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Abstract: Surface electromyography (sEMG) plays a crucial role in several applications, such as for
prosthetic controls, human–machine interfaces (HMI), rehabilitation, and disease diagnosis. These
applications are usually occurring in real-time, so the classifier tends to run on a wearable device.
This edge processing paradigm imposes strict requirements on the complexity classifier. To date,
research on hand gesture recognition (GR) based on sEMG uses discriminant classifiers, such as
support vector machines and neural networks. These classifiers can achieve good precision; they
cannot detect when an error in classification has happened. This paper proposes a novel hand gesture
multiclass model based on partial least square (PLS) class modelling that uses an encoding matrix
called error correcting output codes (ECOC). A dataset of eight different gestures was classified using
this method where all errors were detected, proving the feasibility of PLS-ECOC as a fault-tolerant
classifier. Considering the PLS-ECOC model as a classifier, its accuracy, precision, and F1 are 87.5,
91.87, and 86.34%, respectively, similar to those obtained by other authors. The strength of our
work lies in the extra information provided by the PLS-ECOC that allows the application to be fault
tolerant while keeping a small-size model and low complexity, making it suitable for embedded
real-time classification.

Keywords: electromyography; fault tolerant; gesture recognition; wearable; edge computing; sensi-
tivity; specificity; class modelling; partial least squares; error correcting output; diagonal modified
confusion entropy

1. Introduction

The growing interest in the application of gesture recognition (GR) using surface
electromyography (sEMG) signals has been evident in recent years. A search on the
SCOPUS database using the keywords (“Electromyography” or “EMG”) and “Gesture
Recognition” yielded 884 references dating back to 1993. This is a highly interdisciplinary
field, with the majority of papers falling under the categories of “Computer Science” and
“Engineering” with 637 and 557 references, respectively, with 351 being common to both.
Other areas with a significant number of references include “Mathematics,” “Physics and
Astronomy,” and “Medicine” with 169, 144, and 124 references, respectively. Of those, none,
18, and 9 do not belong to either “Computer Science” or “Engineering”.

There are numerous medical applications for this technology for both people with
disabilities and healthy individuals, as discussed in [1]. EMG signals have also been used in
the design [2] and control of prostheses [3]. Applications in robot therapy were presented
in [4], and [5] describes an elbow rehabilitation system using a remote-controlled intelligent
robot. The use of EMG signals for disease diagnosis is an area with many applications,
including the progression of primary lateral sclerosis [6], dysphagia [7], patellofemoral
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pain syndrome [8], neuromuscular disorders [9], and the evaluation of mobility loss in
patients with musculoskeletal disorders [10].

Some of the uses of sEMG-based GR mentioned before can be grouped in human–
machine interface (HMI). sEMG HMI allows the user to control or command other systems,
such as wheelchairs, prosthetics, drones, robot arms, or exoskeletons. This use has been
extensively studied by specific reviews on the topic. These reviews showed the necessity
of low-complexity classifiers [11–14], which translates into reduced preprocessing, lower
latency, and lower power consumption. These characteristics are critical when talking
about wearable devices, as shown in review [15].

One of the great challenges facing GR systems is their use in wearable devices. A
wearable device is a type of embedded system that is designed to be worn on the body,
such as smartwatches, fitness trackers, and clothing embedded with sensors. These devices
have several advantages, including convenience, portability, and personalization, but also
have some limitations, such as limited battery life, privacy, security concerns, and limited
computational power. The processing that takes place at the end devices is what is known
as edge computing.

Edge computing has several advantages, such as privacy, given that no data is up-
loaded to a third-party cloud server; lower and reliable latency, as data are not required
to be uploaded, and the latency does not depend on the network availability; and lower
cost or simplicity because the system does not require a modem or connection to a network.
On the other hand, the resources are limited by the embedded systems, and the use of
batteries limits the use of more complex algorithms, such as complex neural networks
(NNs) [16]. Therefore, this leaves room for simpler lineal models, such as the one presented
in this work.

To ensure continuity of operation, a fault-tolerant system can be implemented, which
allows the system to continue functioning correctly in the presence of hardware or software
faults by detecting, diagnosing, and recovering from errors in real-time. This is achieved
by using techniques such as redundancy, error detection and correction, diversity, and
isolation. They can be combined to accomplish different levels of fault tolerance depending
on the specific requirements of the system and application. As wearables are becoming
more and more important in different fields, their fault-tolerance feature is increasingly
important in many critical systems, such as aerospace, military, medical, and industrial
systems, where a failure could have serious consequences. In these applications, the lack of
robustness could lead to material or even personal damage.

The contribution of the proposed method is its capability of detecting errors by using a
gesture multiclass model based on partial least square (PLS) class modelling with the use of
an encoding matrix called error correcting output codes (ECOC) while keeping a small size
model and low complexity, therefore, maintaining its suitability for real-time classification
on a wearable device. To achieve fault tolerance, error detection was implemented. An error
is defined as a deviation from the expected or correct behaviour of the system, in this case,
the difference between the gesture made and the obtained label. In the context of HMI, an
error can lead to a wheelchair driving into an obstacle because of a gesture misclassification
or a drone crashing because the GR classifier confused left withright. In the proposed
class-modelling approach, if an error is detected, it can take action, such as asking the user
to reposition the electrodes or to repeat the gesture, preventing the system from executing
any incorrect actions based on the sEMG input signal. Latency and robustness are critical
in real-time classification [17]. This work also addresses the unresolved issue of automating
the obtention of useful features because there are dozens of them that are usually chosen
by hand during the design of the classifier and have a great impact on the outcome of
the classifier.

This paper is organized as follows: Following this introduction, state-of-the-art ap-
proaches are discussed in Section 2, and the elements of the problem are described in
Section 3. This includes the notation and experimental procedure to obtain the EMG signals
(Section 3.1) and a description of the structural elements of the PLS-ECOC procedure
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(Sections 3.2–3.8). The results are shown in Section 4, and a discussion of them in Section 5
shows the advantages of modelling the gesture and the accuracy of gesture classification,
comparing it with those found in several papers. This paper ends with conclusions and
several references.

2. State-of-the-Art Approaches

In gesture recognition using sEMG signals, computational techniques from machine
learning (ML) are employed to assign a recorded signal to a gesture class. Specifically, a
matrix X of sEMG signals with N rows corresponds to N gestures grouped into K classes
(C1, . . . , CK). There are two general approaches to addressing this issue: discriminant
techniques and class modelling.

