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Abstract: Crowd congestion is one of the main causes of modern public safety issues such as stam-
pedes. Conventional crowd congestion monitoring using closed-circuit television (CCTV) video
surveillance relies on manual observation, which is tedious and often error-prone in public urban
spaces where crowds are dense, and occlusions are prominent. With the aim of managing crowded
spaces safely, this study proposes a framework that combines spatial and temporal information to
automatically map the trajectories of individual occupants, as well as to assist in real-time conges-
tion monitoring and prediction. Through exploiting both features from CCTV footage and spatial
information of the public space, the framework fuses raw CCTV video and floor plan information to
create visual aids for crowd monitoring, as well as a sequence of crowd mobility graphs (CMGraphs)
to store spatiotemporal features. This framework uses deep learning-based computer vision models,
geometric transformations, and Kalman filter-based tracking algorithms to automate the retrieval of
crowd congestion data, specifically the spatiotemporal distribution of individuals and the overall
crowd flow. The resulting collective crowd movement data is then stored in the CMGraphs, which
are designed to facilitate congestion forecasting at key exit/entry regions. We demonstrate our
framework on two video data, one public from a train station dataset and the other recorded at a
stadium following a crowded football game. Using both qualitative and quantitative insights from
the experiments, we demonstrate that the suggested framework can be useful to help assist urban
planners and infrastructure operators with the management of congestion hazards.

Keywords: deep learning; computer vision; graph representation learning; crowd congestion

1. Introduction

With the rapid growth of urban populations, crowding in public venues, such as sports
stadiums and train stations, has become increasingly problematic. Understanding the dis-
tribution of human crowds in a built environment is essential for timely and appropriate
infrastructure management and service delivery. For example, uncontrolled crowding at ex-
its causes sluggish evacuation during disasters; overly-dense crowds lead to stampedes [1].
For this reason, real-time monitoring and early warning of dense crowd flow are crucial
for a variety of public safety-related applications, including public event management,
safety monitoring, and disaster evacuation management. For instance, effective congestion
detection and prediction can trigger timely support services such as the dispatching of
human guides to direct crowd flow, the establishment of queue lines, and the planning of
additional spaces and services for occupants.

Closed-circuit television (CCTV) surveillance cameras are frequently put in public
areas to understand crowd behaviors, detect anomalous events, and identify congestions
for security and safety purposes [2]. By evaluating camera footage and using their own
judgments, stakeholders such as security professionals, infrastructure operators, and crowd
managers are able to monitor crowds and identify potential hazards. However, manual
observation of videos is labor-intensive and error-prone, particularly when crowds are
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dense [3]. Therefore, it is essential to increase the role of technology in crowd management.
Through interviews with crowd managers and assessment of the current state of practice,
research has shown that crowd monitoring and event planning are sophisticated, but operate
with minimal technology support at present [4]. In addition, crowd managers prefer to
increase their use of technology and seek improved tools to assist them in their work.

In recent years, leveraging computer vision algorithms and greater computational
capacity, research has continued to expand towards automating the process of vision-based
crowd congestion analysis. Earlier research with pixel and color-based methods were often
used for people recognition, tracking, and crowd counting until the more recent rise of
convolutional neural network (CNN) based approaches, which have been shown to be
more robust under scenarios of varying lighting conditions, image resolution and sizes [5].
CNNs are particularly effective at image recognition and processing applications due to
their convolutional kernels, which extract visual features while preserving the spatial rela-
tionships between pixels. Numerous CNN-based approaches, including YOLO [6], Faster
R-CNN [7], and Mask R-CNN [8], have demonstrated remarkable detection abilities for a
variety of objects, including humans. However, two research gaps remain between human
detection models and their direct applicability to congestion monitoring. Firstly, dynamic
crowd mobility information should be learned by fusing both spatial and temporal features.
Existing studies rarely consider the spatial connectivity of the surrounding space, such as
the location of the egresses, which is essential for congestion monitoring and management.
Secondly, while there is much research applying computer vision to the detection, tracking
and prediction of individual pedestrian movements, macroscopic crowd congestion statistics
such as crowd count, density, and flow estimation have received less attention.

The main objective of this paper is to illustrate an application of computer vision
and machine learning methods to enhance crowd safety in a public space. Using deep
learning and computer vision techniques, this paper proposes to fuse features from CCTV
footage and spatial information of the public space to establish a framework for monitoring
crowd congestion in public urban spaces. The key contribution of this effort is threefold:
(1) A modular framework is presented to extract crowd congestion information from raw
surveillance footage using deep learning-enabled detection and tracking algorithms. (2) The
crowd mobility graph (CMGraph) data structure is proposed to store dynamic, macroscopic
crowd flow data. The CMGraph formulation is spatiotemporal: the graph topology contains
information on the spatial connectivity of the egresses, and the node feature stores temporal
crowd flow data. (3) Leveraging the generated spatiotemporal crowd data, we develop real-
time congestion alerts and future-time prediction visualizations to assist with manual crowd
congestion monitoring. Furthermore, to quantify the benefits of our proposed framework,
we validate our implementation with a fully annotated publicly available dataset from New
York’s Grand Central Station, a busy public urban location [9]. In order to demonstrate the
generalizability and capacity in providing qualitative analysis, we also collect an unannotated
video from a stadium during a crowded football game. While these datasets have varying
crowd density, locations, and public space use cases, the framework can potentially be
extended to both videos and likely to other crowd congestion applications.

This paper is organized as follows: In Section 2, we review existing crowd-monitoring
methods that leverage deep learning and computer vision technologies. In Section 3, we present
the overall workflow framework for crowd congestion analysis and detail the three main
components of the proposed framework: (1) Dataset Preparation, (2) Trajectory Generation, and
(3) CMGraph for Efficient Congestion Monitoring. Section 4 reports qualitative and quantitative
results obtained from experiments on real CCTV footage. Section 5 discusses conclusive remarks.

2. Related Work

Despite rapid growth in computer vision technologies, accurate monitoring of crowd
flow in congested scenes remains a challenging task of deep learning. Different automated
deep-learning solutions are constantly being developed based on computer vision techniques
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applied to surveillance videos. In this section, we review crowd-monitoring methods with deep
learning and computer vision technologies.

