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Abstract: Anomaly detection is one of the basic issues in data processing that addresses different prob-
lems in healthcare sensory data. Technology has made it easier to collect large and highly variant time
series data; however, complex predictive analysis models are required to ensure consistency and reli-
ability. With the rise in the size and dimensionality of collected data, deep learning techniques, such
as autoencoder (AE), recurrent neural networks (RNN), and long short-term memory (LSTM), have
gained more attention and are recognized as state-of-the-art anomaly detection techniques. Recently,
developments in transformer-based architecture have been proposed as an improved attention-based
knowledge representation scheme. We present an unsupervised transformer-based method to evalu-
ate and detect anomalies in electrocardiogram (ECG) signals. The model architecture comprises two
parts: an embedding layer and a standard transformer encoder. We introduce, implement, test, and
validate our model in two well-known datasets: ECG5000 and MIT-BIH Arrhythmia. Anomalies are
detected based on loss function results between real and predicted ECG time series sequences. We
found that the use of a transformer encoder as an alternative model for anomaly detection enables
better performance in ECG time series data. The suggested model has a remarkable ability to detect
anomalies in ECG signal and outperforms deep learning approaches found in the literature on both
datasets. In the ECG5000 dataset, the model can detect anomalies with 99% accuracy, 99% F1-score,
99% AUC score, 98.1% recall, and 100% precision. In the MIT-BIH Arrhythmia dataset, the model
achieved an accuracy of 89.5%, F1 score of 92.3%, AUC score of 93%, recall of 98.2%, and precision
of 87.1%.

Keywords: unsupervised transformers; deep learning; anomaly detection; ECG signal

1. Introduction

The detection of anomalies is important to many contemporary applications and
continues to be of paramount importance with the explosion of sensor use [1] Anomaly
detection in electrocardiogram (ECG) time series data has recently received considerable
attention due to its impact on controlling the quality of ECG time series processes and
identifying abnormal data source behavior [2,3]. The process of anomaly detection in time
series data involves the use of complicated algorithms and models to detect anomalous
data within a selected period. An effective anomaly detector can recognize the contrasts
between normal and anomalous time series data [4,5].

As the demand for real-time anomaly detection is increasing nowadays, the necessity
for intelligent, robust, and computationally efficient models has been realized and is
beginning to gain more attention in most live applications [6]. These models play a
critical role in most time series applications due to the inevitability of error incidence.
The properties of time series data are critical for selecting the appropriate approach to
designing a suitable anomaly detector [7] Successful examples of anomaly detectors identify
anomalies by measuring statistical deviations in time series data, such as the autoregressive
integrated moving average (ARIMA) [8], cumulative sum statistics (CUSUM) [9], and
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exponentially weighted moving average (EWMA) [10]. However, traditional time series
anomaly detection methods, on the other hand, suffer from a lack of the model’s expected
efficiency and accuracy [11].

Recently, several intelligent computing methods for anomaly detection have been
developed. Of these, deep learning and neural networks are trending algorithms known
to be accurate and efficient [12]. However, beginning in the late 2000s, interest grew in
identifying anomalies in large volumes and highly variant online time series data [13].
Aside from commonly used techniques [14] such as autoencoders (AEs), recurrent neural
networks (RNNs), convolutional neural network (CNN) [15], and long short-term mem-
ory (LSTM), contemporary deep neural architectures are typically utilized for anomaly
detection and healthcare prediction [16–18]. Most of these methods have inherent char-
acteristics that hinder their use when dealing with time series data, although they have
evolved to overcome previously proposed techniques. For instance, by using multiplicative
gates that impose constant error flow through the internal states of special units called
memory cells, LSTM neural networks overcome the vanishing gradient problem faced by
RNNs [19] In addition, LSTM networks obviate the need for a pre-specified time window
and can model complex multivariate sequences accurately because of their capacity to learn
long-term correlations in a series. However, the primary objective of these methods is to
produce more realistic sequences instead of extracting meaningful features that facilitate
downstream tasks.