The first one is a purely discriminative approach. In the training phase, the ML
technique constructs a mathematical model and decision rule to assign each gesture class a
subset ℘k, k = 1, . . . , K of the signal space in such a way that they are disjoint, and their
union is the total. As a result, in the prediction phase, a new signal will necessarily be
assigned to one of the classes and only one. These types of techniques are commonly
known in pattern recognition as discriminant or classification techniques.

The performance of a discriminant model is measured with the expected classification
accuracy, namely, the percentage of correct decisions in prediction or variations of this
metric. Examples of common purely discriminant methods include linear or quadratic
discriminant analysis (LDA, QDA [18]), regularized discriminant analysis (RDA) [19],
partial least squares discriminant analysis (PLS-DA) [20], classification and regression
trees (CART) [21], or support vector machines (SVM) originally developed for two-class
classification [22], generalized to the multiclass situation [23], and the case of unlabelled
data [24]. Neural networks (NNs) have also been widely developed and improved since
their inception [25], with the backpropagation algorithm [26] allowing for computational
feasibility. NNs offer flexibility, allowing them to adapt their structure to improve classi-
fication accuracy. For example, the convolutional neural networks (CNNs) proposed in
reference [27] have been applied to handwritten digit classification.

The second approach for GR using EMG signals is known as the class-modelling
technique. It also builds K subsets, named K-class models, which are represented by
℘k, k = 1, . . . , K, but they are not necessarily disjoints, and their union may not cover the
entire signal space. As a result, an object(in this case an sEMG signal) can belong to one or
more classes (gestures) or none at all. To evaluate the performance of the class-modelling
technique, the sensitivity and specificity of each class model are measured. In this context,
the sensitivity of a class model refers to its ability to correctly identify its corresponding
gesture (usually measured as the rate of correctly classified objects within the class model,
℘K), while its specificity refers to its ability to correctly reject objects that do not belong to
the class model (measured as the rate of correctly classified objects outside the class model).

Among the class-modelling methods, some stand out: Soft independent models of
class analogy (SIMCA) [28] have been widely used for product authentication, quality
assurance, fraud detection, unequal class models or unequal dispersed classes (UNEQ) [29],
or an adaptation of SVM [30]. Two-class modelling using PLS can be seen in reference [31]
and for K-classes in [32].

The advantage over the usual class discriminant classifiers used in sEMG gesture
recognition problems and the proposed class modelling approach is that it enables the
system to be fault tolerant. This is because the class modelling approach does not limit
the answer to a unique label. Another advantage is the extra information provided by
the sensitivity and specificity of each class model that allows the engineer to adapt the
design by including extra channels to detect the difference between the confused gestures
or to remove certain gestures if they are being problematic prior to the deployment of the
system. This possibility in discriminant classifiers would not be available, and the only
possible action would be to add more data to the dataset with the objective of improving
its accuracy.
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In the field of gesture recognition using EMG signals, class modelling has never been
used. In the literature reviewed, only gesture classification has been performed. Publica-
tions powered by pattern recognition methods have been reviewed in references [33–35].
The most commonly used are SVM [36,37] and NNs [38]. After the signal acquisition,
among all the modules that compose a gesture recognition system, perhaps the most impor-
tant and critical ones are feature extraction and the classification algorithm. In this regard,
the algorithms and results of these references are summarized below.

The review by Nazmi et al. [35] of works from 1999 to 2013 shows that the classifiers
used are linear discriminant analysis, SVM, adaptive network-based fuzzy inference system,
NNs, and fuzzy logic. The range of accuracy is [73.00, 98.87] with a mean of 90.60%
and a standard deviation of 7.06%. Moreover, Jaramillo-Yáñez et al.’s review [33] from
2013 to 2019 showed that the classifiers used are support vector machines, feedforward
neural networks, linear discriminant analysis, convolutional neural networks with several
variants, k-nearest neighbours coupled with several other procedures binary tree-support
vector machines, vector autoregressive hierarchical hidden Markov models, Gaussian
mixture models and hidden Markov models, quadratic discriminant analysis, fuzzy logic,
recurrent neural networks, generalized regression neural networks, and one vs. one
classifier. Among them, the most commonly used machine learning algorithms are support
vector machines, feedforward neural networks, and linear discriminant analysis. The
accuracy of the reviewed publications ranges from 71.00% to 99.78% with a mean of 91.57%
and a standard deviation of 6.35%. Similar accuracy is reported (63.74% to 99.23% with a
mean of 89% and a standard deviation of 10.11%) by Dhumal and Sharma’s [34] revision
between 2017 and 2021. A more recent comparison evaluated five machine learning
techniques in classifying daily gestures [10]. It reported an accuracy ranging from 47.7%
to 83.6% with a mean value of 66.54% and a standard deviation of 14.95%. This revision
included SVN, a random forest, a decision tree-based algorithm, a convolutional neural
network, and a recurrent neural network.

The analysis of the abovementioned reviews also shows that in order to capture
and describe the complexity and variability of sEMG signals, it is considered necessary
to handle “deep learning” methods. This trend can be observed in related fields such
as gesture recognition based on electroencephalogram (EEG) signals. In Zhang et al.’s
revision [38], a taxonomy of deep learning models was made according to their functionality
in different scenarios of brain activity. After a very extensive description of applications,
the authors indicated that it is still very challenging to produce classification results in real-
time. In [39], GR performance was improved by using a graph sequence neural network
applied to an HMI problem. In [40], six features were obtained using the correlation and
canonical correlation analysis between filtered signals; after that, a selection was conducted.
However, these advances have not yet been translated into their equivalent sEMG signals.

Phinyomark and Scheme [41] made a very systematic analysis of the use of deep learn-
ing for classifying sEMG signals and define two categories of computational procedures:

• Feature engineering. Under this heading, the methods to find the best combination of
features in a specific problem are grouped. They are parallel computing procedures,
either native or classics parallelized. Then, conventional classifiers, such as support
vector machines, linear discriminant analysis, k-nearest neighbours, random forests,
multilayer perceptron neural networks, etc., are applied.

• Feature learning. This heading includes methods with a special emphasis on “deep
learning”. In general, though, deep learning models can be roughly grouped into three
main categories: unsupervised pretrained networks, convolutional neural networks,
and recurrent neural networks. These three categories of models have already been
used to analyse sEMG signals, as shown in the reviews of the preceding paragraphs.

The authors concluded their extensive review by saying: “A key challenge and im-
pediment to the clinical deployment of deep learning methods is their high computational
cost (i.e., long training times and high computational complexity). Because of the strin-
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gent power and size restrictions of prosthetic components, most devices are built using
embedded systems”.