While there have been different approaches that monitor crowd movements and
behaviors, vision-based monitoring with images and videos using CNN is the most widely
used method. Among them, density estimation with CNN is a popular approach. Density
estimation CNN models take an input image containing crowds and generate a density map
that represents the distribution of people in the image. The first known CNN model for
density estimation and counting is CrowdCNN [10], a model consisting of three convolution
layers followed by three fully connected layers. Further down the road, multi-column
CNNs that have filters of different sizes in the columns are developed to handle the variation
of pedestrian head and body sizes in images [11–13]. Subsequently, single-column counting
networks are proposed for learning size-relevant without relying on multi-column networks
using modules containing multiple filters of different receptive field sizes [14,15]. The density
map outputted is useful for identifying where crowds gather and can be integrated to obtain
an estimate of the crowd count [2]. The density estimation approach is particularly effective
when crowds are extremely dense, and occluded and individuals are small.

A limitation of density estimation, however, is that the approach can only compute
the spatial distribution of the macroscopic crowd count, rather than the monitoring of
individuals. An alternative approach is detection-based, where a CNN model first performs
pedestrian detection, generating a set of bounding boxes around any individuals in an im-
age. For instance, variants of a one-stage detector, You Only Look Once (YOLO) have been
used for video-based crowd counting in specific regions to enforce social distancing [16,17].
Detection-based methods tend to perform well when the crowd is sparse. However, when the
crowd becomes dense, occlusion and small person-size tend to reduce performance signifi-
cantly [18]. On the other hand, since detection-based methods yield bounding boxes around
individual pedestrians, microscopic monitoring of each individual is possible. In this work,
we show that when detection methods are integrated with tracking and information on the
surrounding space, spatiotemporal mapping of individual trajectories can be obtained. The
spatiotemporal mapping can then be leveraged to provide useful visualization and even
spatiotemporal forecasting to assist the process of crowd congestion monitoring.

3. Methodologies

The overall workflow of the framework is shown in Figure 1. The workflow is com-
posed of three modules. In the Dataset Preparation module, raw CCTV footage is prepro-
cessed in preparation for the integration of spatial information and subsequent extraction
of crowd congestion data. The Trajectory Generation module then sequentially employs a
pedestrian detector, tracker, and spatial mapper to generate a spatiotemporal mapping of
each occupant. Lastly, the CMGraph for Efficient Congestion Monitoring module enables
the representation of spatiotemporal characteristics as graph data, facilitating real-time
monitoring and prediction of future crowd congestions.
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3.1. Dataset Preparation

Prior to using raw CCTV footage for training and validating data for the extraction of
crowd congestion statistics, several preparatory processes are required. This section describes
the process of curating a dataset from unprocessed CCTV videos for the proposed framework.

(1) Padding CNN networks for human detection frequently extract a visual feature map
from an input image. The feature map can be viewed as a downsampled tensor of
the original input. For instance, models belonging to the YOLO family are designed
such that input images are downsampled by a factor of 32 [6]. To ensure compatibility
with most open-source detector networks, input videos are required to be padded
with zero-value pixels such that their width and height are multiples of 32. In our
case study of New York’s Grand Central Station, the original video resolution is
1920× 1080. Padding transforms the video to 1920× 1088. In the other case study of a
football stadium, the original video’s resolution is 720× 480 and padded to 736× 480.

(2) Optional frame rate reduction We note that there is a trade-off between data efficiency
and tracking precision, as videos with a high frame rate capture motion in shorter
intervals, which can improve tracking performance. However, a high frame rate
increases data storage and processing costs. Therefore, we advise optionally lowering
the frame rate of the input video to adjust to storage and tracking precision needs,
particularly when there is a constraint on video storage and computational capacity.
In our case study of Grand Central Station, we demonstrate that even with 1.25 frames
per second (FPS) and low resolution, our approach provides relatively good detection
and tracking performance to sufficiently capture trends in crowd mobility.

(3) Spatial alignment Fusion of video and spatial information requires the alignment
of the video’s image-plane coordinate system with the physical world’s coordinate
system. This can be viewed as obtaining a projection from a plane in the image to a
plane on the floor plan. Nevertheless, the coordinate systems of the two planes are
often initially unknown. An important step of preparing a dataset is therefore to define
the two planes. Therefore, we manually identify four key points in the surveillance
video and on the floor plan, consistent in order and winding. An illustration of this
step is shown in Figure 2, where in the Grand Central Station, the plane in the floor
plan coordinate system is drawn on the left (Figure 2a), and the plane in the video
frame’s coordinate system is drawn on the right (Figure 2b).

(4) Egress region identification The floor plan provides locations of entrances and exits,
which are key locations that are vital for crowd congestion analysis. In a crowded,
urban space, people naturally flow from one entrance to another exit. To better model
crowd flow, all floor plans are processed such that they are divided into egress regions
based on the locations of the entrances and exits of the floor plan, thereby requiring
manual attention to read the floor plans. For example, Figure 2a shows the nine egress
region divisions based on the floor plan information of the Grand Central Station.
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3.2. Trajectory Generation

This section outlines the method used to generate pedestrian trajectories from the
fusion of video and spatial data. The trajectory generation component can be separated
into three smaller modules: pedestrian detector, tracker, and spatial mapper.

3.2.1. Pedestrian Detector

Pedestrian detection entails generating a set of bounding boxes around any individ-
uals in images and videos. In recent years, numerous applications in domains such as
surveillance [20], autonomous vehicles [21], and behavioral analysis [22,23] have demanded
advancements in pedestrian detectors, resulting in active research into the application of
deep learning technologies in the field. The predominant approaches can be split into two
types: one-stage and two-stage detectors.

One-stage detectors, such as You Only Look Once (YOLO) [6], RetinaNet [24], and
Single Shot Detector (SSD) [25] use a single convolutional neural network (CNN) to directly
predict bounding boxes and the associated confidence score for each pedestrian in an input
image. One-stage detectors train faster and more efficiently than two-stage detectors, as
the entire detection process is performed in a single pass of the CNN.