At present, A transformer architecture that follows the procedure of prediction was
first introduced as an efficient alternative to recurrent neural network RNNs in natural
language processing (NLP) [20]. Therefore, in this work, we introduce a transformer
architecture-based anomaly detection model to detect anomalies in human heartbeat time
series signals, such as premature ventricular contraction (PVC), supraventricular premature
(SP) or ectopic beat (EB), and other ECG anomalies. Here, we used the transformer encoder
introduced in [20] to develop novel unsupervised transformer anomaly detection. The
model learns the distribution pattern of normal data and detects anomalies by comparing
the loss function between the predicted data and the original data. The proposed model
outperforms current state-of-the-art deep learning modeling approaches for detecting ECG
time series data.

In the rest of this article, we survey the existing literature on deep leaning anomaly
detection in ECG time series in a related work section. The proposed model and datasets
used are presented in the materials and methods section. The experimental setup and
results analysis are shown in the results and discussion sections. Finally, the paper ends
with a conclusion.

2. Related Work

We present some of the existing deep-learning models that are used for ECG time
series anomaly detection. The authors in [21] have used LSTM unit neural network ar-
chitecture to construct a predictive model for healthy ECG signals. An added benefit of
using LSTM networks is that, as required by other techniques, the ECG signal can be fed
directly into the network without any elaborate preprocessing. The findings are optimistic
and show that LSTM models could be feasible for detecting ECG signal anomalies. In
addition, the authors in [18] proposed an encoder-decoder framework for anomaly detec-
tion based on LSTM networks that learns to reconstruct normal time series behavior using
reconstruction error to detect anomalies on three predictable time series datasets: power
demand, space shuttle, and ECG. They showed that the model is robust and can detect
anomalies from predictable, unpredictable, periodic, aperiodic, and quasi-periodic time
series. Remarkably, the authors in [22] combined AE with LSTM using ECG data from
a patient with a myocardial infarction to show that the system can accurately classify an
irregular wave interval. In [23] stacked LSTM networks were used for anomaly detection in
a time series. The efficacy of this approach was demonstrated on four datasets: ECG, space
shuttle, power demand, and a multisensor engine dataset. In [24], the authors focused
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on the identification of time series data anomalies using a fusion model of LSTM and
GAN, namely LSTM-GAN. The authors verified the algorithm’s output using two sets
of time series data. The experimental results demonstrated that compared to traditional
algorithms, LSTM-GAN achieved superior performance in processing time series data.
Schlegl et al. [25] developed the Deep Convolutional Generative Adversarial Nets (DC-
GAN) based on Anomaly Detection Generative Adversarial Nets (AnoGAN) model for
Anomaly detection. As an unsupervised learning model, AnoGAN uses normal data for
learning. By comparing with Query data, it is possible to detect an Anomaly. In the method,
a decision boundary is subjective. Therefore, through repeated experiments, it is necessary
to apply a decision boundary according to conditions. LSTM can also use in unsupervised
learning such as [26], the authors used MIT-BIH arrhythmia dataset to detect anomaly in
ECG signal in unsupervised learning manner.

However, few models use transformer-based architecture for time series anomaly
detection. In [27], the authors proposed transformer-based with generative adversarial net-
works (GAN) for anomaly detection of time series data. The transformer-based generators
can extract contextual features of time series data to prompt performance. In the training
and anomaly detection stages, the authors used two encoders and two decoder transformer
blocks. They showed that the model has better performance in anomaly detection than
state-of-the-art anomaly detection techniques using three datasets: Secure Water Treatment
(SWaT), Water Distribution (WADI), and KDD Cup 1999. In [28] the authors used trans-
former architecture in time series data; the model consists of three encoder blocks and
one decoder block. The input time series data were split into train sequences and label
sequences, of which train sequences were fed into the encoder, while label sequences were
fed to the decoder. They also replaced the original multihead self-attention method with a
multibranch attention mechanism. The F-scores for the WADI and SWaT datasets were 0.84
and 0.91, respectively.