On the other hand, the use of an SVM classifier for gestures in EEG and sEMG signals
is still interesting, as shown by Quitadamo et al.’s review [14]. Up to nine different variants
of SVM classifiers were reviewed in several applications. The review showed that the
accuracy of the 76 publications revised ranged from 18.83% to 100% with a mean of 80.8%
and a standard deviation of 13.32%. Taking into account only the sEMG GR publications,
the accuracy increases to a range from 73% to 100% with a mean of 91.1% and a standard
deviation of 6.38%. The review concludes that “SVMs result to be among the most versatile
classifiers for pattern recognition . . . and furthermore resulted to be particularly suitable
for online implementations”.

Therefore, along with the trend to use deep learning, there is still interest in exploring
the feasibility of class modelling with PLS-ECOC that simultaneously reduces the com-
plexity associated with feature engineering and that associated with the deep learning
approach. In addition, PLS-ECOC distinguishes between failure and error.

However, in all cases, the methods used are independent of the structure of X, the
sEMG signals, and the encoding used to describe the classes, which is denoted by Y. In
engineering, particularly in the field of signal transmission, redundancy has been used to
distinguish, at the receiver, two signals despite having lost information during transmission.
This idea has been used in this work to encode the gesture classes and construct the matrix
Y by assigning each class a code (a vector of ones and minus ones) using an ECOC matrix.
Little attention has been paid to the codification of classes in GR sEMG publications. Only
ref. [14] presents the effect of two codifications (one vs. one and one vs. all) which have
been proven to be inefficient [32].

The proposal in this work is to use PLS to find the linear relationship between the
signals and the encoded classes, explaining the maximum variance in X, in Y, and the max-
imum correlation between them. PLS constructs nvl latent variables, linear combinations
of X variables and Y variables under the condition of having the maximum correlation.
In this way, PLS applies a reduction of the signal space but links to the classes of the
gestures to be distinguished. This characteristic makes PLS an advance in the treatment
of EMG signals. Since ancient times [42], the need to reduce the dimension of the signal
space has been recognized, in most cases, as a second stage after obtaining features [43].
In [44], using several classifiers, a comparison has been made between feature selection
and dimensionality reduction, including PCA. However, in general, PCA is performed
independently of the classifier and, therefore, of the classes to be modelled. In a review
made, only one PLS application with sEMG signals has been found. It is devoted to model
concurrent EEG and EMG data collected in a Parkinson’s disease study [45], but it was not
a classification of gestures.

The method, PLS-ECOC [32], provides the sensitivity and specificity matrix of the
constructed model. This matrix is evaluated using diagonal modified confusion entropy
(DMCEN) [46]. According to the classification of methods to preprocess sEMG signals,
PLS-ECOC can be considered an embedded one because the construction of latent variables
and the model of classes are built simultaneously in the same model [47].

It is also noteworthy that PLS-ECOC is robust to sEMG signals that differ from those
used to train the class model since, in addition to the equations for class prediction, the
model provides a closed enclosure in the sEMG signal space, the PLS-box, so that a signal
outside of it will be declared an outlier.

3. Materials and Methods

This section presents the methodology followed to develop the hand gesture model-
ling system (HGM) based on surface electromyography signals (sEMG) and partial least
squares multiresponse. It has been divided into eight subsections, each of them provid-
ing enough information to understand the method and the results section. A complete
schematic of the operations followed to achieve HGM can be seen in Figure 1.
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included steps in it. “c” stands for the number of binary learners in class codification and changes in
each iteration. See the text above for an explanation of the other details.

This figure is meant to be a guide to the reader showing the processing and flow of
data, and it follows the same notation and subsection names and numbering used in the rest
of this paper. In it, each rectangle includes the numerical matrix resulting from applying
the operation indicated in the access arrow and describes in detail in the subsection that
bears the name and numbering indicated. The second subscript of the matrices indicates
the dimension of each of them.

For example, the vector of the class labels, L, and the signals sEMG, X, are divided
according to the procedure described in Section 3.2 into the data to be used for training,
LTR and XTR, and for prediction, LTS and XTS, respectively.

Applying the coding procedure explained in Section 3.3 returns YTR, the matrix of the
encoded response, which, together with XTR, allows the coefficients of the PLS regression,
B̂, to be obtained. With this model, the calculated code matrix, ŶTR, is obtained, which is
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decoded into L̂TR to compare it with the vector of the labels LTR. Afterwards, the matrix of
sensitivities and specificities, STR, is obtained in training. This process is iterated according
to the procedure described in Section 3.7 to obtain the optimal PLS model, B̂OP. This model
is applied to the test set, XTS, and the vector of labels in prediction, L̂TS, is obtained. More
details on the method can be consulted in [32].

The K-class model consists of K models, one for each class modelled. Class models are
built and validated as a whole. Consequently, if a new class was added, the model would
need to be built and validated again, obtaining a new (K + 1)-class model.

I sEMG signals were recorded into K class, C1, C2, . . . , CK, each of them associated
with each gesture type. The number of signals recorded for the j-th class is denoted by Ij,
so I = ∑K

j=1 Ij.
The result of applying the K-class model is summarized in the confusion matrix N

N =



n11 n12 · · · n1m · · · n1K
n21 n22 · · · n2m · · · n2K

...
...

. . .
...

. . .
...

nj1 nj2 · · · njm · · · njK
...

...
. . .

...
. . .

...
nK1 nK2 · · · nKm · · · nKK


, (1)

where usual gesture classification algorithms verify the following: njm is the number of
gestures belonging to class Cj which are inside the class model built for class Cm.

• Ij = ∑K
m=1 njm, which means that the sum of the j-row elements of matrix N, Equation

(1), is equal to the number of elements in the j-th class.
• I = ∑K

j=1,m=1 njm, which means that the sum of all the elements of matrix N, Equation
(1), is equal to the total I signals recorded.

However, when using class modelling, each signal can be assigned to no class or more
than one class. So, one or both of the above equations might not be met. This distinction
between usual classifiers and the class modelling presented here will prove to be critical.

The relative frequency matrix, F, Equation (2), can be obtained from Equation (1) as
follows:

F =
(

f jm
)
=
(
njm/Ij

)
, j = 1, . . . , K, m = 1, . . . , K. (2)

As a consequence of the matrix N structure and the use of the class modelling algo-
rithm, each of the rows of the F matrix, Equation (2), may not add 1, unlike a classification
method.

