
Citation: Luo, C.; Wang, Y.; Li, B.;

Liu, H.; Wang, P.; Zhang, L.Y. An

Efficient Approach to Manage

Natural Noises in Recommender

Systems. Algorithms 2023, 16, 228.

https://doi.org/10.3390/a16050228

Academic Editor: Frank Werner

Received: 15 February 2023

Revised: 7 April 2023

Accepted: 25 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An Efficient Approach to Manage Natural Noises in
Recommender Systems
Chenhong Luo 1, Yong Wang 1,2,* , Bo Li 1, Hanyang Liu 1, Pengyu Wang 2 and Leo Yu Zhang 3,*

1 College of Computer Science and Technology, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China

2 Key Laboratory of Data Science and Complex System Management, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

3 School of Information and Communication Technology, Griffith University, Southport, QLD 4215, Australia
* Correspondence: wangyong1@cqupt.edu.cn (Y.W.); leo.zhang@griffith.edu.au (L.Y.Z.)

Abstract: Recommender systems search the underlying preferences of users according to their
historical ratings and recommend a list of items that may be of interest to them. Rating information
plays an important role in revealing the true tastes of users. However, previous research indicates
that natural noises may exist in the historical ratings and mislead the recommendation results. To
deal with natural noises, different methods have been proposed, such as directly removing noises,
correcting noise by re-predicting, or using additional information. However, these methods introduce
some new problems, such as data sparsity and introducing new sources of noise. To address the
problems, we present a new approach to managing natural noises in recommendation systems.
Firstly, we provide the detection criteria for natural noises based on the classifications of users and
items. After the noises are detected, we correct them with threshold values weighted by probabilities.
Experimental results show that the proposed method can effectively correct natural noise and greatly
improve the quality of recommendations.

Keywords: recommender system; natural noise; collaborative filtering; data sparsity

1. Introduction

The rapid and deep development of the internet has led to an information overload [1],
and it is therefore difficult to obtain valuable information efficiently from vast amounts of
data. Recommender systems [2–4] alleviate the problem and have achieved widespread suc-
cess in numerous platforms such as Yahoo Music [5], Amazon e-commerce [6], Netflix [7],
and YouTube [8]. Collaborative filtering [9–11], as one of the most popular recommenda-
tion techniques, plays a critical role in producing recommendations of high quality. The
basic idea of collaborative filtering is to find the neighbors of the target user according to
historical ratings and generate predictions by averaging the neighbors’ opinions. Therefore,
ensuring the accuracy of historic ratings is very important for generating high-quality
recommendations. However, some researchers have found that rating information does
not always accurately reflect users’ preferences, as users are often affected by other factors
when rating an item [12–14]. This means that noises sometimes exist in the ratings, which
may mislead the decision of the recommendation algorithm and lower the performance of
the recommender system. Generally, the noises in ratings are categorized into malicious
noises [15–18] and natural noises [12,14,19–21]. Malicious noises are user ratings which are
deliberately provided by some agents to mislead the recommendation algorithm and distort
the recommendation results. For instance, some filmmakers may hire people to give high
ratings for their films and low ratings for other films to maximize their business benefits.
To address the problems caused by malicious noise, researchers present some techniques
to resist attacks of malicious noise [16–18]. Chung et al. proposed Beta-Protection [16] to
alleviate the effect of malicious noises. Xia et al. devised the segmentation approach based

Algorithms 2023, 16, 228. https://doi.org/10.3390/a16050228 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16050228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-5247-043X
https://orcid.org/0000-0001-9330-2662
https://doi.org/10.3390/a16050228
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16050228?type=check_update&version=2

Algorithms 2023, 16, 228 2 of 16

on a dynamic time interval [18], which can detect attacks regardless of the specific attack
types. Cai and Zhu proposed the Value-Based Neighbor Selection (VNS) approach to detect
shilling attacks [17].

Different from malicious noises, natural noises are often ignored in the recommender
system. There are two main factors that produce natural noises: one is that preferences of
users change over time; the other is that many external factors, such as personal background,
social circle, mood, and environment [13], could greatly affect the evaluation of users on an
item at some moments. Previous studies have revealed that the natural noises probably
distort the results of recommender systems and reduce the accuracy of prediction [14]. To
address the problems caused by natural noises, O’Mahony et al. [12] proposed a scheme to
detect the ratings caused by natural noise and directly remove them from recommender
systems. However, deleting ratings with natural noises makes the available data more
sparse, while sparse rating data are not beneficial to generate high-quality recommendation
results. Amatriain et al. [22] corrected the natural noises by asking users to rate items
again. Pham and Jung [13] helped users to correct their own ratings by introducing an
interactive recommender system. Although these two methods both improve the accuracy
of recommendation, they need to collect user rating data multiple times, which increases
the workload of data collection. By only utilizing rating information, some studies correct
natural noises by re-predicting ratings with collaborative filtering [14,19,23–25]. Although
this kind of method does not introduce additional information into the process of correcting
natural noise, they need to execute the calculation of prediction twice, which is time-
consuming. To avoid this problem, Bag et al. proposed a method that corrects natural
noises with a threshold value [20].

To overcome the above problems, we present a new approach to managing natural
noises in recommender systems. The proposed scheme detects natural noises according
to the inconsistency between the rating behaviors and characteristics. Different from pre-
vious studies, we divide users into three subcategories: Negative, Average, and Positive.
Meanwhile, items are divided into No-Preferred, Av-Preferred, and Preferred. Then, we
consider the probability that each user belongs to each subcategory and correct the natural
noise with threshold values weighted by probabilities. Experimental results on different
datasets indicate that our scheme can effectively and efficiently manage natural noises in
recommender systems. The contributions of this paper are described as follows:

• The rules for detecting natural noises are proposed based on the subcategories of users
and items. The proposed scheme detects natural noises only depending on historical
ratings in the recommendation and does not introduce additional information into the
recommender system.

• In the proposed natural noise management scheme, we do not eliminate it directly but
correct the natural noise with threshold values weighted by probabilities. Compared
with re-predicting methods, our scheme has a much higher efficiency.

