview of the residual echo suppression setting is also
provided. Next, the different systems and system components are described in detail.
Lastly, the training and evaluation data are described, and experimental, and implementa-
tion details are provided.

2.1. Problem Formulation

First, the different signals presented in the manuscript are denoted. The far-end
reference signal is denoted by x(n). The echoic loudspeaker signal is denoted by s(n),
and the near-end signal is denoted by d(n). The value v(n) denotes the background noise.
The microphone signal is given by:

m(n) =s(n)+dn)+ov(n). 1)

The linear AEC receives as inputs, x(n) and m(n), and outputs two signals: a(n), the
estimate of the echo signal s(n), and the estimate of the noisy near-end signal, i.e. the er-
ror signal e(n) = m(n) —a(n). The filter tap weights vector of length N is denoted by
c(n) = [c1(n),...,cn(n)]T, where ()T represents the transposed vector. Similarly, the far-end sig-
nal’s vector at time 7 and length N is denoted by xy (1) = [x(n), x(n —1),...,x(n — N +1)]T.

The error signal e(n) contains noise and residual echo components. The goal was to
enhance e(n) by further suppressing the residual echo and possibly removing noise. This is
done either by a speech denoising model, in which case it receives e(n) as a single input to
be denoised, or by an RES model, in which case it also receives as inputs x(n), m(n), and
a(n). The RES/denoiser block predicts d(1). The problem’s setup and the related signals
are depicted in Figure 1. When referring to the short-time Fourier transform (STFT) [20]
domain transformations of the above signals, f denotes the frequency index, and k denotes
the time index of the transformed signals. For example, E(f, k) is the STFT of e(n).

X(n) Room
Far-end speaker
I
N AEC
S //
l :’ a(n) s(n)
d(n)|  Res/ i e(n)d @m(”t) d(n)
denoiser ] E * Near-end
v(n) speaker
/'

Figure 1. Residual echo suppression setup.
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2.2. System Components

A residual echo suppression system comprises a linear AEC and an RES model.
Two linear AECs were compared: NSLMS and NLMS. For residual echo suppression,
two alternatives were considered: the proposed RES model and a pre-trained speech-
denoising model.

2.2.1. Linear Acoustic Echo Cancellers

For linear acoustic echo cancellation, an AEC with the NSLMS algorithm was em-
ployed. The algorithm operates in the subband domain by transforming the signals with
uniform single-sideband filter banks [21]. The filters” tap weights update equation for each
subband is given by:

xn (n)sgn(e(n))a(n)
[Ixn (n)|[2

where «(n) is the step size, and sgn(-) is the signum function. The performance of NSLMS
was compared to that of NLMS, for which the tap weights update equation is given by:

c(n+1)=c(n)+ ()

R DI ©

2.2.2. Residual Echo Suppression Model

The DCCRN [18] architecture, which employs a complex convolutional encoder—
decoder structure and a complex long short-term memory (LSTM), was adopted for residual
echo suppression. The model was initially developed for speech enhancement in the time-
frequency (I-F) domain. It estimates a complex ratio mask (CRM) applied to the STFT of
the input signal. For residual echo suppression, the model was adapted to have 4 input
channels instead of one, and its inputs were all available signals: e(n), a(n), x(n), and m(n).
The estimated CRM was applied to the STFT of the error signal, E(f, k). Figure 2 depicts
the model’s architecture.

x(n X(f,k)

min v D
2O g MUEK D(fk) dtn)
Complex Complex Complex 8 STET

Encoder LSTM Decoder

— STFT [A(fk) 4

S T

Figure 2. Residual echo suppression model architecture.