From the above discussion, we realize that transformer-based anomaly detection
methods have great potential to increase both accuracy and performance if they are used in
detecting ECG anomalies, due to transformer effectiveness and capacity of simultaneously
obtaining long-distance context data. We will be using transformer approach for anomaly
detection in ECG time series data as an unsupervised learning model which has not been
used in this area before. However, the work by [29], and a few recently published ones have
considered end-to end learning method which requires huge labeling as a characteristic
of supervised learning. For time series data, labelled data may not be always available.
Our work considers only unsupervised learning for better adaptation to the input signals.
Furthermore, our model is different from the existing models since it consists of two
standard encoder transformer layers without a decoder. Therefore, in this work, we will
investigate the capability of transformer encoder in anomaly detection in ECG time series
as an unsupervised learning model and compare our findings with state-of-the-art deep
learning models in accuracy and F1-scores, as detailed subsequently.

3. Materials and Methods
3.1. ECG Time Series Data

A time series is a collection of data points that are organized chronologically. Most
commonly, a time series is a sequence taken at successive similarly spaced points in time.
In this work, we used the ECG5000 dataset [30] and the MIT-BIH Arrhythmia dataset [31]
to validate the proposed model. Both datasets are in the ECG domain.

3.1.1. The ECG5000 Dataset

We used a five-thousand ECG (ECG5000) time series dataset [30] in our experiment.
The original data were obtained from PhysioNet’s BIDMC Congestive Heart Failure
Database (CHFDB). In two processes, the data were pre-treated: each heartbeat was first ex-
tracted, and then each heartbeat was interpolated to be the same length, equaling 140 time
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steps [32]. According to Figure 1, there are five different heartbeat types: normal (N),
R-on-T VPC (R-on-T), PVC, SP, or EB, and unclassified beat (UB).
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Figure 1. Time series nature of the signals of different types of heartbeats on ECG5000.

The ECG5000 dataset was created by selecting 5000 sequences from the extrapolated
ECG, of which 2989 sequences were normal, and the remaining 2011 sequences were
anomalous. For our proposed model, the data were divided into three sets—training,
validation, and testing—in an 80:10:10 ratio. Since we applied unsupervised learning, we
eliminated anomalous data from the training and validation data. In the training stage, the
model learned the latent space of normal heartbeats. Table 1 lists the number of sequences
in each dataset.

Table 1. Overview of each set number of sequences on the ECG5000 dataset.

Dataset Normal Anomalous Total

Train data 2335 0 2335
Validation data 292 0 292

Test data 266 234 500

3.1.2. The MIT-BIH Arrhythmia Database

The MIT-BIH Arrhythmia database is a clinical database [31] that includes two-channel
ECG recordings of 48 patients at the Beth Israel Hospital (BIH) Arrhythmia Laboratory.
Each recording was half an hour long. Modified limb lead II signals were chosen for
this study. Following the advice of the Association for the Advancement of Medical
Instrumentation (AAMI) [33] five categories were used to categorize the chosen heartbeats
as follows: normal beat (N), supraventricular ectopic (S), ventricular ectopic (V), fusion
beat (F), and unknown beat (Q). According to the AAMI suggestions, we chose 44 of the
48 recordings for our experiment and removed four recordings (102, 104, 107, and 217)
since they were of poor quality.

Preprocessing

Signal preprocessing is an essential step, especially when dealing with physiological
data, such as the ECG, taking into account all potential sources of noise, such as motion
artifacts and power line interference, that can impair the performance of any ensuing mod-
els. Our preprocessing stage contains two steps. First, we applied filter to eliminate noise
and then we extracted the heartbeat. We have tried different filters such as, Butterworth
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bandpass filter, bandpass filter and one median filter, we found that two median filters
perform better. The following preprocessing procedures were used in this work:

1. Median Filter: We used a median filter with a 200-ms sliding window. Then, using a
600-ms window, we applied a second median filter. The baseline of the raw signals
was contained in the second filter’s output. The second filter output was subtracted
from the unprocessed ECG data to eliminate the baseline wander (see Figure 2). This
step enhanced the baseline correction and eliminated some artifacts [34].

2. Heartbeat Extraction: This entails picking a neighborhood around each beat. This
interval was estimated using R-peak annotation with±50 ms before and after the beat.