• Experimental results on different datasets indicate that our proposed scheme per-
forms better than previous typical methods. It has high potential to be used as
a scheme for managing natural noises and provides a great decision support for
recommender systems.

The remaining parts of this paper are organized as follows. Section 2 introduces the
related works. Section 3 describes the proposed method of detecting and correcting natural
noises in the ratings. Section 4 analyzes the performance of the proposed scheme on three
datasets. The conclusion is drawn in Section 5.

2. Related Work

In any recommender system, the main types of malicious noises are product push
and product nuke attacks [12]. These attacks are generally associated with user profiles.
Many methods have been proposed to detect these attacks [16–18]. The basic idea of
these methods is to examine each user’s rating behavior to judge whether a particular
user profile is a security threat to the recommender system. However, with regards to

Algorithms 2023, 16, 228 3 of 16

natural noises, it is difficult to detect them due to their unintentionality, diversity, and
quantification [26]. Compared with the case of malicious noises, studies on detecting natural
noises are less explored.

To detect natural noises, O’Mahony et al. [12] employed the mean absolute error to
measure the consistency between the actual ratings and the predicted ratings. If the error is
larger than a threshold value, the ratings will be regarded as natural noises. Li et al. [26]
devised another method to detect noisy ratings. Their method is based on the assumption
that the ratings from a given user on similar items should have similar values. Based on this
assumption, the self-contradiction capturing method is proposed. When the natural noises
are found, the noisy rating is removed directly. In this way, the data sparsity problem is
made more serious, and the performance of recommender systems may be affected.

To avoid the data sparsity problem, some researchers aim to correct the natural noises
rather than remove them directly. Amatriain et al. [22] modified noisy ratings by re-rating
(i.e., requiring users to rate the items again). Pham and Jung [13] corrected the natural
noises by introducing an interactive recommender system. They focus on the phenomenon
that users may commit some mistakes when rating items. Once the user make a mistake,
the interactive recommender system will remind them to correct the ratings. However, the
cost of requiring users to rate items again or creating an interactive recommender system is
very high. Moreover, the methods in [13,22] may introduce additional information into the
recommender system. These additional information themselves contain uncertainty and
do not correct natural noises completely.

Different from the previous work, Toledo et al. [14] modified natural noises by predict-
ing a new value using collaborative filtering. If the difference between the noisy rating and
its new rating is larger than a threshold value, the noisy rating will be replaced by the new
rating. So, this scheme improves the recommendation quality. Yera et al. [23] incorporated
a fuzzy model with re-predicting to correct natural noises. Castro et al. applied the re-
predicting technique to group recommender systems [19,25]. Choudhary et al. introduced
the re-predicting method into multi-criteria recommender systems [24]. Although these re-
predicting methods achieve some success in managing noise, they are still time-consuming.
To achieve high efficiency, Bag et al. [20] adopted a threshold value to correct natural noises,
which is a promising method for managing natural noises. Table 1 summarizes the main
methods for dealing with natural noises.

Table 1. Existing works about managing natural noises.

Manage Natural
Noises Author Problem Main Work

Remove noises
O’Mahony et al. (2006) [12] Data sparsity Detect noises and remove them
Li et al. (2013) [26] Data sparsity Detect noises and remove them

Correct noises

Amatriain et al. (2009) [22] Depending on additional information Re-rating
Pham and Jung (2013) [13] Depending on additional information Interactive recommender systems
Toledo et al. (2014) [14] Time-consuming Re-predicting
Yera et al. (2016) [23] Time-consuming Re-predicting
Castro et al. (2017) [19] Time-consuming Re-predicting
Choudhary et al. (2017) [24] Time-consuming Re-predicting
Castro et al. (2018) [25] Time-consuming Re-predicting
Bag et al. (2019) [20] - Threshold value

To overcome the drawbacks of the existing methods, we present an alternative approach
to managing natural noises in recommender systems. Different from the existing methods,
we group users into three subcategories: Negative, Average, and Positive. Similarly, items
are divided into No-Preferred, Av-Preferred, and Preferred. Then, we consider the proba-
bility that a user belongs to each subcategory and correct the natural noise with threshold

Algorithms 2023, 16, 228 4 of 16

values weighted by probabilities. Experimental results on some real datasets indicate that
our proposed scheme presents a significant improvement on managing natural noises.

3. The Proposed Approach of Managing Natural Noises

In recommender systems, the prediction results usually depend on the historical rat-
ings provided by users. It is generally assumed that the ratings can accurately reveal users’
opinions on items. However, in fact, the ratings are often influenced by some accidental
factors, such as the mood, environment, and evaluations provided by friends. This means
that the ratings affected by accidental factors cannot represent the real intention of users
and probably have some negative effects on recommendations. These ratings are regarded
as natural noise. To deal with natural noises, we first need to detect whether they exist in a
rating and then correct them.

3.1. Detection of Natural Noise

In our scheme, the basic idea is to search for inconsistencies between users’ charac-
teristics and their rating behaviors. In this regard, we divide ratings into three classes
(i.e., representing users’ rating behaviors) and also classify users and items into different
subcategories (i.e., representing users’ characteristics). Based on these classifications, we
present the details of inconsistency detection in the following.

3.1.1. The Classification of Ratings

In order to detect natural noise, we first divide the ratings into three classes, i.e., low
ratings, medium ratings, and high ratings. To precisely describe these three types of ratings,
two thresholds k and v are defined as

k = min R + round
(

1
3
× (max R−min R)

)
, (1)

v = max R− round
(

1
3
× (max R−min R)

)
, (2)

where max R and min R are the maximum and the minimum value for all possible ratings,
respectively, and the function round(x) returns the nearest integer value to x. The threshold k is
used to differentiate low ratings and middle ratings, and the threshold v is used to differentiate
middle ratings and high ratings. That said, the ratings smaller than k are defined as low ratings,
the ratings larger than v are defined as high ratings, and the ratings between k and v are
defined as medium ratings.