The encoder and decoder branches of the model were symmetrical, where the outputs
of each encoder block were used as the inputs of the next encoder block and as additional
inputs to the decoder block of the same level. These connections between the different
encoder and decoder blocks are termed skip connections. Skip connections have two
advantages: they provide an alternative path for the gradient during back-propagation,
which is beneficial for model convergence, and they allow re-use of features from the
encoder in the decoder. Each encoder/decoder block comprised a complex 2-D convolution
layer, a complex batch-normalization layer, and a real parametric rectified linear unit
(PReLU) activation function [22], as depicted in Figure 3.
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Figure 3. Structure of a complex convolution block. The input features map, consisting of real and
imaginary parts, was fed to a complex 2-D convolution layer, the outputs of which were fed to a
complex 2-D batch normalization layer. A PReLU activation function provided the block’s output.

A complex 2-D convolution layer comprised two real 2-D convolution layers, each
operating on the real and imaginary parts of its input. The output of a complex 2-D
convolution layer, denoted by O, is formulated as:

Oc = (Xp x Wy — X; %« W;) + j( Xy x W; + X; x Wy), 4)

where X, and X; are the real and imaginary parts of the input, respectively, W, and W; are
the real and imaginary convolution kernels, respectively, and * is the convolution operation.
Like the complex 2-D convolution layer, the complex LSTM layer comprised two real LSTM
layers, denoted by LSTM, and LSTM,;. The output of the complex LSTM, denoted by F, is
formulated as:

F. = (LSTM,(X;) — LSTM;(X;)) + j(LSTM;(X,) + LSTM, (X;)) . (5)

Further details regarding the original model’s architecture and the structure of the
different layers can be found in [18].

Since a clean near-end signal is unavailable when training with real, recorded data,
the noisy near-end signal d(n) + v(n) was the training target. The training objective was
the waveform /; loss, combined with the multi-resolution STFT magnitude loss adopted
from [17]. For an estimated signal y and its ground-truth y, the loss is defined as:

1 3 M oG,
Loss = 7 [lly = 51l + 1 Linag(y,9)] ©
i=1
. B 1 N
Ling(y,9) = 7| 10g|STFT(y)| ~ log|STFT(9)]lx ?)
where T denotes the total time steps number, || - ||; is the /; norm, M is the number of STFT

resolutions, and i is the resolution index.

2.2.3. Speech Denoising Model

As an alternative to the RES model, an off-the-shelf, pre-trained speech-denoising
deep-learning model [17], which accepts a single input e(1) and outputs d(n), was utilized.
A speech-denoising model might be considered an alternative to an RES in cases where the
residual echo resembles noise more closely than speech. In these cases, the residual echo
might be suppressed while preserving the near-end speech. The utilized speech-denoising
model was based on the DEMUCS architecture [23]. The model operated in the time
domain, and similarly to DCCRN, it employed a convolutional encoder—decoder structure
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and an LSTM between the encoder and the decoder. A single encoder block consisted
of two 1-D convolution layers. The activation function of the first convolution layer was
the rectified linear unit (ReLU) [24] and the activation function of the second convolution
layer was the gated linear unit (GLU) [25]. The output of the encoder block was passed
to the next encoder block (or to the LSTM when it was the final encoder block) and to its
matching decoder block via a skip connection. A decoder block received both the output of
the matching encoder block and the output of the previous decoder block (or the output of
the LSTM when it was the first decoder block). The inputs were summed element-wise.
The structure of the decoder block mirrored that of the encoder block, except after the
first convolution layer, a 1-D transpose convolution layer was employed to upsample the
signal. The structure of the encoder and decoder blocks is depicted in Figure 4. The general
structure of the speech-denoising model is depicted in Figure 5. Further details regarding
the model’s architecture can be found in [17].

Encoder block Decoder block

Conv.
Conv. L} cetu ™ H o | = =] [©™ H] 6wu b trans. B Retu | =
1D 1D ) D

1

4

Figure 4. Structure of the speech-denoising model’s encoder and decoder blocks. Conv. stands for
convolution, and Trans. stands for transpose.

I ‘ \ 4
e(n) d(n)
—p ] o P » E— —
Encoder Encoder LSTM Decoder Decoder
block 1 block L block L block 1

Figure 5. High-level structure of the speech denoising model.