Other CNN architectures, such as the Regional Convolutional Neural Network (R-
CNN) [26] Faster R-CNN [7], and Mask R-CNN [8], are two-stage detectors, which consist
of two distinct steps. The first is the region proposal network (RPN), which generates a set
of rectangular candidate regions likely to contain objects in the input image. These proposed
regions aid the second deep neural network in concentrating on the most promising areas of
the input image. The second network then conducts bounding box regression using the set of
proposed regions. Despite the fact that two-stage detectors are slower and more computationally
intensive than single-stage detectors, the use of region proposals typically enables two-stage
detectors to achieve superior detection performance for images with fine details.

In this paper, both a one-stage and a two-stage detector are implemented to demon-
strate that the proposed framework allows the user to interchange detector models flexibly.
Although there are numerous candidate architectures for the detector module, the following
criteria are used to select the most suitable for real-time pedestrian tracking: First, the work
focuses on the accurate retrieval of each pedestrian’s coordinates rather than pixel-level
accuracy. Therefore, models with segmentation heads introduce unnecessary computational
costs for the purpose of this framework; second, real-time inference speed along with accept-
able accuracy are needed, prompting the use of lightweight models only. Both the YOLOv7
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network proposed by Wang et al. [27] and the Faster-RCNN network proposed by Ren et al. [7]
can serve as the basis for analysis in the pedestrian detector module.

Detailed discussions of the YOLOv7 and the Faster R-CNN algorithm can be found
in [27] and [7], respectively. The following provides a description of the modules of the
YOLOv7 and the Faster R-CNN model, as well as their use to generate detection bounding
boxes on individual pedestrians during the inference stage.

You Only Look Once (YOLO) v7 The recently published YOLOv7 algorithm is faster
and more accurate than all known object detectors (including two-stage detectors such as
variants of the R-CNN) [27]. The YOLOv7 model is a single-stage detector with three com-
ponents. First, the backbone of ELAN is used to extract feature maps of multiple resolutions.
Second, the neck enhances the feature maps by performing multi-resolution aggregation
of the features. Lastly, the head generates final predictions of detection bounding boxes,
which are represented as a tuple of (x, y, w, h), where x and y represent the coordinates of
the center of the bounding box that surrounds the detected human; w and h represent the
width and height of the bounding box, respectively. Together, the tuple (x, y, w, h) describes
the location and size of the detected object in the input image.

Faster R-CNN The Faster R-CNN proposed by Ren et al. [7] is a two-stage object
detection algorithm. The overall architecture of Faster R-CNN can be summarized as
follows: CNN layers are initially employed to extract image features. An RPN is then
applied to the set of feature maps, which generates a set of rectangular region proposals.
A Region of Interest (ROI) pooling layer then takes as input both the set of region proposals
and the previously extracted set of feature maps and generates a feature map of fixed size
for each region proposal. The proposal feature maps are then fed into a fully connected
network that classifies the objects within each proposal and refines the bounding boxes.
The use of a shared CNN extracted feature map for both stages is one of the key innovations
of Faster R-CNN, which makes the algorithm significantly faster than previous two-stage
object detection methods. Similar to YOLOv7, the output of the final fully-connected
network contains detection bounding boxes, however in a different format, a tuple of
(x1, y1, x2, y2), where (x1, y1) is the top left corner of the bounding box, and (x2, y2).

Existing research has shown that Faster R-CNN makes fewer localization errors but
more background detection errors than YOLO [6]. In Section 4, we present a detailed
experimental analysis with both detector algorithms, YOLOv7 and Faster R-CNN to assess
their performance as well as to illustrate the flexibility of the modular framework for
accommodating different models. Note that the models are only used for inference, as pre-
trained models are publicly available for use [7,27]. As a result, no training hyperparameter
tuning is needed. The pre-trained models are used as is with no modification to the
originally provided configurations and weights.

3.2.2. Pedestrian Tracker

In the previous section, we described how a set of bounding boxes can be obtained
using a single-stage or two-stage detector for every image frame. CCTV video can be
viewed as a sequence of image frames over time. In this section, we describe how a tracker
can be used to associate pedestrians with the additional temporal dimension. We note that
both SORT and DeepSORT trackers are publicly available for use [28,29]. While further
discussions of SORT and DeepSORT are available in these references, in this subsection,
we describe the algorithms and the modifications that we made to deal with datasets from
real-world scenarios that may have a low frame rate and lack annotations.

To obtain the precise trajectory of a single object across multiple video frames, it is
necessary to have a tracker algorithm that associates each bounding box to an identity. The
tracking stage can be formulated as an assignment problem: At any time t, the tracker
must associate each bounding box in the set of all bounding boxes B generated by the
pedestrian detector to a pedestrian with identity i, whose trajectory up to frame t is T t

i . The
trajectory T t

i is composed of a sequence of mi bounding boxes
{
B1

i , . . . , Bmi
i
}

. Thus, mi
denotes the total length of the trajectory T t

i . In this work, we modify and implement two
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popular Kalman-filter-based tracking algorithms, SORT [28] and DeepSORT [29] to better
accommodate our use cases, which presents new challenges for pedestrian tracking that
are not present in modern high-quality public pedestrian tracking benchmarks.

SORT The SORT algorithm first employs a Kalman filter predictor to estimate the
state of a pedestrian based on observations from previous frames using a linear constant
velocity model to represent each pedestrian’s motion, observed as a sequence of bounding
boxes. Given a set of |B| bounding boxes from the detector as the input, and a set of |BKF|
predicted bounding boxes from the Kalman filter algorithm, SORT uses the Hungarian
algorithm [30] to find the best assignment of bounding boxes in B (from the detector) to
boxes in BKF (predicted by the Kalman filter) that minimizes the total cost. In SORT, the
cost is computed using the intersection over union (IoU) of assigning a bounding box
Bi ∈ B to a box BKF, j ∈ BKF, given by:

cost(i, j) = 1− IoU
(
Bi,BKF, j

)
= 1−

Bi ∩ BKF, j

Bi ∪ BKF, j
(1)

The resulting assignments are then used to update the existing trajectories and create
new tracks for unmatched detections.