3.1.2. The Subcategories of Users and Items

For a given user u, the percentages of low, medium, and high ratings among all historical
ratings can be calculated as follows:

xu =
|URlow|
|UR| , yu =

|URmiddle|
|UR| , zu =

∣∣URhigh
∣∣

|UR| , (3)

where UR denotes the set of all ratings provided by user u, and URlow, URmiddle, and
URhigh are the subsets of UR, which consist of low ratings, medium ratings, and high
ratings as given by Equations (1) and (2). The function |·| returns the number of elements
in a set. Based on this, we use the triple ωu = (xu, yu, zu) to describe the trend of how user
u rates items.

Similarly, the triple ωi = (xi, yi, zi) is used to describe the tendency of how item i
obtains ratings from users. Here, xi, yi, and zi are the corresponding percentages of low
ratings, medium ratings, and high ratings of all the ratings of item i, which are calculated as

xi =
|IRlow|
|IR| , yi =

|IRmiddle|
|IR| , zi =

∣∣IRhigh
∣∣

|IR| , (4)

Algorithms 2023, 16, 228 5 of 16

where IR denotes the set of all ratings on item i, and IRlow, IRmiddle, and IRhigh are the
subsets of IR that consist of low ratings, medium ratings, and high ratings, respectively.

According to Equation (3), we define three kinds of special virtual users, i.e., Negative-
Extreme user, Average-Extreme user, and Positive-Extreme user. A Negative-Extreme user
is a virtual user who only gives low ratings for all items, i.e., xu = 1, yu = 0, zu = 0.
Similarly, an Average-Extreme user is a user whose xu = 0, yu = 1, zu = 0, and a Positive-
Extreme user is a user whose xu = 0, yu = 0, zu = 1. For items, according to Equation (4),
we define three kinds of special virtual items, i.e., No-Preferred-Extreme item (xi = 1,
yi = 0, zi = 0), Av-Preferred-Extreme item (xi = 0, yi = 1, zi = 0), and Preferred-Extreme
item (xi = 0, yi = 0, zi = 1). Table 2 lists these special virtual users and items.

Table 2. The special virtual users and items, which both include three different types.

Special virtual users
Negative-Extreme xu = 1, yu = 0, zu = 0 Only provides low ratings for items
Average-Extreme xu = 0, yu = 1, zu = 0 Only provides medium ratings for items
Positive-Extreme xu = 0, yu = 0, zu = 1 Only provides high ratings for items

Special virtual items
No-Preferred-Extreme xi = 1, yi = 0, zi = 0 Only get low ratings from users
Av-Preferred-Extreme xi = 0, yi = 1, zi = 0 Only get medium ratings from users
Preferred-Extreme xi = 0, yi = 0, zi = 1 Only get high ratings from users

Here, the virtual users and items in Table 2 are used as criteria for classifying users
and items into subcategories. For a given user u, we determine which subcategory user
u should belong to by calculating the distances from u to the Negative-Extreme user, the
Average-Extreme user, and the Positive-Extreme user. The distance between two triples
ω1 = (x1, y1, z1) and ω2 = (x2, y2, z2) is defined by

d(ω1, ω2) =

√
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2. (5)

With Equation (5), we can compute the distances between user u and the three kinds
of users. For a given item i, the distances between i and the three kinds of items can also
be calculated with Equation (5). Figure 1a illustrates the distances from user u to the three
kinds of users given in Table 2. According to the three distances in Figure 1a, we divide
users into three subcategories: Negative, Average, and Positive. The rules of classifying
users are as follows:

• If d(ωu, ωNegative−Extreme) is the minimum value among d(ωu, ωNegative−Extreme),
d(ωu, ωAverage−Extreme) and d(ωu, ωPositive−Extreme), the user u is regarded as a
Negative user;

• If d(ωu, ωAverage−Extreme) is the minimum value among d(ωu, ωNegative−Extreme),
d(ωu, ωAverage−Extreme) and d(ωu, ωPositive−Extreme), the user u is regarded as an Av-
erage user;

• If d(ωu, ωPositive−Extreme) is the minimum value among d(ωu, ωNegative−Extreme),
d(ωu, ωAverage−Extreme) and d(ωu, ωPositive−Extreme), the user u is regarded as a Pos-
itive user.

Here, Negative users are fastidious and tend to rate items with low ratings. Positive
users are the opposite of negative users. They are generous and tend to provide items with
high ratings. Average users like to offer medium ratings to items.

Similarly, Figure 1b illustrates the three distances from item i to the three kinds of items
given in Table 2. We classify items into three subcategories: No-Preferred, Av-Preferred,
and Preferred. The rules of classifying items are as follows:

• If d(ωi, ωNo−Pre f erred−Extreme) is the minimum value among d(ωi, ωNo−Pre f erred−Extreme),
d(ωi, ωAv−Pre f erred−Extreme) and d(ωi, ωPre f erred−Extreme), the item i is regarded as a No-
Preferred item;

• If d(ωi, ωAv−Pre f erred−Extreme) is the minimum value among d(ωi, ωNo−Pre f erred−Extreme),
d(ωi, ωAv−Pre f erred−Extreme) and d(ωi, ωPre f erred−Extreme), the item i is regarded as a Av-
Preferred item;

Algorithms 2023, 16, 228 6 of 16

• If d(ωi, ωPre f erred−Extreme) is the minimum value among d(ωi, ωNo−Pre f erred−Extreme),
d(ωi, ωAv−Pre f erred−Extreme) and d(ωi, ωPre f erred−Extreme), the item i is regarded as a
Preferred item.

Here, No-Preferred items are more likely to get low ratings from users. On the contrary,
most users will offer high ratings to Preferred items. In the case of Av-Preferred items, they
tend to get medium ratings.

(a) (b)

Figure 1. The distances between users (or item) and user (or item) categories. (a) User and its possible
categories; (b) Item and its possible categories.

Based on above rules, the subcategories of users and items are summarized in Table 3.

Table 3. The classification of users and items, where users (items) are classified as three subcategories
according to the rules of the classifying user (item).

Subcategory Remark

Users categories
Negative Tend to provide high ratings for items
Average Tend to provide medium ratings for items
Positive Tend to provide low ratings for items

Items categories
No-Preferred Tend to get high ratings from users
Av-Preferred Tend to get medium ratings from users
Preferred Tend to get low ratings from users

Remark 1. If there are two or more than two minimum values, this user (or this item) is neglected,
and we do not classify it as any subcategory.