F matrix has a relevant statistical meaning. The assignation of an sEMG signal to a
class is applying a hypothesis test. Given K classes, this decision is a family/set of K(K − 1)
hypothesis tests such as those in Equation (3). It is composed of K − 1 tests for each of the
K classes. The null Hypothesis H0 is the same for each j = 1, . . . , K, but H1, the alternative
hypothesis, is different for each one.

H0: EMG signal belongs to gesture Cj.
H1: EMG signal belongs to gesture Cm, m = 1, . . . , K, m 6= j.

(3)

TEST matrix, Equation (4), symbolically summarizes these tests. Each diagonal term
contains the null hypothesis (H0), and the rest of the terms of the matrix contain the
corresponding alternative hypothesis (H1).
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TEST =



H0 : C1 H1 : C1 · · · H1 : C1 · · · H1 : C1
H1 : C2 H0 : C2 · · · H1 : C2 · · · H1 : C2

...
...

. . .
...

...
H1 : Cj H1 : Cj · · · H0 : Cj · · · H1 : Cj

...
...

...
. . .

...
H1 : CK H1 : CK · · · H1 : CK · · · H0 : CK


. (4)

Hypothesis test theory defines αj as the significance level and 1 − βmj as the power
of each test. These parameters are related to sensitivity and specificity of the test. Note
that notation on sensitivity and power of the test vary and can be confusing, see refer-
ences [35,36,48]; that is why they are defined below.

The column j-th of TEST, Equation (4), corresponds to the K − 1 hypothesis tests of Cj
class. Using the F matrix, it is possible to calculate the significance level and power of the
test and to define the sensitivity and specificity:

• Sensitivity, (1− αj) = f jj of F, Equation (2). This means the probability of correctly
assigning an sEMG signal of class Cj to the class model of Cj annotated as sjj in
Equation (5).

• Specificity,
(
1− βmj

)
=
(
1− fmj

)
when m 6= j corresponds to the rest of the elements

of the columns of F, Equation (2). This means the probability of correctly not assigning
an sEMG signal of class Cm to the class model of Cj annotated as sjm in Equation (5).

To sum up, sensitivity is the proportion of gestures that are assigned correctly to the
modelled class, and specificity is the proportion of gestures correctly rejected from the
modelled class.

With this notation, matrix F is transformed into matrix S of sensitivities and specifici-
ties, Equation (5), that characterizes the performance of the K-class model.

S =



s11 s12 · · · s1j · · · s1K
s21 s22 · · · s2j · · · s2K
...

...
...

...
sj1 sj2 · · · sjj · · · sjK
...

...
...

...
sK1 sK2 · · · sKj · · · sKK


=



f11 1− f12 · · · 1− f1j · · · 1− f1K
1− f21 f22 · · · 1− f2j · · · 1− f2K

...
...

...
...

1− f j1 1− f j2 · · · f jj · · · 1− f jK
...

...
...

...
1− fK1 1− fK2 · · · 1− fKj · · · fKK


. (5)

3.1. Acquisition of EMG Data

The acquisition setup is composed of an embedded device (Section 3.1.1) and a com-
puter. The methodology for the acquisition is described in Section 3.1.2. Data description
is included in Section 3.1.3. A detailed description, including code, can be found in the
previous work [37] of the authors.

3.1.1. Hardware Description

The data were acquired using an embedded system, Figure 2, based on a 4-channel
24-bit ADC (AD7124-4) connected by serial peripheral interface (SPI) to a microcontroller
(MCU) STM32L486RG microcontroller and running YetiOS [49] as the operating system.
The sampling rate was set to 500 Hz with a hardware lowpass filter with a cutoff frequency
of 130 Hz. The signals were transmitted via serial to the computer where they were
processed using MATLAB [50].
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Figure 2. Hardware acquisition system, left block design, and right picture of the system.

3.1.2. Methodology for Acquisition

The study conducted within this work does not require ethical approval since no part
of the experiments has any possible effect on the subjects’ bodies, harmful or otherwise. The
system developed only gathers user motion data through EMG measurements. Moreover,
the data were recorded and used in this publication under informed consent of the subject.
The subject was a 23-year-old male.

Figure 3 shows the 8 gestures recorded that emulate representative prosthetic hand
movements. These particular movements are the same as those used in one of the most
employed databases in the field, Ninapro DB6 [51].
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Figure 3. Eight different gestures recorded. The classes C1, C2, . . . , C8 of the text are the pictures
(a–h), respectively.

Electrodes are placed on the skin of the forearm of the subject after applying conductive
gel. Then, the subject was asked to repeat the gestures shown in Figure 3 10 times, each of
them for 3 s, and they were subsequently stored in the computer, processed, and saved in
matfiles using MATLAB [50].

3.1.3. Data Description

The result of the acquisition is a vector of around 1620 voltage measurements for each
channel. Channel 3 was faulty during the acquisition, so, it was removed. Each of these
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vectors is concatenated, leading to a vector of 4860 coordinates. A total of 80 gestures
(10 repetitions of each class) were acquired, producing a matrix X of size 80 × 4860 that
will be used in this paper. This dataset is fully available in [52].

3.2. Training and Test Sets to Evaluate the Prediction Abilitty of the PLS2-CM Model

The evaluation of prediction capability can be done through a test set independent
of the training set or by cross-validation (CV), also named k-fold procedure, that includes
leave-one-out cross-validation. Despite its popularity, CV use has been criticized [53], and
it has recently been formally proved that it is not a correct procedure to estimate prediction
capability [54]. It has therefore been decided to divide dataset X into two subsets: XTR
for training and XTS , the test set, for the evaluation of predictive capability. The Kennard-
Stone algorithm [55], the most relevant for this task, was used by means of ‘kennardstone’
function of PLStoolbox [56]. The method initially selects the pair of sEMG signals with
the largest distance and ranked as most representative. Then, in each following step, the
remaining samples with the greatest distance from the already selected samples are chosen
and added to the bottom of the previous rank list. This procedure is repeated until a
predefined number of gestures had been chosen and ranked in each class. The method
assures a uniform distribution of the sEMG signals selected, and it also includes boundary
gestures of the class. Remaining gestures are assigned to test subset. In each class, 70% has
been assigned for training and 30% for test subset. Resultantly, training matrix XTR has a
size of 56 × 4860 and 24 × 4860 for prediction XTS .

3.3. Class Encoding

Error correcting code (ECOC) is the method of choice to encode the K classes by means
of c binary learners. This codification is defined by the matrix M of K rows and c columns
whose elements are +1 or −1. A simple example, Equation (6), of M matrix was built to
encode 4 classes using a code of length c = 7.