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 16 
 

3.1.2.1 Preprocessing 
Signal preprocessing is an essential step, especially when dealing with physiological 

data, such as the ECG, taking into account all potential sources of noise, such as motion 
artifacts and power line interference, that can impair the performance of any ensuing 
models. Our preprocessing stage contains two steps. First, we applied filter to eliminate 
noise and then we extracted the heartbeat. We have tried different filters such as, Butter-
worth bandpass filter, bandpass filter and one median filter, we found that two median 
filters perform better. The following preprocessing procedures were used in this work: 
1. Median Filter: We used a median filter with a 200-ms sliding window. Then, using a 

600-ms window, we applied a second median filter. The baseline of the raw signals 
was contained in the second filter’s output. The second filter output was subtracted 
from the unprocessed ECG data to eliminate the baseline wander (see Figure 2). This 
step enhanced the baseline correction and eliminated some artifacts [34]. 

2. Heartbeat Extraction: This entails picking a neighborhood around each beat. This in-
terval was estimated using R-peak annotation with ±50 ms before and after the beat. 

 
Figure 2. Raw signal data (a) before the median filter and (b) after applying the median filter. 

After heartbeat extraction, the total number of normal sequences was 72,722, while 
the total number of anomalous sequences was 10,579. Since the number of normal se-
quences was large compared with anomalous sequences, we used a sample of 18,824 se-
quences of them. The data were divided into 80% training data and 20% testing data. The 
training data that was split into training data and validation data contained only N beats. 
Table 2 summarizes the number of sequences in each dataset. 

Table 2. Overview of each set number of sequences on the MIT-BIH Arrhythmia dataset. 

Dataset Normal Anomalous Total 
Training data 12,045 0 12,045 

Validation data 3012 0 3012 
Test data 3767 2115 5882 

  

Figure 2. Raw signal data (a) before the median filter and (b) after applying the median filter.

After heartbeat extraction, the total number of normal sequences was 72,722, while the
total number of anomalous sequences was 10,579. Since the number of normal sequences
was large compared with anomalous sequences, we used a sample of 18,824 sequences of
them. The data were divided into 80% training data and 20% testing data. The training
data that was split into training data and validation data contained only N beats. Table 2
summarizes the number of sequences in each dataset.

Table 2. Overview of each set number of sequences on the MIT-BIH Arrhythmia dataset.

Dataset Normal Anomalous Total

Training data 12,045 0 12,045
Validation data 3012 0 3012

Test data 3767 2115 5882

3.2. Proposed Unsupervised Transformer Architecture

In this paper, we introduce a transformer-based network for anomaly detection in
ECG signals. The overall model architecture comprises two parts: an embedding layer and
a standard transformer encoder (see Figure 3). All normal time series data of ECG signals,
which take the form of a 2D tensor of sequence length × number of features, were first
encoded into sequences of embeddings, which were then fed into a multilayer bidirectional
transformer network to produce their corresponding representations. The final linear dense
layers predicted the input ECG signal with the same input sequence length.
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The embedding layer was introduced for higher dimensionality mapping of input
tensors into a feature space. Because the input dimension was linked to the size of
the transformer’s hidden layer, we partitioned this layer into two parts: a linear dense
layer, which projected the input into a higher-dimensional vector, and a dropout layer
to avoid overfitting. Sinusoidal positional encoding was used to encode the order of the
input sequences:

PE(pos,2i)= sin(pos/100002i/dmodel) (1)

PE(pos,2i+1)= cos(pos/100002i/dmodel) (2)

where pos is the position, i is the dimension and dmodel = the embedding size of the model.
In searching for the best combination of model configurations, we tested both one and

two transformer encoder blocks. The first transformer encoder block created equivalent
hidden representations of embedding sequence input. Then, to iteratively produce higher-
level representations, these representations were given as input to the second transformer
encoder block. A single transformer block (shown in Figure 3) included two main sublayers:
a position-wise fully connected feedforward network and a multihead self-attention layer
(FFN). Both sublayers adopt a residual connection [35] and layer normalization [36]. As
illustrated in Figure 4, each of the h parallel scaled dot-product attention layers that make
up a multi-head attention layer is referred to as a head [20]. A query vector and a set of
key-value pairs were transformed into an output vector using scaled dot-product attention.