As mentioned in Section 1, the speech enhancement field is well-studied, with an
abundance of excellent works and a variety of readily-available, pre-trained models trained
on large and diverse datasets. With careful fine-tuning, the features learned by such
pre-trained models might be effectively utilized for the residual echo suppression task.
This might be especially effective when there is only a small amount of data to train
a residual echo suppression model. Therefore, a pre-trained model, provided by the
authors [17], was employed. The model was pre-trained on the Valentini dataset [26] and
the INTERSPEECH 2020 deep noise suppression (DNS) challenge dataset [27]. The model
was subsequently fine-tuned with the same training data used for training the RES models,
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once with the NSLMS outputs and once with the NLMS outputs. The loss function that
was minimized is given in (6).

2.3. Datasets

Two datasets were employed for training the different models: the ICASSP 2021
AEC challenge synthetic dataset [28] and an independently recorded dataset. Unlike the
synthetic data, the independent recordings were taken in real-life conditions with low SERs.
Various scenarios were considered, including echo—path changes, variations in near-end
source positions and distances from the microphone, and varying room sizes. A total of
11 hours of speech data were taken from the LibriSpeech [29] corpus and the TIMIT [30]
corpus. Spider MT503™ or Quattro MT301™ speakerphones (Shure Inc., Niles, IL, USA)
were utilized to simulate low-SER scenarios. The loudspeaker and microphone were
positioned 5 cm from each other in these devices. Echo path changes were simulated
by moving a Logitech type Z120™ loudspeaker (Logitech International S.A., Lausanne,
Switzerland), playing the echo signal. The loudspeaker’s distance from the microphone
was either 1, 1.5, or 2 m. The near-end speech was simulated using mouth simulator type
4227-A™ of Bruel&Kjaer (Bruel&Kjaer, Naerum, Denmark). The distance of the mouth
simulator from the microphone also varied between recordings and was either 1, 1.5, or
2 m from the microphone. Double-talk utterances always contained two different speakers,
so the average overlap between the two was 90%. Rooms of different sizes were used for
the recordings (sizes varied between 3 x 3 x 2.5 m3 and 5 x 5 x 4 m3). Reverberation
time (RTgp) varied between 0.3 and 0.6 seconds. The training data SER was distributed
on [—24, 18] decibels, and the test data SER was distributed on [—18, 5] decibels. Test data
speakers were unique and not used in the training set. Further details regarding the data
creation can be found in [14].

The ICASSP 2021 AEC challenge synthetic dataset was used to augment the training
data. About 27.7 h of data were generated, with different scenarios, including double-talk,
far-end or near-end single-talk, with/without near-end noise, and likewise for far-end. In
addition, several nonlinear distortions were applied, with different SERs and signal-to-noise
ratios. Further details regarding the dataset can be found in [28].

2.4. Implementation Details

All signals were sampled with a sampling rate of 16 kHz. Initially, the input sig-
nals were transformed to the subband domain by uniform 32-band single-sideband filter
banks [21]. Each subband consisted of 150 taps. These were the equivalent of filters in the
time domain with 2400 taps and of length 150 ms.

For the RES model, the transformation of the input signals to the T-F domain was
achieved by a 512-point STFT, resulting in 257 frequency bins. The STFT window length
was 25 ms, and the hop length was 6.25 ms. The number of convolution kernels for the
different encoder layers was [16, 32, 64,128,256,256]. The LSTM had two layers with a
128 hidden size. The model comprised 2.07 M parameters. The Adam optimizer [31] was
employed for model optimization. Training started with a learning rate of 5 x 10~*. The
learning rate was decreased by a factor of 2 if the validation loss did not improve after 3
consecutive epochs. The mini-batch size was 16, and the training continued for a maximum
number of 100 epochs.