3.1.3. The Rules of Detecting Natural Noise

After classifying users and items, we can make the following judgment. The ratings of
Negative users on No-Preferred items should be low. If Negative users provide medium or
high ratings on No-Preferred items, the ratings will be regarded as natural noises. Similarly,
if the ratings of Average users on Av-Preferred items are low ratings or high ratings, the
ratings are also natural noises. The ratings of Positive users on Preferred items will be
considered natural noises if they are low or medium ratings. Table 4 summarizes the rules
for detecting natural noises.

Table 4. The rules of detecting natural noises, where rating rui is determined whether it is noise based
on the subcategories associated with the user u and the item i.

Low Ratings Medium Rating High Ratings

(Negative users, No-Preferred items) - Natural noise Natural noise
(Average users, Av-Preferred items) Natural noise - Natural noise
(Positive users, Preferred items) Natural noise Natural noise -

Algorithms 2023, 16, 228 7 of 16

3.2. Correction of the Natural Noise

After detecting the natural noise in ratings, we design a method to correct it according
to the characteristics of the user. As we know, positive users are most likely to provide high
ratings to Preferred items, but there still exists the possibility that they provide items with
low or medium ratings. Thus, we correct the natural noise with threshold values weighted
by probabilities. The details of our scheme are as follows.

Firstly, we calculate the probabilities that user u belongs to the three subcategories of
users, i.e., p(u ∈ Negative), p(u ∈ Average), and p(u ∈ Positive). Since the probabilities are
correlated to the distance given by Equation (5), they are defined as

p(u ∈ Negative) =
ϕ(u, Negative)

ϕ(u, Negative) + ϕ(u, Average) + ϕ(u, Positive)
, (6)

p(u ∈ Average) =
ϕ(u, Average)

ϕ(u, Negative) + ϕ(u, Average) + ϕ(u, Positive)
, (7)

p(u ∈ Positive) =
ϕ(u, Positive)

ϕ(u, Negative) + ϕ(u, Average) + ϕ(u, Positive)
, (8)

where ϕ(u, Negative) = 1
d(ωu ,ωNegative-Extreme)

, ϕ(u, Average) = 1
d(ωu ,ωAverage-Extreme)

and

ϕ(u, Positive) = 1
d(ωu ,ωPositive-Extreme)

.
Secondly, we calculate the probabilities that item i belongs to the three subcategories of

items. The corresponding probabilities are denoted as p(i ∈ No-Preferred), p(i ∈ Av-Preferred),
and p(i ∈ Preferred), which are obtained by

p(i ∈ No-Preferred) =
ϕ(i, No-Preferred)

ϕ(i, No-Preferred) + ϕ(i, Av-Preferred) + ϕ(i, Preferred)
, (9)

p(i ∈ Av-Preferred) =
ϕ(i, Av-Preferred)

ϕ(i, No-Preferred) + ϕ(i, Av-Preferred) + ϕ(i, Preferred)
, (10)

p(i ∈ Preferred) =
ϕ(i, Preferred)

ϕ(i, No-Preferred) + ϕ(i, Av-Preferred) + ϕ(i, Preferred)
. (11)

where ϕ(i, No-Preferred) = 1
d(ωi ,ωNo-Preferred-Extreme)

, ϕ(i, Av-Preferred) = 1
d(ωi ,ωAv-Preferred-Extreme)

and ϕ(i, Preferred) = 1
d(ωi ,ωPreferred-Extreme)

.

Thirdly, based on the probabilities of users and items, we calculate the probabilities
that user u gives low ratings, medium ratings, and high ratings to item i as

p(rui ≤ k) =
π(rui ≤ k)

π(rui ≤ k) + π(k < rui < v) + π(rui ≥ v)
, (12)

p(k < rui < v) =
π(k < rui < v)

π(rui ≤ k) + π(k < rui < v) + π(rui ≥ v)
, (13)

p(rui ≥ v) =
π(rui ≥ v)

π(rui ≤ k) + π(k < rui < v) + π(rui ≥ v)
. (14)

where rui is the value rated by user u on item i, π(rui ≤ k) = p(u ∈ Negative)× p(i ∈
No-Preferred), π(k < rui < v) = p(u ∈ Average)× p(i ∈ Av-Preferred) and π(rui ≥ v) =
p(u ∈ positive)× p(i ∈ Preferred).

Finally, the proposed rules to correct the natural noise in ratings are as follows:

1. For the rating of a No-Preferred item from Negative users, the correction strategy is
as follows:

• If the score is a low rating, keep it unchanged;

Algorithms 2023, 16, 228 8 of 16

• If the score is a medium rating, it is corrected by

r′ui = k× p(rui ≤ k) + rui × p(k < rui < v) + v× p(rui ≥ v); (15)

• If the score is a high rating, it is corrected by

r′ui = k× p(rui ≤ k) +
k + v

2
× p(k < rui < v) + rui × p(rui ≥ v). (16)

2. For the rating of an Av-Preferred item from Average users, the correction strategy is
as follows:

• If the score is a low rating, it is corrected by

r′ui = rui × p(rui ≤ k) +
k + v

2
× p(k < rui < v) + v× p(rui ≥ v); (17)

• If the score is a medium rating, keep it unchanged;
• If the score is a high rating, it is corrected by Equation (16).

3. For the rating of a Preferred item from Positive users, the correction strategy is as follows:

• If the score is a low rating, it is corrected by Equation (17);
• If the score is a medium rating, it is corrected by Equation (15);
• If the score is a high rating, keep it unchanged.

4. Experimental Analyses
4.1. Evaluation Metrics

The quality of recommendation algorithms is generally evaluated based on the pre-
dictive accuracy and the recommendation accuracy [27]. The former computes the errors
between predicted ratings and actual ratings. Hence, the smaller the values are, the higher
the accuracy is. The classical metrics are the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE), which are given by

MAE =
∑(u,i)∈T |rui − pui|

|T| , (18)

RMSE =

√
∑(u,i)∈T(rui − pui)2

|T| , (19)

where T is the set of predicted ratings and pui represents the predicted rating of user u on
item i.