DeepSORT The DeepSORT algorithm, similar to SORT, uses the Kalman filter for
state estimation and solves the assignment problem with the Hungarian algorithm. As an
extension to SORT, DeepSORT incorporates a reidentification (Re-ID) model, a CNN feature
extractor, to improve tracking by using a matching cascade for the detection association
process. The feature extractor is pre-trained on a large-scale person Re-ID dataset and is
available publicly [31]. The matching cascade computes both the Mahalanobis distance
and similarity in deep appearance features between predicted boxes and detections for
the cost of association. The deep appearance similarity between a bounding box Bi ∈ B
(from the detector) to a box BKF, j ∈ BKF (predicted by the Kalman filter) is computed as
the cosine distance between the deep features of the pedestrian enclosed by Bi, and those of
the pedestrian enclosed by BKF,j. Trajectories and detections that are unable to be matched
by the matching cascade process are then associated using their IoU metric as in SORT.

Existing benchmarks for pedestrian tracking datasets are typically created with the
objective of accurate algorithm development in nearly ideal conditions using high-quality
videos. The most notable dataset benchmarks are the MOTChallenge benchmarks, includ-
ing MOT17 [32] and MOT20 [33], which create leaderboards that spark much academia
and industry efforts to develop new tracking algorithms that score higher in a range of
accuracy metrics. However, surveillance videos in the real world differ from these selected
quality benchmarks. Empirically, we observe at least two significant difficulties, namely
frame rates, and annotations, from real-world datasets, including our experimental ones,
that are rarely seen in high-quality benchmarks such as the MOTChallenge. The following
describes how the tracking algorithms are adjusted to deal with the real-world datasets
that are used in this study.

(1) Low frame rate

High-quality data often comes with a higher frame rate. For example, MOT20 [33]
contains videos of 25 FPS. On the other hand, the Grand Central Station videos are only
annotated every 20 frames, rendering the effective frame rate of 1.25 FPS. This is especially
challenging for the tracker, as bounding box association works better when there is more
overlap between bounding boxes of the same pedestrian in consecutive frames.

Reduced performance at lower frame rates can be explained by the matching pro-
cess used by SORT and DeepSORT. To cross-check detections and tracks, SORT first use
IoUmatching followed by track decay. Before IoU matching, DeepSORT incorporates an ad-
ditional stage known as the matching cascade. During the IoU matching stage, unassigned
track and unassigned detection boxes with IoU higher than a certain threshold are matched
using the Hungarian algorithm.

However, because pedestrians have traveled a large distance between successive
frames when the frame rate is low, a smaller IoU between the detections and tracks is more
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appropriate. We, therefore, lower the IoU threshold to 0.1 (instead of the conventional
implementation of 0.7) in order to retain unmatched candidate tracks and detections that
would be otherwise discarded due to the low frame rate. With a low IoU threshold,
pedestrians can be tracked more effectively in videos with a low frame rate.

(2) Lack of associated bounding box annotation

Data annotation is expensive and time- and labor-intensive. The average time required
to manually annotate a bounding box, according to research, is at least 88 s per bounding
box [34]. For the tracking problem, additional time is necessary to assign each bounding
box a unique person ID. Consequently, it is challenging to construct high-quality tracking
annotations for surveillance videos featuring large crowds. Typically, high-quality bench-
mark datasets include these annotations so that detectors and trackers can be trained on the
provided video data. The Grand Central Station dataset utilized in this research comprises
just point annotations, whereas the stadium video is unannotated. We, therefore, rely on
using detectors and trackers pre-trained on other datasets of completely different scenarios.

In addition, since there is no bounding box ground truth to compare the Grand Central
Station dataset to during the evaluation phase, we employ the Euclidean similarity measure
instead of the IoU similarity measure to compare each track to the point-wise ground truth.
The Euclidean similarity thresholds the Euclidean distance between two points. For numerical
experiments in this paper, the threshold is set to be a 1 m-distance in the physical space.

3.2.3. Spatial Mapper

Although the pedestrian detector and tracker modules permit the extraction of each
pedestrian’s position in each CCTV video frame, these positions are relative to the picture
plane coordinates of the video. The pedestrian’s position needs to map onto the physical
space for performing scenario analysis of crowds. To extract the spatial and temporal
position of each pedestrian relative to the physical space, it is necessary to find a projection
from the image plane coordinates of the CCTV to the physical space’s plane coordinates.

The process of mapping a pedestrian’s position from the image plane to the physical
space plane can be viewed as mapping a point from one plane to another, as shown
in Figure 3. The original plane containing the point is in the X − Y coordinate system,
whereas we want to find its mapped position on a plane in the X′ −Y′ coordinate system.
We, therefore, introduce the spatial mapper module, which finds the homography matrix, or
the transformation matrix between the two coordinate planes [35]. Formally, a homography
transformation is defined as:x′

y′

1

 = H

x
y
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
1

 (2)

where the homography matrix H ∈ R3×3 has 8 degrees of freedom, generally normalized
such that h33 = 1; The vector { x, y, 1} represents a point in the image coordinate plane,
whereas the vector {x′, y′, 1} represents a point in the physical space coordinate plane.
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To obtain the homography matrix H, the four points identified in the spatial alignment
step (Section 3.1 step (3)) are used. The least square method proposed by Bazargani et al. [36]
and implemented in OpenCV is adopted, where given n (x, y) points and corresponding
(x′, y′) points, the following back-projection error term is minimized:

error =
n

∑
i

(
x′i −

h11xi + h12yi + h13

h31xi + h32yi + h33

)2
+

(
y′i −

h21xi + h22yi + h23

h31xi + h32yi + h33

)2
(3)

The back-projection error term can be interpreted as the sum of the errors between
each point

(
x′i , y′i

)
on the physical coordinate plane and the corresponding point (xi, yi)

mapped from the image coordinate plane via homography transformation. With the
homography matrix H derived, the video frame position of any pedestrian generated from
the pedestrian tracker can be mapped to the physical space with respect to the floor plan
using simple matrix multiplication.

3.3. CMGraph for Efficient Congestion Monitoring

The information on crowd mobility acquired by fusing CCTV and floor plan informa-
tion encompasses both spatial data of the physical space and temporal data describing the
evolution of crowd movements over time. In order to analyze crowd flows in a physical
space, however, there is a need for tools and techniques to visualize and interpret the
spatiotemporal data. The spatiotemporal data must be adequately represented, as a simple
representation in Euclidean space is insufficient for representing spatial connectivity. In this
section, we propose a new spatiotemporal graph formulation, Crowd Mobility Graph
(CMGraph), which can be used to represent the macroscopic crowd flow between egress
regions. We also illustrate how this new representation can be leveraged to achieve efficient
real-time and future time congestion monitoring.