The number of encoder and decoder blocks for the speech-denoising model was 5.
The number of the first encoder block’s output channels was 64, and each encoder block
doubled the number of channels. Subsequently, each decoder block halved the number of
channels, where the output of the last decoder block consisted of 1 channel. The convolution
kernel size was 8, and its stride was 4. The LSTM consisted of two layers, and its hidden
size matched the number of channels of the last encoder block (and the number of channels
of the first decoder block). The input to the model was normalized by its standard deviation.
The model was pre-trained using the Valentini dataset [26] and the INTERSPEECH 2020
DNS challenge dataset [27]. The model comprised 18.87 M parameters. For a fair com-
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parison with the RES model, the causal version of the denoiser was employed. For
both linear AECs, the model was fine-tuned using the same data used to train the RES
model. Training continued for 20 epochs with a learning rate of 3 x 10~# using the Adam
optimizer [31]. Further details regarding the model architecture can be found in [17].

3. Results

This section presents performance measures and experimental results.

3.1. Performance Measures

Performance was evaluated in two scenarios: far-end single-talk and utterances con-
taining near-end speech, either double-talk or near-end single-talk. When only the far-end
speaker spoke, the goal was to reduce the output signal’s energy as much as possible.
Optimally, the enhanced signal was silent during these periods. We utilized the echo return
loss enhancement (ERLE) measure to evaluate performance during far-end-only periods.

The ERLE in decibels is defined as:
|[m][*

1]

ERLE = 10log,,, ®)

2

During double-talk periods, the goal was to maintain near-end speech quality while
suppressing the residual echo. Since the performance measures used during these periods
focused on speech quality rather than echo reduction, these measures were also used
during near-end single-talk periods. Two different measures were employed to evaluate
performance during these periods. Perceptual evaluation of speech quality (PESQ) [32]
aimed to approximate a subjective assessment of an enhanced speech signal. PESQ was
intrusive, i.e., the enhanced signal was compared to the clean, ground-truth signal. PESQ
score was in the range [—0.5,4,5]. PESQ is known to only sometimes correlate well
with subjective human ratings. Therefore, deep noise-suppression meant opinion score
(DNSMOS) [33] was also used to evaluate performance during these periods. DNSMOS
is traditionally used to assess noise suppressors, although it can be employed to estimate
speech quality in any setting. DNSMOS is non-intrusive, i.e., it does not require a clean
near-end signal to evaluate speech quality. DNSMOS is a neural network trained with
hundreds of hours of ground-truth subjective human speech quality ratings. The model
predicted a score in the [1,5] range.

Further measures used in the next section included the SER, measured in double-talk
scenarios and defined in decibels as:

_ ldl?
SER = 10log,, 52’ )
and the echo-to-noise ratio (ENR), measured in far-end-only scenarios and defined in
decibels as: 5
[Isl]

ENR = 1010g10|‘v||2.

(10)

3.2. Experimental Results

Table 1 shows the different methods” performances on the test set: the linear AECs
(NLMS and NSLMS), the denoiser [17] operating on the outputs of each of the linear AECs
(NLMS + Denoiser and NSLMS + Denoiser), and the RES model combined with each of
the linear AECs (NLMS + RES and NSLMS + RES). First, the performances of the NLMS
and NSLMS acoustic echo cancellers were compared. As the table shows, NSLMS had
significantly better echo cancellation performance than NLMS, as indicated by the 4.57 dB
gap in ERLE. NSLMS also outperformed NLMS in preserving near-end speech quality,
as shown by DNSMOS and PESQ), both in near-end single-talk and double-talk periods.
PESQ and DNSMOS results for the double-talk-only scenario (DT) were differentiated from
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the respective results when including the near-end-only scenario (DT + NE). Notably, the
performance gap during DT was more significant than during DT + NE: the DNSMOS
difference between NSLMS and NLMS was 0.05 for DT + NE and 0.09 for DT, and the
PESQ score difference was 0.33 for DT + NE and 0.56 for DT. These results indicated that
a proper choice of a linear AEC was even more crucial when considering the challenging
double-talk scenario, and NSLMS was notably superior to NLMS in this scenario. Overall,
the performance of the NSLMS as a linear AEC was superior to that of the NLMS in all
scenarios.