For the recommendation accuracy, Precision, Recall, and F1 value are three typical
metrics. Precision refers to the proportion of successful recommended items in all recom-
mended items. Recall is the proportion of successful recommended items in all items that
users really like. F1 value is the comprehensive value of Precision and Recall.

4.2. Datasets

To assess the quality of the proposed scheme, we use three benchmark datasets
Movielens-100K [28], Yahoo Music [29], and Epinions [30]. Movielens-100K is collected
by GroupLens Research and contains a huge amount of rating information about movies.
Yahoo Music is a dataset of ratings on music. Epinions is a website that collects large
numbers of products and their ratings from users. In our experiments, we select users who
rate at least 20 items as the final datasets. Each dataset is divided into two parts with the
ratio of 80%:20%. The 80% part is used as the training set and the other part is used as the
test set. More details about the experiment datasets are shown in Table 5.

Algorithms 2023, 16, 228 9 of 16

Table 5. The details about the experimental datasets.

Dataset Ratings Users Items Sparsity Rating Scale

Movielens-100K 100,000 943 1682 6.30% 1–5
Yahoo Music 270,121 8089 1000 3.33% 1–5

Epinions 482,850 8693 123,330 0.45% 1–5

4.3. Experimental Results in Similarity Based Models

The similarity-based model is one kind of classic model and has been widely used
in recommendations due to its effectiveness. Here, we use the commonly used Pearson
Correlation Coefficient (PCC) [31] as the test benchmark. The predictive value of user u on
item i is calculated according to the following typical prediction formula [31]:

pui = ru +
∑u∈N(u) simPCC(u, v)(rvi − rv)

∑u∈N(u) |simPCC(u, v)| , (20)

where N(u) is the neighbor set of u, and ru and rv are the average rating value of user
u and user v, respectively. Except for our schemes, some other schemes on managing
natural noises [14,20] are also considered. Toledo et al. [14] suggested to replace the noises
with the re-predicted values. Bag et al. [20] suggested to directly correct noises with a
threshold value. We also compare our scheme with these two schemes. The tested schemes
in experiments are shown in Table 6.

Table 6. The schemes in our experiments.

Scheme Description

Original PCC/ConsisRec/MF Apply PCC/ConsisRec/MF to the original dataset
Repredict PCC/ConsisRec/MF Apply PCC/ConsisRec/MF to the dataset which is denoised by the scheme in [14]
Threshold PCC/ConsisRec/MF Apply PCC/ConsisRec/MF to the dataset which is denoised by the scheme in [20]
Proposed PCC/ConsisRec/MF Apply PCC/ConsisRec/MF to the dataset which is denoised by our scheme

4.3.1. Correction of Natural Noises

According to the rules in Section 3.1.1, the users are divided into three subcategories:
Negative, Average, and Positive. The items are also divided in three subcategories: No-
Preferred, Av-Preferred, and Preferred. Figure 2a shows the results of the classifications of
users and items in the dataset Movielens-100K. There are 58 Negative users, 85 Average users,
and 785 Positive users in the training dataset. Meanwhile, the numbers of No-Preferred
items, Av-Preferred items, and Preferred items are 285, 388, and 813, respectively. Based
on the proposed rules for detecting and correcting natural noise, the natural noises are
found in 6.85% of ratings (i.e., 5481 ratings). Figure 2b illustrates the corrections for natural
noise in the Movielens-100K dataset. Among the 5481 ratings, 5265 ratings are corrected
from low ratings to medium ratings, and 216 ratings are corrected from high ratings to
medium ratings.

Figure 3a shows the classification of users and items in the dataset Yahoo Music. In the
user set, 5012 users are the Negative users, 413 users are the Average users, and 2388 users
are the Positive users. Moreover, no items are regarded as No-Preferred items. In total,
877 items are regarded as Av-Preferred items, and 118 items are regarded as Preferred items.
Figure 3b shows the details of correcting natural noises in the dataset Yahoo Music. About
16.72% of ratings (i.e., 14,523 ratings) are affected by the natural noise. With our method,
2080 low ratings are corrected as medium ratings, and 12,443 high ratings are corrected as
medium ratings.

Algorithms 2023, 16, 228 10 of 16

Negative/No-Preferred Average/Av-Preferred Positive/Preferred
0

100

200

300

400

500

600

700

800

Nu
m

be
r

58
85

785

285

388

813Users
Items

(a)

low->med low->high med->low med->high high->low high->med
0

1000

2000

3000

4000

5000

Nu
m

be
r

5265

0 0 0 0
216

(b)

Figure 2. The results on Movielens-100K: (a) The classification results of users/items based on our
scheme; (b) The correction results on noisy ratings based on our scheme.

Negative/No-Preferred Average/Av-Preferred Positive/Preferred
0

1000

2000

3000

4000

5000

Nu
m

be
r

5012

413

2388

0

877

118

Users
Items

(a)

low->med low->high med->low med->high high->low high->med
0

2000

4000

6000

8000

10000

12000

Nu
m

be
r

2080

0 0 0 0

12,443

(b)

Figure 3. The results on Yahoo Music: (a) The classification results of users/items based on our
scheme; (b) The correction results on noisy ratings based on our scheme.

The classification results for the users and the items in the dataset Epinions are shown
in Figure 4a. The numbers of Negative users, Average users, and Positive users are 69, 25,
and 8565, respectively. Correspondingly, the numbers of No-Preferred items, Av-Preferred
items, and Preferred items are 9477, 9211, and 82,840. Figure 4b shows the results of
correcting natural noises. About 6.09% of ratings (i.e., 23,532 ratings) are considered to be
affected by natural noises. Here, 23,494 low ratings and 38 high ratings are corrected as
medium ratings.

Negative/No-Preferred Average/Av-Preferred Positive/Preferred
0

10000

20000

30000

40000

50000

60000

70000

80000

Nu
m

be
r

69 25

85659477 9211

82,840Users
Items

(a)

low->med low->high med->low med->high high->low high->med
0

5000

10000

15000

20000

Nu
m

be
r

23,494

0 0 0 0 38

(b)

Figure 4. The results of denoise on Epinions: (a) The classification results of users/items based on
our scheme; (b) The correction results on noisy ratings based on our scheme.