3.3.1. Graph Representation for Spatiotemporal Data

In this section, we describe the modeling of crowd mobility data as a sequence of
crowd mobility graphs (CMGraphs). Crowd volume data recorded over a discrete time
span t = 1, . . . , Tobs are formulated as a set of undirected and unweighted dynamic graphs
{G(t) = (V(t), E)}. Here, V(t) = {v1, . . . , vN} denotes the set of N nodes where each
node corresponds to an egress region. The node feature matrix, XN×D stores the collective
crowd flow data, where D is the number of node features. E denotes the set of time-invariant
edges, where an edge ejk ∈ {0, 1} connecting node vj and node vk is 1 if two egress regions
are adjacent to each other and 0 otherwise. Two egress regions are adjacent if a pedestrian
is able to walk from one region to another without entering a third egress region. Figure 4
shows an example of how the egress regions of the Grand Central Station in New York are
modeled as the CMGraph.

CMGraph allows our framework to integrate space-time information into a graphical
data structure. Since edges connect egress regions in the vicinity, the topological structure
of the CMGraph naturally models the flow of pedestrians from one region to another.
For example, a graph neural network (GNN) model can pass node information along the
edges of a CMGraph such that the crowd flow information in an egress region relates to
the flow of nearby regions. This allows us to account for the effect of the physical space on
crowd dynamics. On the other hand, the temporal data stored in the nodes V(t) allow us
to use sequence-generating neural networks, such as recurrent neural networks (RNN) to
perform time series forecasting.
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3.3.2. Real-Time Congestion Visualization

While the preceding sections describe the methodology for acquiring data on crowd
mobility, we provide two data visualization interfaces so that various stakeholders, in-
cluding security professionals, infrastructure operators, and crowd managers, can easily
interpret the data generated by our framework for congestion monitoring.

(1) Crowd count and individual monitoring The objective of the first data visualization
tool is to reduce the amount of human effort required for surveillance video obser-
vation. We add a crowd count and assign a unique identifier to each pedestrian so
that surveillance operators may simply determine the general crowd size and identify
individuals who may require particular attention. This is especially beneficial in
crowded areas when it is difficult to quantify the number of people and to locate an
individual. Figure 5a depicts the visualization that was implemented.

(2) Real-time congestion alert The second tool is designed to notify the operator of
probable congestion hotspots. To do this, a density heatmap is constructed to indicate
busy areas from a bird’s-eye view of the physical space. The color automatically
alters dependent on a region’s congestion level. Figure 5b illustrates a congested
egress in the Stanford Stadium. In order to be alerted about overcrowding and to
prevent hazards such as stampedes from occurring, operators can continuously use
the heatmap to monitor crowded areas.
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3.3.3. Future-Time Congestion Prediction

The ability to get notifications in advance about potential congestion problems is a
crucial aspect of crowd monitoring. To accomplish this, it is essential to predict crowd
movements to identify probable congested areas. Crowd movements feature complex
spatial, temporal, and social dependencies that can affect collective crowd dynamics.
Essentially, the movement of several crowd groups can be viewed as several spatiotemporal
signals that are non-IID, making the forecasting of such signals challenging. In this section,
we present an approach that uses graph convolutional network (GCN) and recurrent neural
network (RNN), each leveraging spatial and temporal signals respectively, to obtain crowd
flow predictions from CMGraphs to be used for advanced congestion alerts.

In many domains, numerous existing studies also deal with spatiotemporal data.
Many such spatiotemporal problems are frequently solved with a combination of graph
neural network (GNN) to learn the spatial features and recurrent neural network (RNN) to
learn the temporal dependencies. Various combinations of GNN and RNN models have
been used for spatiotemporal tasks such as pandemic forecasting [37], and more closely
related to this problem, highway traffic forecasting [38–40]. However, cars commuting
on highways tend to behave in a more routine manner (for instance, rush hours usually
lead to heavier car flow), whereas pedestrian crowds in the public urban space have more
stochastic and complex patterns, making the forecasting task even more difficult.
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Motivated by the challenges that lie within crowd flow forecasting and the lack of
deep learning-based spatiotemporal crowd flow forecasting methods, we propose a novel
deep learning model, GCN-GRU that uses a combination graph convolutional network
(GCN) [41] and gated recurrent unit (GRU) [42] to learn from CMGraphs and perform the
crowd forecasting task. The GCN operations can be thought of as learning an embedding from
spatial features resulting from the topology of the CMGraphs. The embedded graphs are used
as the input to the GRU cells, which learn temporal representations from the time series data.
We combine these two operations to process the spatiotemporal features resulting from complex
crowd data. The architecture of the model is schematically shown in Figure 6. In the following,
we describe the mathematical formulation of the problem and present the spatial and temporal
operations that forecast the crowd flows with the graph neural networks.
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Problem Definition

The crowd flow prediction problem can be defined as follows: Given the crowd flow
information during an observed discrete time horizon 1 to Tobs, the goal of crowd flow
forecasting is to predict the crowd flow information during a future time horizon Tobs+1 to
Tpred. The problem can therefore be written as the sequence generation task of learning a
function that maps historical crowd flow data in a sequence of CMGraphs G1, G2, . . . , GTobs
to another sequence GTobs+1 , GTobs+2 , . . . , GTpred . Leveraging the CMGraphs, the spatial and
temporal information of crowd flow are learned using GCN and GRU, respectively.

Spatial Representation Learning with GCN

For a set of N nodes in a CMGraph G(t) = (V(t), E), a GCN layer updates the nodal
information using a node’s neighboring nodal information for all nodes. More formally,
given a node vi, whose node embedding vector is xi (the ith row of the feature matrix X(t)),
and its set of neighboring nodes J, a GCN layer updates the node embedding as follows:

x(k)i =
1
| J | ∑j∈J

x(k−1)
j (4)
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where W(k) and x(k)i are a learnable parameter and the ith node’s updated embedding of

the kth layer, respectively. In the first layer (i.e., k = 1), x(0)i is the initial feature vector of
the node vi ∀ vi ∈ V(t).