Attention(Q, K, V)= softmax

(
QKT
√

dk

)
V (3)

where Q, K and V stand for the matrices stacked by several queries, keys, and value
vectors as rows, respectively, and the dimension of the query/key vectors is dk. Before
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calculating attention, multihead attention maps Q, K and V onto various lower-dimensional
feature subspaces using various linear dense layers. Using an additional dense layer, the
outputs from h heads are concatenated and projected onto a final hidden representation, as
shown below:

MultiHead(Q, K, V)= Concat(head1, . . . , headh)W
O (4)

where
headi= Attention

(
QWQ

i , KWK
i , VWV

i

)
(5)
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The weight matrices of each head’s inner dense layers are denoted by WQ
i , WK

i , and WV
i ,

while that of the top dense layer is denoted by WO. For this paper, WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dV , WO ∈ Rdmodel×hdV , h = number of heads, and we use
dK= dV = dmodel

h .
The internal relationship of an input sequence is learned by a transformer’s self-

attention mechanism. The query, key, and value vectors in the self-attention mechanism are
all similar. In other words, attention is calculated for each location in a sequence between a
given position and another position. Thus, the hidden representation of each observation
captures the global sequence information and highlights the region surrounding the ith
observation by weighting the sum of all the positions in a sequence.

A position-wise FFN was then applied to the hidden state of each position indepen-
dently and identically. The FFN was made up of two linear transformations with a ReLU
activation function between them:

FFN(x)= max(0, xW1+b1)W2+b2 (6)

where xi is the ith hidden state produced by the multi-head attention layer, W1 and W2 are
weight matrices, and b1 and b2 are bias terms of the inner and output dense layers, respectively.

3.3. Anomaly Score and Threshold

Because we implemented an unsupervised schema, the model was trained on only an
N heartbeat sequence. The model predicts the original values of the input sequence. The
loss function for our model is the mean-absolute error (MAE) [37] between the input signal
and the predicted signal as shown below in Equation (7). As it is common to use root mean
square error (RMSE) such as in [18], we have first attempted to use it as a loss function.
However, we found that the MAE revealed the best choice because it performs better.

loss =
1
n

n

∑
i=1
|yi − xi| (7)
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The MAE is the total absolute variation between each signal’s actual value yi and
the model’s prediction value xi. Through training, the model learned the saliency and
activation characteristics of normal signals, resulting in a lower loss prediction error. The
model detects anomalies in the testing data by calculating whether the predicted loss error
is greater than a fixed threshold. In this work, the threshold equals two standard deviations
above the mean loss of the trained normal data as the following equation:

Threshold =mean (train data loss)+ 2× standard deviation (train data loss) (8)

After calculating the threshold using the training data, the procedure was converted
into a binary classification problem. In the anomaly detection stage, the calculated threshold
determines whether a data sequence is normal or abnormal by comparing its prediction
error. Using testing data, a specific input sequence was categorically provided to the model,
and the predicted error was then compared to the calculated threshold. The input sequence
was categorized as anomalous if the predicted error exceeded the threshold; otherwise, it
was categorized as normal. Figure 5 shows the graphical architectural procedure of our
anomaly detection model for clarification.
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4. Results and Discussion
4.1. Experimental Setup

To fine-tune our model, we performed many experiments with different numbers
of transformer encoder blocks (consisting of a multihead attention layer followed by a
feedforward layer), different hidden state sizes, and different numbers of attention heads.
Dropout was implemented on only the first dense layer, with a dropout rate of 0:2. We
use an Adam optimizer with a learning rate of 1e–4 and early stopping. The model was
trained for a maximum of 70 epochs; however, all experiments converged before this
point. We trained our model using only normal data in batch sizes of 16 sequences. All
experiments were implemented in Python (v3.7.6) [38] using Tensorflow (v1.14.0) [39] and
Keras (v2.3.1) [40] machine learning libraries. We ran all the experiments on a Windows
10 Pro 64-bit operating system with an AMD Ryzen 5 3600 6-Core processor 3.59 GHz,
NVIDIA 185 GEFORCE RTX 2080 SUPER (GPU), and 32 GB installed memory.
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4.2. Performance Metrics

A true positive (TP) represents accurately anticipated positive values in the binary
classifier, while a true negative (TN) represents correctly predicted negative values. A false
positive (FP) is a negative expected value that is positive, while a false negative (FN) is a
positive projected value that is negative. The anomaly detection results of our model were
evaluated using the area under the curve (AUC), accuracy, precision, recall, and F1-scores,
as follows:

• AUC: The AUC is computed by building the receiver operating characteristic (ROC)
curve based on the false positive (FP) and the true positive (TP).