Algorithms 2023, 16, 228 11 of 16

4.3.2. Performance Analysis

We evaluate the effect of correcting natural noise by comparing the difference in
recommendation quality between the original and denoised datasets. For all the schemes
in Table 6, the evaluation metrics are calculated.

Figures 5–7 depict the MAEs and RMSEs on the datasets Movielens-100K, Yahoo
Music, and Epinions. It is easily observed from the trend of the curves that both MAE and
RMSE decrease as we increase the neighbor size. Moreover, our scheme has the lowest
MAE and RMSE. Compared with the Original PCC, our scheme achieves an obvious
promotion on the accuracy of predicted ratings. For example, in the dataset Movielens-
100K, the MAE and the RMSE are improved by about 5.1% and 5.3%, respectively; in the
dataset Yahoo Music, the improvements of MAE and RMSE are about 6.5% and 5.8%; in
the dataset Epinions, the improvements of MAE and RMSE in are about 11.3% and 11.8%.
These results indicate that our scheme has a good effect in terms of correcting noises.

(a) MAEs (b) RMSEs

Figure 5. The MAEs/RMSEs on Movielens-100K.

(a) MAEs (b) RMSEs

Figure 6. The MAEs/RMSEs on Yahoo Music.

Algorithms 2023, 16, 228 12 of 16

(a) MAEs (b) RMSEs

Figure 7. The MAEs/RMSEs on Epinions.

The Repredict PCC and the Threshold PCC are two schemes with denoising technol-
ogy used for comparison. Comparing with the Repredict PCC, our scheme has obvious
advantages in MAE and RMSE. Moreover, since our scheme can correct the natural noise
directly, it has higher efficiency than the Repredict PCC, which needs to recalculate the
ratings. Although the Threshold PCC can directly correct the natural noise in ratings and
has high efficiency, it only changes the ratings from one level to another level, which proba-
bly introduces new deviation and limits the further promotion of predictive accuracy. The
results in Figures 5–7 also confirm this claim. In Figure 5, the gaps of MAE and RMSE be-
tween the Threshold PCC and our scheme are about 2% and 2.4%, respectively. In Figure 6,
our scheme has about 2.7% and 2.5% advantages in MAE and RMSE over the Threshold
PCC. In Figure 7, our scheme still has about 1.3% and 2.3% better performances in the MAE
and RMSE than the Threshold PCC. Therefore, the experimental results indicate that our
scheme can effectively detect and correct natural noises.

The F1 values are calculated according to the cases listed in Table 6. The experimental
results are depicted in Figures 8–10. According to Figure 8, it can be seen that our scheme
and the Threshold PCC have larger F1 values than those of the Original PCC and the
Repredict PCC in the dataset Movielens-100K.

Figure 8. The F1 values on Movielens-100K.

Algorithms 2023, 16, 228 13 of 16

Figure 9. The F1 values on Yahoo Music.

Figure 10. The F1 values on Yahoo Epinions.

Compared with the Original PCC, the F1 value of our scheme increases by about
6.7%, which means that correcting the natural noises in ratings can effectively improve
the quality of recommendation. Figure 9 shows the test result in the dataset Yahoo Music.
Obviously, our scheme has the best F1 values among all of the schemes. Different from
Figures 8 and 10, the F1 value decreases as the number of neighbors increases in Figure 9.
The reason may be related to the quality of ratings. In the dataset Yahoo music, about
16.72% of ratings are detected with natural noises. Meanwhile, the percentages of the
ratings with natural noises in the datasets Movielens-100K and Epinions are 6.85% and
6.09%, respectively. This means that the quality of ratings in Yahoo Music is lower than the
other datasets. When the quality of ratings is low, using more neighbors in the calculation
of recommendation may introduce more errors. The results in Figure 10 are similar to the
results in Figure 8. Our scheme and the Threshold PCC have much better F1 values than
the Original PCC and the Repredict PCC. Moreover, although the Threshold PCC has the
best F1 value in the dataset Epinions, the F1 value of our scheme is very close to that of
the Threshold PCC. The difference between them is smaller than 1%. Based on the above
analysis on F1 values, we can conclude that our scheme also improves recommendation
accuracy by correcting natural noises.

4.4. Experimental Results in Learning Based Models

Currently, the learning-based method is a research hotspot and has good application in
the field of recommendations. Here, two classic learning-based methods, i.e., ConsisRes [32]
and MF [33], are selected to evaluate the performance of our natural noise management
scheme. We first test the results generated by ConsisRec and MF in the three original
datasets, Movielens-100K, Yahoo Music, and Epinions, then generate the results in the same
way in these datasets after denoising by our scheme. All the results are listed in Table 7.

Algorithms 2023, 16, 228 14 of 16

Table 7. The test results of two learning-based benchmarks in three original datasets and their
denoised datasets.

Dataset
MF ConsisRec

RMSE MAE F1 RMSE MAE F1
Movielens 100K denoised by our scheme 0.9523 0.7510 0.6657 0.9287 0.7319 0.6667
Original Movielens 100K 0.9499 0.7571 0.6586 0.9264 0.7287 0.6989
YahooMusic denoised by our scheme 1.2630 0.9562 0.5767 1.2760 0.9897 0.5728
Original YahooMusic 1.2205 0.9650 0.6040 1.2822 1.0371 0.5195
Epinions denoised by our scheme 1.9925 1.3505 0.6612 1.1024 0.8607 0.5669
Origianl Epinions 1.9900 1.3661 0.6580 1.1025 0.8642 0.6274

According to Table 7, we can see that (i) regardless of whether the original dataset or
the denoised dataset is used, the ConsisRec model shows a very tiny difference in MAE,
RMSE, and F1 results; (ii) the results of MF are also similar to those of ConsisRec, that
is, the changes in MAE, RMSE, and F1 between the original datasets and their denoised
datasets are very small. The test results in Table 7 show that our proposed method of
removing natural noise does not significantly improve the recommendation quality of the
two benchmarks. The main reason can be summarized as follows: our scheme detects and
corrects natural noise mainly based on the rating bias of users. It can be regarded as a
typical natural noise management scheme based on the explicit features of users and items.
However, the learning-based models (such as ConsisRec and MF) utilize both explicit and
implicit features of users and items to generate recommendation results. For ConsisRec and
MF, the implicit features have more effect on the recommendation results than the explicit
features. Since our noise management scheme only considers the explicit features of users
and items, the improvement in recommendation quality caused by our scheme is not obvious
in ConsisRec and MF. On the other hand, since similarity-based benchmarks, such as PCC,
only rely on explicit features to generate recommendation results, our scheme can bring more
obvious improvements in recommendation quality in such benchmarks. Therefore, it can be
concluded that our scheme can improve the recommendation results of the similarity-based
models, but the improvement is not significant for learning-based models.