Table 1. Performance comparison of the different systems. FE stands for far-end-only scenarios, NE
stands for near-end-only scenarios, and DT stands for double-talk scenarios. Results in bold represent
the best result in the column and row group (where row groups are separated with bold lines.)

FE DT DT + NE
ERLE DNSMOS PESQ DNSMOS PESQ

NLMS 16.60 2.62 2.42 2.81 3.33

NSLMS 21.17 2.71 2.98 2.86 3.66

NLM.S * 32.63 2.44 2.32 2.72 3.23
Denoiser

NSLN.[S * 39.44 2.65 3.13 2.84 3.63
Denoiser

NLMS + RES 38.55 2.46 2.53 2.76 3.34

NSLMS + RES 40.34 2.64 3.11 2.84 3.70

Next, the performance of the proposed RES was considered, both with the NLMS and
the NSLMS. It can be seen from the table that the NSLMS + RES system’s performance was
superior to the NLMS + RES system’s performance in all scenarios. When comparing the
performance of the NLMS + RES and NSLMS + RES systems to the respective linear AECs
(NLMS and NSLMS), different trends in DNSMOS and PESQ scores were observed. For
both systems, DNSMOS deteriorated, and PESQ improved. This emphasized the differences
between the two measures and the importance of examining several measures when
evaluating the performance of residual echo suppression systems. While NLMS + RES
DNSMOS deteriorated by 0.05 for DT + NE and 0.16 for DT, NSLMS+RES DNSMOS
deteriorated by 0.02 for DT + NE and by 0.07 for DT. In other words, the NSLMS RES system
saw a smaller degradation in DNSMOS than the NLMS RES system, further showing the
advantage of employing NSLMS over NLMS. Furthermore, the NLMS+RES PESQ increased
by 0.01 for DT + NE and by 0.11 for DT, while the NSLMS+RES PESQ increased by 0.04
for DT + NE and by 0.13 for DT. In other words, the improvement in PESQ was greater for
the NSLMS system than for the NLMS system. A different trend could be seen in the far-
end-only performance. For the NLMS, ERLE increased by 21.95 dB compared to the linear
AEC, and for the NSLMS system, ERLE increased by 19.17 dB. These results indicated that,
when combined with the deep-learning RES, the NLMS achieved a greater performance
gain than the NSLMS. Overall, it could be seen that the NLMS was more efficient than the
NSLMS when combined with the deep-learning RES model during far-end-only periods,
but NSLMS was more efficient than the NLMS in near-end-only and double-talk scenarios.
While it might be worthwhile to investigate these different trends, the overall performance
of the NSLMS + RES system was superior to the performance of the NLMS + RES system,
indicating that NSLMS was a better choice for a linear AEC than the NLMS when combined
with a deep-learning RES model.

When comparing the performances of the NLMS + Denoiser and the NSLMS + De-
noiser systems, it could be seen again that the system using NSLMS as a linear AEC
was superior to the system using NLMS in all settings. NSLMS + Denoiser ERLE was
6.81 dB greater than the NLMS + Denoiser ERLE. Similarly to the RES systems, DNSMOS
deteriorated for both denoisers compared to the linear AECs, both during DT + NE and
during DT. NLMS + Denoiser DNSMOS deteriorated by 0.09 during DT + NE and by
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0.18 during DT, while NSLMS+Denoiser DNSMOS deteriorated by 0.02 during DT + NE
and by 0.06 during DT. Contrary to the RES system, the NLMS + Denoiser PESQ decreased
both for DT + NE and DT, while the NSLMS+Denoiser PESQ increased. Notably, the PESQ
score of the denoiser with the NSLMS linear AEC was 0.81 greater than the PESQ score
of the denoiser using the NLMS linear AEC during double-talk periods. Furthermore, the
Denoiser + NSLMS DNSMOS was 0.21 greater than the Denoiser + NLMS DNSMOS during
double-talk periods. These significant gaps in performance during double-talk periods,
and the notable ERLE gap during far-end-only periods, further asserted the claim that the
NSLMS produced a residual echo that was more akin to noise than speech when compared
to the NLMS. In light of all the above observations, it was clear that when employing a
pre-trained speech denoising model to the task of residual echo suppression, the preceding
linear AEC significantly impacted the denoiser’s performance, and NSLMS was preferable
over NLMS to a large degree.