M =


+1 +1 +1 +1 +1 +1 +1
−1 −1 −1 −1 +1 +1 +1
−1 −1 +1
−1 +1 −1

+1 −1 −1
+1 −1 +1

+1
−1

. (6)

Each row of M represents the class code, so in Equation (6), the objects of the third
class will be assigned the code or vector

(
−1, −1, +1, +1, −1, −1, +1

)
. The

same can be performed for the other three classes. Using these codes, it is possible to
obtain the matrix Y formed by the class codes of all the objects. Each column of M is a
binary learner that can compare between two groups of classes or superclasses N and R.
Continuing with the example of Equation (6), the first column (binary learner) divides the
classes into two superclasses: the first one comprises the class N = C1 and left the rest in the
second, R = C2 ∪C3 ∪C4. Another example could be the second binary learner that groups
C1 and C4 in the first superclass, N = C1 ∪ C4, and C2 and C3 in the second, R = C2 ∪ C3.

A series of changes that do not affect the codification can be deduced from the afore-
mentioned description of M: permutations of columns, sign change in the whole column,
and whole columns of −1 or +1 can be discarded. Therefore, the maximum length to
encode K classes is cmax = 2K−1 − 1. For example, in the case of Equation (6), with K = 4
classes, cmax = 7.

Selecting the adequate binary learners and their number c for a specific problem is
challenging. As evaluated with several datasets in reference [46] and given that our dataset
has K = 8 classes, the proposed approach was to use function ‘designecoc’ (Statistics and
Machine Learning Toolbox of MATLAB [50]). This function assigns positive or negative
elements with equal probability for each element in M and uses a random generator to
obtain the encoding, so the size of c is a random variable. However, its mean can be
estimated by 10 log2(K), which in our case, means c ∼= 30. Applying this codification
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to the training label matrix LTR with dimensions (56× 1) will result in matrix YTR with
dimensions (56× c) ∼= (56× 30) containing the encoding for each gesture, see Figure 1.

3.4. Partial Least Squares Regression

Partial least squares regression (PLS) is a statistical tool that is very extended at the mo-
ment. It was introduced by Wold [57] in the 1970s and was successively developed [58,59].
This tool was used to relate XTR with YTR, see Figure 1.

PLS sequentially builds pairwise lineal combinations of variables, one from X and one
from Y, defined by the r and q vectors, respectively, that solve

maxr,q{var(XTRr)[corr(XTRr, YTRq)]2var(YTRq)} = maxr,q{[(XTRr)TYTRq]
2}

subject to ‖r‖ = ‖q‖ = 1,
(7)

where var and corr stand for variance and correlation, respectively, of the new variables
XTRr and YTRq that are named latent variables of PLS model.

Maximization of the product var (XTRr)[corr(XTRr, YTRq)]2var(YTRq) tends to look
for directions of large variance in both X- and Y-spaces (with more information), avoiding
those of small variance (probably noise). In addition, the criterion includes the term
corr (XTRr, YTRq) that helps in avoiding directions in the signal space with small correlation
with the class codification.

PLS is particularly useful when the variables XTR and/or YTR are very correlated
or are colinear. In our case, XTR, the sEMG signals, present both characteristics: They
are not independent, and they do not define 4860 dimensions, and neither do YTR, the
gesture codes, define approximately 30 dimensions. PLS is very efficient in finding the
subjacent structure in the data by using a reduced number of latent variables, nvl. These
latent variables define a subspace of X of nvl dimensions that explains the variability in
the object codes, YTR, that, in our problem, is the variability between gesture classes. The
value of nvl is adjusted between one and K to obtain the best response using the method
described in Section 3.6.

This step of procedure returns a linear regression model described by 4860× c coef-
ficients along with the PLS-box [60], which is a closed region in the space of the sEMG
signals. The complement set to the PLS-box identifies signals to which the model cannot
be applied because they are significantly different from the training matrix. PLS-box is
defined by two critical values fixed in this work to a confidence level of 0.95. As all the
responses are fitted together, PLS provides a common PLS-box for the c binary learners.

The result of applying the model to sEMG signals (XTR or XTS) will return, respectively,
the predicted code (ŶTR and ŶTS, respectively), see Figure 1. For this task, the function ‘pls’
of PLSToolbox [56] has been used.

3.5. Decoding, Class Assignation

Based on the encoding section, Section 3.3, for each binary learner, gi, i = 1, . . . , c
and its two superclasses R y N, there are two sets of predicted values, gi(R) and gi(N),
that should be close to −1 and 1, respectively. The distribution of these predicted values
is calculated using the univariate kernel density [61]. Fixing the probabilities of γi and δi
(that can be different for each gi), the distributions previously fitted are used to compute
critical values CVi(R) and CVi(N) and with the conditions established in Equation (8).

P{ŷi ∈ gi(R) |ŷi ≤ CVi(R)} = γi
P{ŷi ∈ fi(N) |ŷi ≤ CVi(N)} = δi,

(8)

where P stands for probability. Notice that the definitions in Equation (8) imply that γi
would be a large value close to one, whereas δi would be close to zero. In this application,
γi = 0.99 and δi = 0.01 for all gi, i = 1, . . . c, have been fixed.

For each EMG signal in the PLS-box, if ŷi ≤ CVi(R), then the i-th coordinate on
the decoding vector will be −1, and if ŷi > CVi(N), the coordinate will be +1. For each
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binary learner, the objects whose predicted values are between the corresponding critical
values present two possibilities: (i) if CVi(R) < CVi(N), the signal will not be assigned,
neither +1 nor −1, and (ii) when CVi(R) > CVi(N), the signal is assigned to both +1 and
−1 (intersection). Finally, the signal is inside the i-th class model if the codeword of the i-th
class in M is one of the decoding vectors related to it. To summarize, the sEMG signal could
be assigned to none, one, or more classes or gestures. In our example, see Figure 1, the
purpose is to obtain the L̂TR and L̂TS label matrix from the ŶTR and ŶTS predicted codes.
However, based on the premise that any sample measured can only belong to one class,
because it is not possible to perform two gestures at the same time, it is possible to obtain
not valid results and errors when one sample belongs to none, two, or more classes. For
this reason, predicted labels L̂TR and L̂TS will have one more possible class (K + 1) than the
original (K) classes in label matrix L.