5. Conclusions

Natural noises in users’ ratings are usually ignored, which may have a serious negative
effect on the performance of recommender systems. To manage the noises, a new scheme
is proposed with the aim of first detecting noises and then correcting them. In the process
of detecting, users and items are divided into subcategories, which are used as the criteria
to identify natural noises. In the process of correcting, the probabilities that users or items
belong to different subcategories are considered. We correct the natural noise in ratings
with threshold values weighted by probabilities. Our scheme manages natural noise mainly
based on the explicit features of users and items. Thus, the proposed scheme can significantly
improve the recommendation quality for the recommendation models based on explicit
features, such as the PCC model. Meanwhile, a shortcoming in this paper is that our scheme
cannot bring a significant improvement for the recommendation models that mainly rely on
implicit features.

In this paper, we only design a natural noise correction scheme based on the features of
users and items. To construct a comprehensive scheme for correcting noise, more informa-
tion such as implicit features should also be considered in future work. Moreover, another
line of interesting future work would be to embed the noise correction as a component into
the learning-based recommendation models.

Author Contributions: Conceptualization, Y.W. and C.L.; methodology, B.L.; software, H.L.; valida-
tion, Y.W., C.L. and B.L.; formal analysis, P.W.; investigation, P.W.; resources, Y.W.; data curation, B.L.;
writing—original draft preparation, C.L.; writing—review and editing, Y.W. and L.Y.Z.; visualization,

Algorithms 2023, 16, 228 15 of 16

H.L.; supervision, Y.W.; project administration, L.Y.Z.; funding acquisition, Y.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 62272077),
the MOE Layout Foundation of Humanities and Social Sciences, China (No. 20YJAZH102), the Natural
Science Foundation of Chongqing, China (No. cstc2021jcyj-msxmX0557), the Science and Technology
Innovation Project of The Chengdu-Chongqing Twin Cities Economic Zone (No. KJCX2020027), and
the Science and Technology Research Program of Chongqing Municipal Education Commission (No.
KJQN202100604).

Data Availability Statement: Publicly available datasets were analyzed in this study. Movielens
100K data can be found here: https://grouplens.org/datasets/movielens/, YahooMusic data can
be found here: https://webscope.sandbox.yahoo.com/, Epinions data can be found here: http:
//www.trustlet.org/downloaded_epinions.html.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Eppler, M.J.; Mengis, J. The Concept of Information Overload—A Review of Literature from Organization Science, Accounting,

Marketing, MIS, and Related Disciplines (2004). In Kommunikationsmanagement im Wandel; Springer: Berlin/Heidelberg, Germany,
2008; pp. 271–305.

2. Khan, Z.Y.; Niu, Z.D.; Sandiwarno, S.; Prince, R. Deep learning techniques for rating prediction: A survey of the state-of-the-art.
Artif. Intell. Rev. 2021, 54, 95–135. [CrossRef]

3. Ahmadian, S.; Joorabloo, N.; Jalili, M.; Ahmadian, M. Alleviating data sparsity problem in time-aware recommender systems
using a reliable rating profile enrichment approach. Expert Syst. Appl. 2022, 187, 115849. [CrossRef]

4. Lü, L.Y.; Medo, M.; Yeung, C.H.; Zhang, Y.C.; Zhang, Z.K.; Zhou, T. Recommender systems. Phys. Rep. 2012, 519, 1–49. [CrossRef]
5. Koenigstein, N.; Dror, G.; Koren, Y. Yahoo! music recommendations: Modeling music ratings with temporal dynamics and

item taxonomy. In Proceedings of the fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011;
pp. 165–172.

6. Smith, B.; Linden, G. Two Decades of Recommender Systems at Amazon.com. IEEE Internet Comput. 2017, 21, 12–18. [CrossRef]
7. Gomez-Uribe, C.A.; Hunt, N. The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM Trans.

Manag. Inf. Syst. (TMIS) 2015, 6, 1–19. [CrossRef]
8. Covington, P.; Adams, J.; Sargin, E. Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM

Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198.
9. Margaris, D.; Vassilakis, C.; Spiliotopoulos, D. On Producing Accurate Rating Predictions in Sparse Collaborative Filtering

Datasets. Information 2022, 13, 302. [CrossRef]
10. Singh, P.K.; Sinha, S.; Choudhury, P. An improved item-based collaborative filtering using a modified Bhattacharyya coefficient

and user–user similarity as weight. Knowl. Inf. Syst. 2022, 64, 665–701. [CrossRef]
11. Liu, N.; Li, M.X.; Qiu, H.Y.; Su, H.L. A hybrid user-based collaborative filtering algorithm with topic model. Appl. Intell. 2021, 51,

7946–7959.
12. O’Mahony, M.P.; Hurley, N.J.; Silvestre, G.C. Detecting noise in recommender system databases. In Proceedings of the 11th

International Conference on Intelligent User Interfaces, Sydney, Australia, 29 January–1 February 2006; pp. 109–115.
13. Pham, H.X.; Jung, J.J. Preference-based user rating correction process for interactive recommendation systems. Multimed. Tools

Appl. 2013, 65, 119–132. [CrossRef]
14. Toledo, R.Y.; Mota, Y.C.; Martínez, L. Correcting noisy ratings in collaborative recommender systems. Knowl.-Based Syst. 2015, 76,

96–108. [CrossRef]
15. Turk, A.M.; Bilge, A. Robustness analysis of multi-criteria collaborative filtering algorithms against shilling attacks. Expert Syst.