Stacking K GCN layers allow us to update node embeddings using information aggre-
gated from nodes in the K-hop neighborhood. After K GCN layers, we have learned the
embedded graph, G′(t), whose node embedding matrix is X′(t), each row being the updated
embedding vectors x′i ∀i ∈ V(t). Each node embedding vector is of an embedding dimension
HGCN , a tunable hyperparameter. The dimension of X′(t) is therefore N × HGCN .

Temporal Representation Learning with GRU

While GCN uses spatial information and aggregates information on the relative lo-
cations of pedestrians at the same time instant, it does not deal with information in the
temporal dimension. On the other hand, GRU can be used to compute hidden state rep-
resentations of time series data. Mathematically, each GRU operation in a layer l can be
expressed as follows:

r(l)t = σ
(

Wara(l)t + bar + Whrh(l)t−1 + bhr

)
(5)

z(l)t = σ
(

W(l)
az a(l)t + baz + W(l)

hz h(l)t−1 + b(l)hz

)
(6)

n(l)
t = tanh

(
W(l)

an a(l)t + b(l)an + rt ∗
(

W(l)
hn h(l)t−1 + b(l)hn

))
(7)

h(l)t =
(

1− z(l)t

)
∗ n(l)

t + z(l)t ∗ h(l)t−1 (8)

where W(l)
ar , W(l)

hr , W(l)
az , W(l)

hz , W(l)
an , W(l)

hn , b(l)ar , b(l)hr , b(l)az , b(l)hz , b(l)an , b(l)hn are learnable param-

eters of the lth layer. a(l)t and h(l)t are the input and output hidden states of the lth layer

at time t, respectively. At l = 1, a(l)t is the output from the GCN part, X′(t). At l > 1,

a(l)t is the hidden state from the previous layer h(l−1)
t . Moreover, h(l)t−1 is the hidden state

of the lth layer at time t− 1, except initialized to 0 when t = 1. σ is the sigmoid function.
r(l)t , z(l)t , n(l)

t are the reset, update, and new gates of the lth layer, respectively. ∗ denotes
element-wise multiplication. The final output at time t = Tobs after L GRU layers are then
h(L)

Tobs
, a vector with a length HGRU , a tunable hyperparameter. To compute a sequence of

predictions from Tobs+1, . . . ,Tpred, the output is passed through a fully connected (FC) layer
to obtain a vector of the desired sequence length.

4. Experiments and Results

This section discusses the experiments conducted to evaluate the performance of the
modules, namely (1) Trajectory Generation, (2) Congestion Prediction, and (3) Congestion
Visualization, implemented in the crowd monitoring framework. In this section, we
describe the datasets used in this study the evaluation metrics employed to measure the
performance of the modules, the implementation details, and the results of the experiments.

4.1. Quantitative Performance Evaluation of the Framework

To quantify the performance of the modular framework, the three components, namely
the trajectory generation, congestion prediction, and congestion visualization were ex-
perimented on with the New York Grand Central Station (GCS) dataset, collected by
Zhou et al. [9]. Point-wise individual trajectories were manually annotated by Yi et al. [43].
A detailed description of the dataset can be found in the cited references. The dataset
consists of 17,682 trajectories, with 6000 video frames annotated at 1.25 FPS.
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4.1.1. Trajectory Generation
Evaluation Metrics

To assess the performance of the detectors and trackers, we employ the CLEAR multi-
ple object tracking (MOT) metrics, a commonly used collection of metrics for evaluating
tracking algorithms [44]. Among the list of CLEAR metrics, we report several key metrics
that can be measured for a dataset with only point-wise trajectory annotation (rather than
bounding box annotations). Specifically, multiple object detection accuracy (MODA) is used as
the primary metric to evaluate the detector, and multiple object tracking accuracy (MOTA) as
the primary metric to evaluate the tracker. Additionally, to provide more detailed information
about where errors occur (whether errors are due to missed tracks or inaccurate tracks), recall
and precision on the detections are also reported following common MOT challenge practices
in crowded scenes [33]. The four metrics are computed as follows:

MODA = 1− ∑t(FNt + FPt)

∑t GTt
(9)

MOTA = 1− ∑t(FNt + FPt + IDSWt)

∑t GTt
(10)

Recall =
TPt

TPt + FNt
(11)

Precision =
TPt

TPt + FPt
(12)

where FNt, FPt, TPt, GTt and IDSWt are the number of false negatives, false positives, true
positives, ground truths, and of identity mismatches at time t, respectively.

Implementation Details

The YOLOv7 network and the Faster-RCNN network are compared as the pedestrian
detector module, followed by the SORT algorithm as the tracker module. For faster infer-
ence speed, we employ the YOLOv7-tiny configuration, which slightly affects performance
but can conduct inference in real time due to smaller parameter sizes. Both detectors are
pre-trained using the ImageNet dataset [45].

The experiments were conducted on a computer equipped with an Intel Core i7-7820X
processor and an NVIDIA GeForce GTX 1080 Ti graphics processing unit (GPU). The code
repository is publicly available at [46].

Experimental Results

The results are detailed in Table 1. The YOLOv7-tiny network outperforms the Faster-
RCNN in MOTA, as seen in Table 1. The recall and precision are also increased. Nonetheless,
both YOLO and Faster-RCNN detectors have a high precision and a low recall, indicating
a high number of false negatives (missed targets), FN. A high FN indicates the presence
of a large number of untracked pedestrians. This is possibly owing to the fact that the
GCS video has a low frame rate, and as a result, pedestrians move at a very quick speed,
frequently without overlap between successive bounding boxes.

Table 1. CLEAR MOT metrics of YOLOv7-tiny and Faster-RCNN detectors with the SORT tracker.

Detector Tracker MOTA MODA Recall Precision

YOLOv7-tiny SORT 62.8 70.8 72.2 98.2
Faster R-CNN SORT 58.8 66.5 71.0 94.0

The DeepSORT algorithm with the Re-ID model is employed as the pedestrian tracker
to improve the outcomes. As shown in Table 2, we notice a significant improvement
in MOTA, MODA, and recall when the detector is either YOLOv7-tiny or Faster-RCNN,
albeit at the cost of a slight reduction in precision. This is perhaps due to the fact that
incorporating the Re-ID model allows bounding boxes to be associated with the same
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person even when there is no overlap, as the pedestrian would have similar visual features
between frames. The Re-ID model, extracting deep appearance features, allows tracks to
be more accurately associated by considering the cosine distance between detection and
predicted bounding boxes during the matching cascade process. This could potentially
be beneficial for scenarios such as the GCS, where occlusions and low frame rate both
could be challenging for solely IoU-based matching. In summary, employing YOLOv7-tiny
and DeepSORT as the detector and tracker, respectively, produces the greatest quality
trajectories among all tested combinations empirically on the GCS dataset. Additionally,
this experimental study demonstrates the modularity of the framework that allows rapid
testing and evaluation of the two models.