Next, the performances of the NSLMS + Denoiser and NSLMS + RES systems were
compared. The RES system achieved better far-end single-talk performance, as indicated by
the 0.9 dB gap in ERLE. The DNSMOS of both systems was on-par, with a minor difference
during DT periods. The RES system’s PESQ was 0.07 greater during DT + NE and 0.02
lower during DT. Overall, it could be concluded that the performance of the RES system
was superior to the denoiser system’s performance during far-end single-talk periods, and
the performances were on-par during near-end single-talk and double-talk periods, which
indicated that the overall performance of the RES system was superior to the performance
of the denoiser system. These results asserted the efficacy of the proposed RES model,
which consisted of 10 times fewer model parameters than the denoiser model, which was
also pre-trained on a large corpus with diverse speakers and noises. Nevertheless, the
performance gap was not significant, which suggested that in cases where a large dataset
for training a residual echo suppressor is not available, fine-tuning an off-the-shelf speech
denoiser might be a reasonable alternative to a residual echo suppressor.

To complete the comparison between the different systems, the different measures’
gaps between the NLMS and the NSLMS systems for the denoiser and the RES models
were compared. During far-end single-talk periods, the gap between the NSLMS + RES and
NLMS + RES ERLE was 1.79 dB, while the gap between the respective denoiser systems
was 6.81 dB. In other words, the denoiser brought a more significant performance improve-
ment between the NLMS and NSLMS systems, compared to the gap in the residual echo
suppression setting. During DT + NE periods, the DNSMOS gap between the NLMS + RES
and the NSLMS + RES systems was 0.08, and the respective gap in the denoiser setting was
0.12. During DT, the DNSMOS gap in the residual echo suppression setting was 0.18, and
the DNSMOS gap in the denoiser setting was 0.21. Again, the denoiser brought a greater
DNSMOS improvement between the NLMS and NSLMS compared to the improvement
between the respective systems in the RES settings. For PESQ), the same trend could be
observed: during DT + NE, the PESQ gap was 0.36 in the residual echo suppression setting
and 0.40 in the denoiser setting, and during DT, the gap in the residual echo suppression
setting was 0.58 and 0.81 in the denoiser setting. Overall, it could be seen that in all
scenarios, the gap between the NLMS and NSLMS performances in the denoiser setting
was greater than the respective gap in the residual echo suppression settings. In other
words, the denoiser benefited more from choosing NSLMS over NLMS than the proposed
RES, which further asserted that the outputs produced by the NSLMS were more akin to
noise than the outputs produced by the NLMS. Therefore, although NSLMS was preferable
over NLMS in all settings when employing a pre-trained speech denoiser to the task of
residual echo suppression, using NSLMS as a linear AEC resulted in significantly superior
performance compared to using NLMS, showing that the proper choice of a linear AEC
was even more critical in this setting.

Finally, the performances of the NSLMS and NLMS as linear AECs, as well as com-
bined with the proposed RES model, were compared for different SERs and ENRs. Figure 6
shows the PESQ scores for different values of SER in the double-talk scenario. NSLMS
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achieved superior PESQ over NLMS in all SERs, both as a standalone linear AEC and
combined with the RES model. Furthermore, in all SERs, the RES model did not improve
PESQ when employing the NLMS linear AEC. On the other hand, in the more challenging
scenarios of lower SERs, the RES model improved in PESQ when employing the NSLMS
linear AEC. Figure 7 shows the ERLE for different values of ENR during far-end single-talk
periods. Again, NSLMS achieved superior performance over NLMS in all ENRs, both as a
standalone linear AEC and combined with the RES model. In the challenging low ENR
scenarios, the performance gap between the NLMS + RES and NSLMS + RES systems
was greater than the respective gap in higher ENRs, further showing the advantage of
using NSLMS over using NLMS in challenging scenarios. Overall, the graphs show the
superiority of NSLMS over NLMS, both as standalone linear AECs and combined with the
proposed RES model, in various conditions and settings. Furthermore, the graphs show
that the advantage of using NSLMS over NLMS was even more significant in challenging
scenarios and conditions.
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Figure 6. PESQ in double-talk-only scenarios for different SERs.