3.6. K-Class Model Evaluation

Evaluation of a K-class model implies studying K × K values of its corresponding
sensitivity S matrix. Any given problem with more than K > 2 makes it practically
impossible to work with. In our case, it would be 64 values of sensitivity and specificity.
Several metrics have been proposed to address this problem [62,63]. These metrics, in most
of the cases, are obtained from the sensitivity of every individual class model, pair-wise
specificities, efficiency or the total sensitivity, total specificity, and total efficiency of all
class models, including convex combination of individual sensitivities and specificities. In
particular, the mean of both is named accuracy in reference [48], but in [35], accuracy is the
proportion of true assignations (positives or negatives). In general, these indexes are less
sensible to changes in S matrix. For this reason, they are not well suited for a systematic
comparison of class models, for example, in an optimization.

One alternative is to apply entropy concept as a measure of the order/information
within the states of a system. A K-class model could be seen as a system whose states are
the classes, and the information is provided by the sensitivities and specificities for each
class model (K models in total). One K-class model will be better if it has less entropy
according to Shannon’s entropy definition. In other words, a better class model will provide
more information and better sensitivities and specificities if it successfully assigns sEMG
signals to the model of each class and rejects the ones that do not belong to it, thus reducing
the uncertainty or entropy of the system. In Shannon’s notation, followed in this paper, the
entropy value will be 0 if all elements of S are ones, and it will be perfectly precise, leaving
no room for uncertainty.

The development of this idea for confusion matrix can be found in references [64,65].
The first one proposes, for the first time, a measure of the order/information generated by
a classification method, called confusion entropy (CEN), inspired by Shannon’s entropy.
The second solves a deficiency of CEN by proposing modified confusion entropy (MCEN).

MCEN was evaluated and generalized in [46], defining a new index, diagonal modified
confusion entropy (DMCEN), for sensitivity and specificity to evaluate K-class models. It
also introduces one modification to solve MCEN’s almost unresponsiveness to differences
in sensitivity by explicitly accounting for the contribution of sensitivity against specificity
in the parameter w. This parameter can take values from zero to one; in our work, has was
chosen w = 0.5.

A detailed description of DMCEN is out of the scope of this paper. Qualitatively, the
idea is that for the computation of Shannon’s entropy of a Cj class, is necessary to define
the probability that the system is in class Cj in relation to another class Cm, for this it is
considered as reference for all the decisions that involve both classes. In other words, to
evaluate one K-class model, is necessary to take into account its whole S matrix.

In this work, DMCEN was calculated using an ad-hoc MATLAB code, available in
reference [66], that calculates global DMCEN and for each class given an S matrix. DMCEN
can take values from zero to one, and the lower DMCEN, the better the K-class model is.



Algorithms 2023, 16, 149 13 of 21

3.7. PLS-ECOC Model Optimization

ECOC matrix, M, has a random origin, as explained in Section 3.3, and is not related to
XTR, but with M, the response YTR is built. Therefore, the PLS model that relates XTR and
YTR depends on M. To select the best M matrix, the steps from Section 3.3 to Section 3.6
were repeated 280 times, aiming to obtain the best S matrix. The PLS model associated
with it is called PLSOP and is the one that will be used in Section 3.8 for the evaluation with
the test subset, XTS. This process is illustrated in Figure 1 as the left grey rectangle.

3.8. Model Validation

To validate the model, the calculated label matrix L̂TS, DMCEN and STS was obtained
using the model PLSOP and test data XTS as its input. Another interesting metric is the use
of L̂TS, extra class, the one assigned to errors to obtain the overall error and failure rate of
the system. Error rate in a system is defined as a known misclassification per total signals
predicted, and that would be the sEMG labelled as error in L̂TS. Failure rate is the wrongly
labelled sEMG signals in L̂TS compared to LTS minus the number of errors over the total of
signals predicted. This process is illustrated in Figure 1 as the right grey rectangle.

4. Results

PLS stands out when it comes to model data that have high collinearity because it uses
latent variables. To evaluate the collinearity of the data, principal component analysis (PCA)
was carried out with XTR and YTR of PLSOP. The result of this analysis shows that 4860
dimensions of XTR can be represented with 5 to 8 components, explaining 88.2% to 93.3%
of the variance, respectively. Similar results were obtained when analyzing YTR, where
the number of principal components is 7, much smaller than the original dimension, 35,
and explaining all the variance. In addition, in this case, 15.2% of the pairwise correlation
coefficients between YTR columns are, in absolute value, greater than 0.5. These results,
specific to our problem, indicates the need to use a regression on latent variables, such
as PLS.

Optimization of the PLS model, Section 3.8, generates 280 ECOC matrices; therefore,
280 matrices YTR result in 280 PLS models. Each of these iterations may have a different c,
codeword length, of the ECOC matrix and a different DMCEN index. The optimization
looks to minimize the DMCEN index in the training subset, XTR, obtaining a PLSOP
optimum model with seven latent variables. DMCEN = 0.031, and codeword length c = 35.
All codeword lengths and DMCEN values obtained are depicted in Figure 4. Codeword
length varies from 30 to 39, greater than the expected 30 (Section 3.3), with a median value
of 36. DMCEN varies from 0.031 to 0.217 with a median and mean value of 0.12 with a very
symmetric distribution.
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Sensitivity and specificity in the training matrix STR are shown in Table 1. The
meaning of this matrix was thoroughly discussed at the beginning of Section 2. There
are two elements in Table 1 that differ from one (the best possible result); both cases will
be commented. First, the element marked with (*), 0.86, means that one C3 sample was
wrongly assigned to the C1 class, so the C1 class model is not completely specific against
C3. Second, the element marked with (**), 0.71, means that two C6 samples were assigned
to C5, so the C5 class model is not completely specific against C6. From this analysis, we
can say that the C1 and C5 class models are unable to fully reject signals from C3 and C6,
respectively.

Table 1. Sensitivity and specificity matrix STR for the test dataset XTR.

True Class
Model of Class

C1 C2 C3 C4 C5 C6 C7 C8

C1 1 1 1 1 1 1 1 1
C2 1 1 1 1 1 1 1 1
C3 0.86 * 1 1 1 1 1 1 1
C4 1 1 1 1 1 1 1 1
C5 1 1 1 1 1 1 1 1
C6 1 1 1 1 0.71 ** 1 1 1
C7 1 1 1 1 1 1 1 1
C8 1 1 1 1 1 1 1 1

(*) Specificity of C1 class model against C3. (**) Specificity of C5 class model against C6.