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + TP + TN

(12)

4.3. ECG 5000 Dataset Results

The proposed model was trained on normal heartbeats and thus learned the distri-
bution of normal signals. Anomalous heartbeats do not obey this distribution; thus, the
model cannot accurately predict them when they were input into the model. To observe this
intuitively, using testing dataset we illustrate the input time sequences and the predicted
time sequences in Figure 6. This figure shows that the actual and predicted normal heart-
beat signals are roughly the same (Figure 6b). However, when the input is an anomalous
heartbeat signal, the model maps it to a continuous latent space of normal heartbeats, as
shown in Figure 6a, which provides an opportunity for anomaly detection. Despite the fact
that some abnormal samples usually resemble their normal predictions, local differences
can assist in distinguishing them.
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Figure 6. (a) Anomalous heartbeat (blue) with corresponding predicted heartbeat (orange); (b) normal
heartbeat (blue) with corresponding predicted heartbeat (orange).

As shown in Table 3, we trained a series of unsupervised transformer networks to
determine the best number of encoder blocks (1 or 2), embedding size (32, 64, 128, or 256),
and number of attention heads (16 or 32). The best-performing model, which contains two
encoder blocks, 128 embedding sizes, and 32 attention heads, achieved impressive results,
with an F1 score of 99%, an accuracy of 99%, a recall of 98.1%, and a precision of 100%.
The calculated threshold was 0.29. However, from Table 3, we can observe that a large
embedding size obtained better performance from the model. Since it handles heartbeat
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signals at distinct time steps, our model is more suitable for sequential time series data.
Figure 7, shows the ROC curve, which plots the true positive rate (TPR) against the false
positive rate (FPR) at various classification thresholds to represent the model’s ability to
distinguish between positive and negative classes. Our model achieved an AUC score of
99% that indicating a perfect classifier model, since the higher AUC score means the better
model ability in making predictions.

Table 3. Transformer anomaly detection results for the ECG5000 test dataset.

No.
Encoder
Blocks

No.
Heads

Hidden
Size F1 Accuracy Recall Precision

1 16 32 96.7% 96.8% 97.7% 96.2%
1 16 64 97.6% 97.6% 96.9% 98.4%
1 16 128 98% 98% 96.9% 99.2%
1 16 256 98.2% 98.2% 96.6% 100%
1 32 32 98.4% 98.4% 96.9% 100%
1 32 64 97% 97% 96.6% 97.7%
1 32 128 98.4% 98.4% 97.7% 99.2%
1 32 256 98.8% 98.8% 97.7% 100%
2 16 32 98.2% 98.2% 97.3% 99.2%
2 16 64 98.4% 98.4% 97.3% 96.6%
2 16 128 98.6% 98.6% 97.3% 100%
2 16 256 98.4% 98.4% 97.3% 99.6%
2 32 32 98.2% 98.2% 96.9% 99.6%
2 32 64 98.6% 98.6% 97.3% 100%
2 32 128 99% 99% 98.1% 100%
2 32 256 98.2% 98.2% 96.9% 99.6%
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Since the ECG5000 dataset has already been used in previous studies, evaluating our
model against other supervised and unsupervised methods is crucial to understanding its
benefits and drawbacks, as well as its place in the anomaly detection field. The outcomes
of a few supervised and unsupervised algorithms on the same dataset are shown in Table 4.
In [41] and [42] the dataset splitting was 4500 heartbeats (80%) held for testing and 500 (20%)
for training and validation tasks (20%). In [41] the authors used the Variational Recurrent
Autoencoder (VRAE) to represent the data and then applied clustering and the Wasserstein
distance to detect the anomaly, successfully detecting anomaly claiming outperformance
over existing supervised and unsupervised methods on the ECG5000 dataset. Similarly,
the authors in [42] used the same Variational Autoencoder (VAE) method coupled with
a local similarity score on the two datasets we used in this work, namely ECG5000 and
MIT-BIH Arrhythmia, achieving a comparable AUC with the literature. Nevertheless,