————— ———————
e ——— o ——— B i T
20 - — e - T
- __,_——-f"‘--—
35 4 e—
-nr"'-’
30
—_—
[aa)]
o 2s
—_—
Ll
- 20 -]
o
Ll
15
S NSLMS
- %= NSLMS+RES
s | —— NLMS
—+— NLMS+RES

o s 10 15 20 25 30 35 a0
ENR [dB]
Figure 7. ERLE in far-end-only scenarios for different ENRs.

4. Conclusions

In this study, an echo suppression system, based on the NSLMS linear AEC and the
DCCRN speech enhancement model, was presented. Experiments in challenging real-life
conditions with low SER were conducted. The performances of the proposed system and a
pre-trained speech-denoising model operating on the AEC output that was fine-tuned with
the same training data were compared. The proposed system’s ERLE was 0.9 dB greater
than the denoiser’s ERLE, indicating better far-end single-talk performance. The near-end
single-talk and double-talk performances of the systems were on-par. These results showed
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that, although the speech denoising model was pre-trained on a large corpus with diverse
speakers and conditions and was 10 times larger concerning the number of parameters, the
proposed RES model was favorable. A comparison of the performances of all the systems
using NSLMS-AEC and NLMS-AEC was also made. The NSLMS was favorable over NLMS
in all settings and scenarios. Notably, NSLMS’s ERLE was 4.57 db greater than NLMS’s ERLE
as a stand-alone linear AEC. When combined with the proposed RES, NSLMS’s DNSMOS
was 0.18 greater than the NLMS, and its PESQ score was 0.58 greater, both in the challeng-
ing double-talk scenario. Overall, the results showed that, although the NLMS algorithm
is commonly employed for linear acoustic echo cancellation, the NSLMS may be a better
choice, which raises a more general question regarding the importance of choosing a proper
linear AEC and its effect on the performance of the deep-learning residual echo suppressor.
When analyzing the performance of the pre-trained speech denoiser, both with the NLMS
and the NSLMS, a notable ERLE gap of 6.81 dB was observed. This gap was considerably
larger than the respective 1.79 dB gap in the RES setting. Furthermore, there was a 0.81 gap
in double-talk PESQ scores, which was also considerably larger than the respective 0.58 gap
in the RES setting. When including near-end single-talk periods, the differences between
the different measures’ gaps were less notable. These observations supported the claim that
the NSLMS produced a residual echo that was less structured than the output produced
by the NLMS. Therefore, when the complexity of the model is not an important considera-
tion, fine-tuning a readily available denoiser could be a reasonable alternative to creating a
new RES model. However, the choice of linear AEC becomes more critical, and NSLMS is
preferable to NLMS.
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Abbreviations

The following abbreviations were used in this manuscript:

AEC Acoustic echo canceller

CRM Complex ratio mask

DCCRN Deep complex convolution network

DNS Deep noise suppression

DNSMOS  Deep noise suppression mean opinion score
ENR Echo-to-noise ratio

GLU Gated linear unit

LSTM Long short-term memory

MRI Magnetic resonance imaging

NLMS Normalized least mean squares

NSLMS Normalized sign-error least mean squares
PESQ Perceptual evaluation of speech quality
PReLU Parametric rectified linear unit

ReLU Rectified linear unit

RES Residual echo suppressor

SER Signal-to-echo ratio

SLMS Sign-error least mean squares

STFT Short-time Fourier transform

T-F Time-frequency
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