Applying the PLSOP model to the test matrix XTS, the sensitivity and specificity matrix
STS is obtained, Table 2, and DMCEN associated with XTS is 0.209. Again, we are going
to comment on the three elements of STS that differ from the one in Table 2. First, the
element marked with (*), 0.67, means that one out of the three signals from the C3 class
was wrongly rejected from the C3 class model. Therefore, the class C3 model sensitivity
lowered to 0.67. The C3 class model also wrongly accepted two signals belonging to C8,
thus reducing its specificity against C8 to 0.33, marked as (**). Lastly, the element marked
as (***), 0.33, means that the C5 class model failed to reject two signals from the C6 class, so
its specificity against C6 reduced to 0.33. From these results, we can say the C3 class model
is having problems to model the C3 signals like its own and is failing to completely reject
all signals from C8. The C5 class model is presenting the same flaw as in the training set
wrongly assigning C6 signals to itself.

Table 2. Sensitivity and specificity matrix STS for the test dataset XTS.

True Class
Model of Class

C1 C2 C3 C4 C5 C6 C7 C8

C1 1 1 1 1 1 1 1 1
C2 1 1 1 1 1 1 1 1
C3 1 1 0.67 * 1 1 1 1 1
C4 1 1 1 1 1 1 1 1
C5 1 1 1 1 1 1 1 1
C6 1 1 1 1 0.33 *** 1 1 1
C7 1 1 1 1 1 1 1 1
C8 1 1 0.33 ** 1 1 1 1 1

(*) Sensitivity of C3 class model. (**) Specificity of C3 class model against C8. (***) Specificity of C5 class model
against C6.

To understand the benefits of modelling sEMG signals as an alternative to usual
classifiers, the assignation matrix, Table 3, of the test dataset XTS is shown. This matrix was
obtained by applying the PLSOP model and decoding it. Each row of the matrix represents
one sEMG signal from XTS and is composed of a vector of zeros and ones indicating the
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class assignment made by the model. Each signal sEMG belonging to test dataset (XTS) is a
row of Table 3, and each 1 means that the class model, the column, accepted the signal.

Table 3. Assignation matrix for the sEMG classes of the test dataset XTS. A 1 means assigned class
and 0 not assigned.

EMG Signal True Class
Class Assigned by the PLSOP Model

C1 C2 C3 C4 C5 C6 C7 C8

1 C1 1 0 0 0 0 0 0 0
2 C1 1 0 0 0 0 0 0 0
3 C1 1 0 0 0 0 0 0 0

4 C2 0 1 0 0 0 0 0 0
5 C2 0 1 0 0 0 0 0 0
6 C2 0 1 0 0 0 0 0 0

7 C3 0 0 0 0 0 0 0 0
8 C3 0 0 1 0 0 0 0 0
9 C3 0 0 1 0 0 0 0 0

10 C4 0 0 0 1 0 0 0 0
11 C4 0 0 0 1 0 0 0 0
12 C4 0 0 0 1 0 0 0 0

13 C5 0 0 0 0 1 0 0 0
14 C5 0 0 0 0 1 0 0 0
15 C5 0 0 0 0 1 0 0 0

16 C6 0 0 0 0 0 1 0 0
17 C6 0 0 0 0 1 1 0 0
18 C6 0 0 0 0 1 1 0 0

19 C7 0 0 0 0 0 0 1 0
20 C7 0 0 0 0 0 0 1 0
21 C7 0 0 0 0 0 0 1 0

22 C8 0 0 0 0 0 0 0 1
23 C8 0 0 1 0 0 0 0 1
24 C8 0 0 1 0 0 0 0 1

In this analysis, an error is defined as a signal that belongs to a number of gestures
different from one, a failure is defined as a signal that is assigned solely to the wrong class,
and a success is defined as a signal that is correctly assigned to its class.

For example, Row 7 of Table 3 shows an sEMG signal from the C3 gesture class that
was not assigned to any class, resulting in an error and reducing the sensitivity of the C3
class model, as indicated by the (*) label in Table 2

Rows 17 and 18 show two signals from the C6 class that have been assigned to two
classes, the correct one (C6) and an incorrect one (C5). This results in two errors, but the C6
class model sensitivity is not affected. However, incorrect assignment of the signals to C5
reduces the specificity of the C5 class model against the C6 class, as indicated by the (***)
label in Table 2.

Similarly, rows 23 and 24 show two signals that are correctly assigned to the C8 class
but are also incorrectly assigned to the C3 class, which reduces the specificity of the C3 class
model against the C8 class and adding two errors to the overall results.

To sum up, the assignation matrix, Table 3, shows that there were 5 errors where a
signal was assigned to a number of gestures different than one, 19 successes where a signal
was correctly assigned to its class, and 0 failures. It also highlights the origin of the changes
in specificity and sensitivity in the S matrix, Table 2.
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5. Discussion

Differences between a classifier and a class-modelling classifier such as PLS-ECOC
were stated in the Introduction and State-of-the-Art Approaches Sections. To summarize,
the main difference is that a class-modelling classifier can assign one gesture to none or
more than one class. This feature combined with the PLS-box was used in this work to
implement a fault-tolerant classifier that can detect errors, increasing the robustness of the
whole system. This feature could not be achieved with previous classifiers used in sEMG
GR applications.

To fully evaluate the extra information provided by a class-modelling classifier, the
DMCEN [46] metric was used as described in Section 3.6. The usual metrics (accuracy,
precision, or F1 score) will fall short because they assume that each object can belong to
only one class. However, for the sake of comparison with other classifiers in the sEMG GR
field, it seems reasonable to express the results also in the usual metric format: accuracy,
precision, and F1 score. To this purpose, the errors (gestures assigned to none or two or
more classes) were assigned to their most probable class. Note that with this transformation,
the class-modelling algorithm loses its fault-tolerant capability.

Considered PLS-ECOC as a classification method, the confusion matrix in training
NTR = (nij), is diagonal, with nii = 7 and nij = 0 if i 6= j. Therefore, accuracy, precision, and
F1 are all equal to 100%.

In prediction, with the test set, the confusion matrix is shown in Table 4. The accuracy,
precision, and F1 values are 87.5, 91.87, and 86.34%, respectively. They have been calculated
in accordance with ref. [63] to maintain consistency with the definitions of sensitivity and
specificity given in the introduction of Section 3.

Table 4. Confusion matrix NTS for the test dataset XTS.