Appl. 2019, 115, 386–402. [CrossRef]
16. Chung, C.Y.; Hsu, P.Y.; Huang, S.H. βP: A novel approach to filter out malicious rating profiles from recommender systems.

Decis. Support Syst. 2013, 55, 314–325. [CrossRef]
17. Cai, Y.F.; Zhu, D. Trustworthy and profit: A new value-based neighbor selection method in recommender systems under shilling

attacks. Decis. Support Syst. 2019, 124, 113112. [CrossRef]
18. Xia, H.; Fang, B.; Gao, M.; Ma, H.; Tang, Y.Y.; Wen, J. A novel item anomaly detection approach against shilling attacks in

collaborative recommendation systems using the dynamic time interval segmentation technique. Inf. Sci. 2015, 306, 150–165.
[CrossRef]

19. Castro, J.; Yera, R.; Martínez, L. An empirical study of natural noise management in group recommendation systems. Decis.
Support Syst. 2017, 94, 1–11. [CrossRef]

20. Bag, S.; Kumar, S.; Awasthi, A.; Tiwari, M.K. A noise correction-based approach to support a recommender system in a highly
sparse rating environment. Decis. Support Syst. 2019, 118, 46–57. [CrossRef]

https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/
http://www.trustlet.org/downloaded_epinions.html
http://www.trustlet.org/downloaded_epinions.html
http://doi.org/10.1007/s10462-020-09892-9
http://dx.doi.org/10.1016/j.eswa.2021.115849
http://dx.doi.org/10.1016/j.physrep.2012.02.006
http://dx.doi.org/10.1109/MIC.2017.72
http://dx.doi.org/10.1145/2843948
http://dx.doi.org/10.3390/info13060302
http://dx.doi.org/10.1007/s10115-021-01651-8
http://dx.doi.org/10.1007/s11042-012-1119-8
http://dx.doi.org/10.1016/j.knosys.2014.12.011
http://dx.doi.org/10.1016/j.eswa.2018.08.001
http://dx.doi.org/10.1016/j.dss.2013.01.020
http://dx.doi.org/10.1016/j.dss.2019.113112
http://dx.doi.org/10.1016/j.ins.2015.02.019
http://dx.doi.org/10.1016/j.dss.2016.09.020
http://dx.doi.org/10.1016/j.dss.2019.01.001

Algorithms 2023, 16, 228 16 of 16

21. Wang, P.Y.; Wang, Y.; Zhang, L.Y.; Zhu, H. An effective and efficient fuzzy approach for managing natural noise in recommender
systems. Inf. Sci. 2021, 570, 623–637. [CrossRef]

22. Amatriain, X.; Pujol, J.M.; Tintarev, N.; Oliver, N. Rate it again: Increasing recommendation accuracy by user re-rating. In
Proceedings of the Third ACM Conference on Recommender Systems, New York, NY, USA, 22–25 October 2009; pp. 173–180.

23. Yera, R.; Castro, J.; Martínez, L. A fuzzy model for managing natural noise in recommender systems. Appl. Soft Comput. 2016, 40,
187–198. [CrossRef]

24. Choudhary, P.; Kant, V.; Dwivedi, P. Handling Natural Noise in Multi Criteria Recommender System utilizing effective similarity
measure and Particle Swarm Optimization. Procedia Comput. Sci. 2017, 115, 853–862. [CrossRef]

25. Castro, J.; Yera, R.; Martinez, L. A fuzzy approach for natural noise management in group recommender systems. Expert Syst.
Appl. 2018, 94, 237–249. [CrossRef]

26. Li, B.; Chen, L.; Zhu, X.Q.; Zhang, C.Q. Noisy but non-malicious user detection in social recommender systems. World Wide Web
2013, 16, 677–699. [CrossRef]

27. Shani, G.; Gunawardana, A. Evaluating Recommendation Systems. In Recommender Systems Handbook; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 257–297.

28. MovieLens 100K Dataset. Available online: https://grouplens.org/datasets/movielens/ (accessed on 14 January 2022).
29. Yahoo Music Dataset. Available online: https://webscope.sandbox.yahoo.com/ (accessed on 14 January 2022).
30. Epinions Dataset. Available online: http://www.trustlet.org/downloaded_epinions.html (accessed on 14 January 2022).
31. Breese, J.S.; Heckerman, D.; Kadie, C.M. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. arXiv 2013,

arXiv:1301.7363. Available online: http://xxx.lanl.gov/abs/1301.7363 (accessed on 19 August 2022).
32. Yang, L.; Liu, Z.; Dou, Y.; Ma, J.; Yu, P.S. ConsisRec: Enhancing GNN for Social Recommendation via Consistent Neighbor Aggre-

gation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’21, Virtual Event, 11–15 July 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 2141–2145.

33. Koren, Y.; Bell, R.; Volinsky, C. Matrix Factorization Techniques for Recommender Systems. Computer 2009, 42, 30–37. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ins.2021.05.002
http://dx.doi.org/10.1016/j.asoc.2015.10.060
http://dx.doi.org/10.1016/j.procs.2017.09.168
http://dx.doi.org/10.1016/j.eswa.2017.10.060
http://dx.doi.org/10.1007/s11280-012-0161-9
https://grouplens.org/datasets/movielens/
https://webscope.sandbox.yahoo.com/
http://www.trustlet.org/downloaded_epinions.html
http://xxx.lanl.gov/abs/1301.7363
http://dx.doi.org/10.1109/MC.2009.263

	Introduction
	Related Work
	The Proposed Approach of Managing Natural Noises
	Detection of Natural Noise
	The Classification of Ratings
	The Subcategories of Users and Items
	The Rules of Detecting Natural Noise

	Correction of the Natural Noise

	Experimental Analyses
	Evaluation Metrics
	Datasets
	Experimental Results in Similarity Based Models
	Correction of Natural Noises
	Performance Analysis

	Experimental Results in Learning Based Models

	Conclusions
	References