Table 2. CLEAR MOT metrics of YOLOv7-tiny and Faster-RCNN detectors with the DeepSORT tracker.

Detector Tracker MOTA MODA Recall Precision

YOLOv7-tiny DeepSORT 73.7 81.2 86.2 94.6
Faster R-CNN DeepSORT 64.2 71.3 82.2 88.2

4.1.2. Congestion Prediction
Evaluation Metrics

To measure the accuracy of congestion prediction, the mean squared error (MSE)
between the node feature matrix of the predicted graph sequence and of the true sequence
is used as an evaluation metric of prediction accuracy. The MSE loss measures the difference
between the predicted node feature matrices X̂(Tobs + 1), . . . , X̂

(
Tpred

)
and the true node

feature matrices X(Tobs + 1), . . . , X
(

Tpred

)
. Denoting each element of a matrix X(t) as xit

and X̂(t) as x̂it, the MSE is computed as

MSE =
1

NT

N

∑
i=1

Tpred

∑
t=1

(xit − x̂it)
2 (13)

MSE, with the squared error, places more penalization on larger errors, and could
therefore be more susceptible to outliers. As a result, another metric reported to evaluate
model performance is the mean absolute error (MAE), which measures the average of
magnitude difference between the prediction and the true node feature matrices:

MAE =
1

NT

N

∑
i=1

Tpred

∑
t=1
|xit − x̂it| (14)

Implementation Details

Unlike the trajectory generation experiments in the preceding section, the experi-
mented models are trained from scratch (rather than pre-trained on a different dataset).
The GCN-GRU model uses a 3-layer GCN to learn the spatial representations, and a 2-layer
GRU to learn the temporal representations. The node features chosen are the aggregated
crowd count and timestamp for each egress region, rendering a node feature length of D = 2.
The embedding dimension of the GCN encoder is HGCN = 128. The embedding dimension of
the GRU is HGRU = 64. We use Tobs = 20 and Tpred = 20 in the study and split the CMGraph
sequences from the GCS dataset into train and test sets following a 70/30 ratio. The graph data
is batched into mini-batches of size 32 for training. The Adam optimizer with a learning rate of
0.001 is used to train the GCN-GRU model as well as each baseline model for at most 40 epochs.
The loss function used is MSE loss, as detailed in Equation (13).

The training and inference were conducted on the same computer, equipped with
an Intel Core i7-7820X processor and an NVIDIA GeForce GTX 1080 Ti GPU. The code
repository is publicly available at [46].
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Experimental Results

We compare our experimental results with two baseline models: T-GCN [40] and A3T-
GCN [38], which are GCN-based models previously only applied to highway vehicle flow
prediction. These two baseline models are selected based on two criteria: (1) The models are
among state-of-the-art graph-based traffic forecasting models. In particular, A3T-GCN is
the best-performing model with the task of road taxi traffic speed [47], and (2) The models
are open-sourced and therefore can be tested on the dataset of this experiment.

The results are tabulated in Table 3. It can be observed from the table that the GCN-
GRU model presented in this paper outperforms the baseline models in both MSE and
MAE scores, indicating that the GCN-GRU model can well learn the crowd dynamics and
forecast crowd flows.

Table 3. MSE and MAE of crowd volume prediction models.

Predictor MSE MAE

Baseline 1 (T-GCN) 0.329 0.417
Baseline 2 (A3T-GCN) 0.320 0.403

GCN-GRU 0.258 0.354

Additionally, a sequence of predicted crowd flow is plotted in Figure 7, where it is
shown that the baseline models tend to over-smoothen predictions, which may be the
underlying reason why GCN-GRU outperforms in forecasting accuracy. In a place such as
a train station, where there are often services such as direction guides and ticket counters
needed, being able to predict crowd flows in advance will give facility operators additional
time to plan for the dispatching of additional service support and potentially help reduce
future congestion.
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4.1.3. Congestion Visualization

To visualize the density of pedestrian foot traffic over time, the Grand Central Station
crowd flow is shown as density heatmaps in 15-min (1125 frames at 1.25 FPS) intervals in
Figure 8. Observing Figure 8, we identify a number of significant qualitative observations
on the locations where crowds tend to gather based on density heatmaps. In the first 45 min
of the video, there appear to be fewer people in the train station, however, in the second
half, a greater number of pedestrians can be seen. Regardless of the number of passengers
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in the station, the heatmaps depict a large crowd forming around the ticket booth at almost
all times. This indicates the necessity for faster ticket services. In addition, as the crowds
become heavier, we observe more people congregating around the information center,
possibly seeking assistance or direction guides. Overall, we observe that the train station
requires additional services, especially as the number of passengers increases.
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4.2. Qualitative Performance Evaluation of the Framework

As an illustration of the potential application of the suggested framework, we employ
a video recorded during a football game at one of the Stanford Stadium exits. The stadium
is well-known as the venue for numerous significant public events on the Stanford campus,
including a variety of sporting events and annual commencement ceremonies. These public
activities are certain to attract a large number of pedestrians. Therefore, we run the recorded
video through our framework to extract pedestrian paths and data visualization, in order
to provide potential recommendations for facility managers on how to better accommodate
the congested traffic.

The video is recorded for 30 s at 29 FPS at a high-traffic intersection within the stadium.
A top-down view of the recorded location is provided in Figure 9, with arrows indicating
possible pedestrian flow in and out of the video frame. The location recorded is a T-shaped
intersection with two bathrooms, located next to the exit. To generate human trajectories,
we use the YOLOv7 detector and DeepSORT tracker, with the same hyperparameters as
the Grand Central Station experiment.
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Figure 9. Top-view floor plan of the recorded location at the Stanford Stadium. Pedestrians are
crowded at the entry/exit tunnel as they attempt to leave the stadium.