Algorithms 2023, 16, 152 11 of 15

our model outperforms these deep learning models in all evolution metrics, with an F1
score of 99%, an accuracy of 99%, a recall of 98.1%, and a precision of 100%. However,
the comparison was considered unfair because we used different data-splitting methods.
Therefore, we compared our results to those obtained recently by [43] and [44] because
the data was split into 80% training 10% validation and 10% testing, exactly as we did
here. The authors of [43] Concat Attention Autoencoder (CAT-AE), AE-without-Attention,
and VAE claim state-of-the-art accuracy and precision in anomaly detection. On the other
hand, the authors in [44] used an unsupervised LSTM AE. As shown in Table 4, our model
outperforms these deep-learning models using the same data-splitting methods.

Table 4. Results of the ECG5000 test dataset.

Model S/U Accuracy Recall Precision F1-Score

Hierarchical [41] U 95.5% 94.6% 95.8% 94.6%
Spectral [41] U 95.8% 95.1% 94.7% 94.7%

VRAE + Wasserstein [41] U 95.1% 94.6% 94.6% 94.6%
VRAE + k-Means [41] U 95.9% 95.3% 95.4% 95.2%

VAE [42] U + S 96.8% — — 95.7%
VAE [43] S 95.2% 92.5% 98.4% 95.4%

AE-Without-Attention [43] S 97% 95.5% 98.8% 97.1%
CAT-AE [43] S 97.2% 95.6% 99.2% 97.4%

LSTM AE [44] U 97.93% — — —
This work U 99% 98.1% 100% 99%

For evidence, symbols (S,U) denote the supervised and unsupervised learning, respectively.

4.4. MIT-BIH Arrhythmia Dataset Results

Examples of abnormal and normal heartbeats, together with their corresponding
predictions, are shown in Figure 8. Normal heartbeats appear to be rather accurately
predicted by the model, as shown in Figure 8b. There is little doubt that the model has
picked up on the basic morphological behavior of a normal cardiac cycle pattern. The
model can adjust the output to the input as much as the normal latent space allows, while
continuously aiming to minimize prediction loss. The model attempts to forecast the input
using only the normal properties of the cardiac cycle so abnormal heartbeats are mapped
onto a normal heartbeat latent space. As expected, this results in lower prediction quality
and higher prediction loss for abnormal heartbeats, as shown in Figure 8a.
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As shown in Table 5, we trained multiple transformer-encoder networks to deter-
mine the best number of attention-feedforward blocks (1 or 2), embedding size (512 or
1024 neurons), and number of attention heads (16 or 32). As can be seen in Table 5 the
transformer-encoder anomaly detection results for the MIT-BIH test dataset for different
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models were close together. However, the best model configurations contained two blocks,
64 embedding sizes, and 32 attention heads. Our best-performing transformer-encoder
model achieved an accuracy of 89.5%, F1 score of 92.3%, recall of 98.2%, and precision of
87.1%. Figure 9 presents the ROC curve of the best model on the testing set with an AUC
score of 93% which means that the model is performing relatively well in distinguishing
between anomaly and normal signals. The calculated threshold value was 0.12.

Table 5. Transformer anomaly detection results for the MIT-BIH test dataset.