True Class
Model of Class

C1 C2 C3 C4 C5 C6 C7 C8

C1 3 0 0 0 0 0 0 0
C2 0 3 0 0 0 0 0 0
C3 0 0 2 0 0 0 0 1
C4 0 0 0 3 0 0 0 0
C5 0 0 0 0 3 0 0 0
C6 0 0 0 0 2 1 0 0
C7 0 0 0 0 0 0 3 0
C8 0 0 0 0 0 0 0 3

However, in the field of sEMGs, there is no agreement on the definition of accuracy,
and this ambiguity makes it difficult to compare results. Section 3.5 of ref. [33] is devoted
to this question. The authors find that one work of the 56 studied defines “the recognition
accuracy” (a gesture is considered a true positive, i.e., the gesture is recognized correctly
when the model determines what gesture was performed and when this gesture was
performed by a person). Eleven other papers use the concept of “classification accuracy”
because they only took into consideration what gesture was performed by a person as a
true positive, and the remaining papers do not show what they consider a true positive.
This ambiguity is transferred to the calculation of accuracy. In our case, both definitions
coincide with each other and with our calculation because the rest position (no gesture, in
other papers) has been considered as a class in the model.

Other definitions of accuracy used in the analysis of sEMG signals are the ratio of
correctly predicted gestures (true positives plus true negatives) to the total gestures [67,68],
obtaining 98.44% with our data. In [33], accuracy is also defined as the arithmetic mean of
sensitivity and specificity, which, in our case, would be 87.5%.

In any case, the accuracy of PLS-ECOC transformed into a classifier is in the range
of values found in the literature described in Section 2. Specifically, using the means and
standard deviations obtained from the accuracies reported in references [14,33–35] and
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assuming that the data come from a normal distribution, the tolerance limits state that
we can be 95.0% confident that 99.0% of the distribution lies above 73.62, 52.76, 63.40,
and 71.92%, respectively. The value obtained, 87.5%, with PLS-ECOC transformed into a
classifier is inside all four tolerance intervals.

Another important aspect of the proposed class-model is that it does not require human
intervention in adjusting it. Most approaches in the sEMG GR field require the selection of
features to make the classifier work or to adjust the parameters of the classifier. By contrast,
the proposed method is totally automated, simultaneously adjusting feature extraction,
dimensionality reduction in the nvl latent variables, and classification performance using
the DMCEN index. It only needs a labelled dataset to work with. This approach should
provide better flexibility, reducing design time. Another advantage from the designer’s
point of view is the information that the PLS-ECOC provides; the sensitivity and specificity
matrix S can give important insights on which gestures are being confused, providing a
useful debug tool to fix or improve the overall system design. For example, it can highlight
which electrodes should be placed differently or that some gestures cannot be used as
commands for the system.

The last part of this discussion will focus on the applicability of the presented method
for a wearable, real-time application. Three metrics are evaluated: the size of the model,
latency, and scalability. The size of the PLSOP model is extremely important for wearable
devices, as it directly impacts performance and limits usability. Any lineal model has a
parameter size of nvc × nc × c where nvc is the number of voltage values recorded, nc
is the number of channels, and c is the codeword length. The computation required is
also proportional to the size of the model because obtaining the classification value will
require one multiplication and one addition per parameter. This size is comparable with
the SVM algorithm. Translated into memory parameters, it will occupy 664 kB, a size
that could not be fitted into the ram memory of a low-power MCU. However, the current
implementation uses a 3 s gesture as an input. So, the size will fold by 30 in a real case
scenario where windowing of the order of the hundredth of milliseconds is used. Latency,
another key parameter, is composed of the time to acquire one gesture to be evaluated (3 s)
and the time to process it. Being a linear model, the processing time in an MCU will be
low because it is only composed of a multiplication and an addition per parameter. The
last parameter is scalability. PLS-ECOC codification makes the size of the model increase
logarithmically (c ∼= 10 log2 K) compared to SVM usual encoding, one vs. one, which
increases quadratically (c = K(K− 1)/2), being, in both cases, K, the number of classes,
providing a good base for more complex HMI systems that will require a large number
of gestures to be functional. All these characteristics should be tested by implementing
PLS-ECOC in a real embedded device and evaluating its performance.

Another hint that there is room for improvement in the reduction of the codeword, c,
length is the fact that the observed correlation in Figure 4 is 0.2 between DMCEN and c.
This result implies that a larger codeword (and model) does not translate into better overall
classification characteristics of the model.

6. Conclusions

The proposed PLS-ECOC model for gesture recognition using sEMG signals can
provide a failure-free result in the prediction phase. While keeping comparable results in
accuracy, precision, and F1 of 87.5, 91.87 y 86.34%, respectively, to the current state-of-the-
art classifiers. This highlights the effectiveness of the proposed method as a fault-tolerant
classification system. To the best knowledge of the authors, this type of fault-tolerant design
has not been studied before, and it opens up new possibilities for developing classification
applications in critical systems where safety is a key requirement, such as controlling a
robotic arm.

The proposed method also offers great flexibility for designers because it does not
require any exploratory analysis to obtain features, which can be time-consuming and
will be specific to each dataset. The PLS-ECOC method simultaneously adjusts feature
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extraction, dimensionality reduction in the nvl latent variables, and classification perfor-
mance using the DMCEN index. Dimensionality reduction performed simultaneously with
the adjustment of the model provides a great base for future developments. It is more
robust and adapts better to differences between subjects, electrode placement, or acquisition
systems. However, this paper was only evaluated on one subject, and further studies with
more subjects, electrode positions, and acquisition systems should be carried out. The
sensitivity and specificity matrix S provides a powerful tool for system designers to better
understand where gestures are confused and to make decisions to improve the design.

DMCEN is as simple as the accuracy metric used in discriminant classifiers. However,
it extends its validity to class modelling classifiers, proving its utility for optimizing the
PLS model.

The PLS-ECOC lineal model provides good characteristics for further development
because of its computational simplicity. However, in its current state, it is too big to fit
in a low-power MCU that could be used in a wearable design. To address this issue, a
couple of future work lines are proposed: reduction of the codeword length by reducing
the ECOC output matrix and windowing the sEMG signals, which would be a required
step to implement the method in a real-time application.

Another improvement that should be taken into account is to use DMCEN opti-
mization for the other two criteria (minimizing errors and minimizing the length of the
codeword) either through a desirability function that introduces “a priori” weight to the
criteria [69] or by applying a multicriteria optimization and using the Pareto front of the
optimal solutions to obtain the optimal solution “a posteriori” [70]. As the relationship
between the three criteria and the experimental data is not described by any determin-
istic function, a heuristic method, such as a genetic algorithm [71], could be used in the
optimization process.
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