Figure 10 illustrates, using the real-time visualization tool, heatmaps depicting the
locations of occupants in 5-s (145-frame) periods. We observe multiple areas at various
times where pedestrian congestion occurs. Initially, we witness numerous passengers
attempting to depart the entry/exit tunnel, resulting in congestion that took around 15 s to
dissipate. This shows that residents tend to desire to evacuate the building simultaneously
(for example, at the conclusion of public events). At these critical times, measures should
be implemented to guide a large number of people out of the building more efficiently.
Additionally, the entry to the women’s restroom is crowded, with a line forming outside
the bathroom door. In the planning of public areas, it is crucial to ensure that there
are sufficient restrooms to prevent congestion and discomfort among the population.
Particularly, the need for additional women’s restroom facilities has long been observed:
a study by Gwynne et al. [48] observed bathroom dwell times at the airport and show that
female facilities have much longer dwell times than male facilities. Lastly, throughout the
duration of the video, loitering behavior was observed near the corner of the entry/exit
tunnel, where numerous individuals waited. This result indicates that planning for loitering
near event exits, particularly at narrow tunnel exits, should be considered by event planners.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 22 
 

trajectories, we use the YOLOv7 detector and DeepSORT tracker, with the same hyperpa-
rameters as the Grand Central Station experiment. 

 
Figure 9. Top-view floor plan of the recorded location at the Stanford Stadium. Pedestrians are 
crowded at the entry/exit tunnel as they attempt to leave the stadium. 

Figure 10 illustrates, using the real-time visualization tool, heatmaps depicting the 
locations of occupants in 5-s (145-frame) periods. We observe multiple areas at various 
times where pedestrian congestion occurs. Initially, we witness numerous passengers at-
tempting to depart the entry/exit tunnel, resulting in congestion that took around 15 s to 
dissipate. This shows that residents tend to desire to evacuate the building simultaneously 
(for example, at the conclusion of public events). At these critical times, measures should 
be implemented to guide a large number of people out of the building more efficiently. 
Additionally, the entry to the women’s restroom is crowded, with a line forming outside 
the bathroom door. In the planning of public areas, it is crucial to ensure that there are 
sufficient restrooms to prevent congestion and discomfort among the population. Partic-
ularly, the need for additional women’s restroom facilities has long been observed: a study 
by Gwynne et al. [48] observed bathroom dwell times at the airport and show that female 
facilities have much longer dwell times than male facilities. Lastly, throughout the dura-
tion of the video, loitering behavior was observed near the corner of the entry/exit tunnel, 
where numerous individuals waited. This result indicates that planning for loitering near 
event exits, particularly at narrow tunnel exits, should be considered by event planners. 

 
Figure 10. Heatmap visualization of crowd flow density over time in 5-s (145–frame at 29 FPS) in-
tervals. The density map colors range from blue to red with red being the highest density. 

In light of the aforementioned observations at the train station and the stadium, we 
have shown that the visualization and forecasting tools as discussed herein can be useful 

Figure 10. Heatmap visualization of crowd flow density over time in 5-s (145–frame at 29 FPS)
intervals. The density map colors range from blue to red with red being the highest density.

In light of the aforementioned observations at the train station and the stadium, we
have shown that the visualization and forecasting tools as discussed herein can be useful
for planners and crowd managers to closely monitor congestion, as well as to analyze and
improve the planning of spaces, facilities, and the distribution of occupant services. Congestion
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prediction, as shown in Figure 7, is beneficial for advanced alerts of future densely crowded
egress regions. Furthermore, the density heatmaps, as shown in Figures 8 and 10, are real-time
congestion visualization tools that can help gain a birds-eye view of the spatial distribution
of crowds, with red colors highlighting where congestions occur.

5. Conclusions

The overarching objective of this study is to develop a modular software framework
that fuses spatial and temporal data for crowd congestion monitoring. The proposed frame-
work leverages the strengths of deep learning and computer vision models for trajectory
generation, and spatial connectivity of the occupied space for more effective crowd flow
analysis and forecasting. To obtain a spatiotemporal mapping of each occupant in a public
space, we compare empirically the use of popular CNN networks, YOLOv7 and Faster
R-CNN, to automate the detection of people in CCTV videos, and then employ Kalman
filter-based tracking algorithms to track people across sequences of video frames. Subse-
quently, using the floor plan information and homography transformation, a spatiotemporal
mapping of each pedestrian is created. To capture the fused spatiotemporal information,
the CMGraph is designed so that nodal data stores collective crowd flow information and
graph topology represents the spatial connectedness of key egress regions. We also design
a GCN-GRU model that demonstrates how CMGraphs may be utilized for spatiotemporal
forecasting. To evaluate the framework, quantitative experiments are conducted on an
annotated public dataset at the Grand Central Station, which has been widely used by
researchers studying crowd scenes [9,43]. To further illustrate the practical application
of the framework, qualitative congestion analysis is conducted on supplementary video
captured at Stanford Stadium. The quantitative experimental results serve as demonstra-
tive analysis for the plausibility of deploying the pedestrian detector, tracker, and crowd
flow predictor models, whose performances are assessed with a set of standard evaluation
metrics. Furthermore, qualitative visualizations such as bounding boxes, crowd count,
and density heatmaps can serve as useful visual tools for crowd monitoring. Together, we
demonstrate that the modular framework incorporated with machine learning models can
be utilized to gather crowd mobility information by observing the spatiotemporal mapping
of crowds at a public location, thereby facilitating assistance with the management of
congestion hazards for stakeholders such as urban planners and infrastructure operators.

Future research could benefit from additional experiments of videos in different
congested scenes. It should be noted that annotation of crowded scenes is a difficult and
expensive task due to the need for intensive manual labor. Nevertheless, additional datasets
can help further validate the framework’s generalizability and robustness under diverse
scenarios. Another line of future work could concentrate on developing methodologies
for multi-camera pedestrian tracking to discover pedestrian mobility patterns between
egresses that are too distant apart for a single camera to capture. Experiments could be
conducted using multi-view pedestrian Re-ID models [49–51]. In order to track occupants
in a large space with multiple egresses and cameras, these Re-ID models could potentially
be integrated with tracking algorithms such as DeepSORT. Last but not least, to demon-
strate our framework in large public spaces, especially during crowded events, additional
surveillance video experiments should be conducted on larger testbeds.
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