No.
Encoder
Blocks

No.
Heads

Hidden
Size F1 Accuracy Recall Precision

1 16 32 91.6% 88.6% 97.5% 86.3%
1 16 64 91.9% 89% 98.3% 86.3%
1 16 128 91.8% 88.7% 98.1% 86.2%
1 16 256 91.6% 88.4% 98.4% 85.6%
1 32 32 92.1% 89.2% 98.3% 86.6%
1 32 64 92.1% 89.2% 98.3% 86.6%
1 32 128 92% 89.1% 98.2% 86.6%
1 32 256 91.73% 88.6% 98.4% 85.9%
2 16 32 92.1% 89.2% 98.2% 86.69%
2 16 64 91.8% 88.8% 98% 86.1%
2 16 128 91.8% 88.8% 98.5% 86%
2 16 256 91.71% 88.6% 98.4% 85.8%
2 32 32 92.2% 89.4% 98% 87.1%
2 32 64 92.31% 89.5% 98.2% 87.1%
2 32 128 91.8% 88.7% 98.4% 86%
2 32 256 91.8% 88.8% 98.6% 85.99%
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Comparing our results with other existing deep learning anomaly detection models
that used the MIT-BIH dataset is shown in Table 6. In [26], the authors used stacked
LSTM and applied unsupervised training, since no anomaly classes are needed for training
the model. The dataset splitting was 80% training and 20% testing. Therefore, we also
compare our model with theirs because they followed the same training procedure and
data splitting. Our model achieved an F1 of 92.3%, recall of 98.2% and precision of 87.1%
while they reported an F1 of 81%, recall of 87% and precision of 82% which indicates that
our model outperforms the unsupervised LSTM attempts. Furthermore, in [45] the authors
used a novel hybrid architecture consisting of LSTM cells and multi-layer perceptrons
(MLP), and the dataset splitting was 70% training and 30% testing. They achieved 87%
F1 and 75% sensitivity in a supervised manner, which is also less than our result, while
the higher accuracy may be attributed to the fact that the authors have used supervised
learning. Finally, the authors in [42] used unsupervised variational AEs with AAMI dataset
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splitting, but they had the lowest F1 and accuracy with 76.55% and 87.77%, respectively.
Our model, compared with state-of-the-art application anomaly detection methods using
either supervised or unsupervised deep-learning models, outperforms them. However,
this model’s performance in anomaly detection still lacks a satisfactory F-score.

Table 6. Results of the MIT-BIH Arrhythmia test dataset.

Model S/U Dataset
Splitting F1 Accuracy Recall

(Sensitivity) Precision

Stacked LSTM [26] U 80% training,
20% testing 81% - 87% 82%

(LSTM) with (MLP) [45] S 70% training,
30% testing 87% 95% 75% -

VAE [42] U AAMI Dataset
splitting 76.55% 87.77% - -

This work U 80% training,
20% testing 92.3% 89.5% 98.2% 87.1%

For evidence, symbols (S,U) denote the supervised and unsupervised learning, respectively.

5. Conclusions

We have introduced a robust and effective unsupervised transformer anomaly de-
tection model in time series data. The suggested model was utilized to detect anomalies
in human heartbeat time series signals, such as premature ventricular contraction (PVC),
supraventricular premature (SP), and other ECG anomalies. A transformer encoder net-
work and linear dense decoder networks comprise the model architecture. The ECG time
series anomaly detection approach is based on a sequence prediction method that has
two stages: model training, in which the model learns the normal data distribution, and
anomaly detection, in which the ECG time series anomaly score is computed to identify
abnormalities. We adapt the anomaly detection method into an unsupervised framework
by using a pre-set threshold of mean plus two times the standard deviation of training loss.

We have shown how the transformer encoder can be leveraged for ECG time series
anomaly detection. Our results for both the ECG5000 and MIT-BIH Arrhythmia datasets
have shown that a transformer encoder is a viable substitute for this task. The transformer
encoder was tested against several state-of- the art deep learning models. We have demon-
strated that our model outperformed the compared models in accuracy, F1-score, recall,
and precision. For the ECG5000 heartbeat dataset, we have achieved a 99% accuracy, a
99% F1 score, a 100% precision, a 98.1% recall, and a 99% AUC score, demonstrating an
excellent ability to determine abnormalities in ECG heartbeat signals. Moreover, the model
revealed respectable weighted F1 score of 92.3%, accuracy of 89.5%, AUC score of 93%,
recall of 98.2%, and precision of 87.1% on the MIT-BIH Arrhythmia dataset. In addition, the
proposed model is more robust than other deep learning models in recent ECG analyses
using MIT-BIH Arrhythmia dataset. Though this work has focused on comparing the
model with deep learning anomaly detection approaches, we aim in future work to expand
our investigation on other anomaly detection techniques of time series data.
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