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Abstract: The paper proposes a parallel algorithm for solving large overdetermined systems of linear
algebraic equations with a dense matrix. This algorithm is based on the use of a modification of
the conjugate gradient method, which is able to take into account rounding errors accumulated
during calculations when making a decision to terminate the iterative process. The parallel algorithm
is constructed in such a way that it takes into account the capabilities of the message passing
interface (MPI) parallel programming technology, which is used for the software implementation
of the proposed algorithm. The programming examples are shown using the Python programming
language and the mpi4py package, but all programs are built in such a way that they can be easily
rewritten using the C/C++/Fortran programming languages. The advantage of using the modern
MPI-4.0 standard is demonstrated.
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1. Introduction

When solving many applied problems, it often becomes necessary to solve systems of
linear algebraic equations of the form

A x = b. (1)

Here, in the general case, A is a dense rectangular matrix of dimension M× N (M ≥ N),
and b is a column vector with M components. The problem is to find out a vector x solving
System (1).

When solving real applied problems, the components of the vector b on the right side
of System (1) are usually measured experimentally. Therefore, due to the presence of exper-
imental errors, this system may not have a classical solution. However, the pseudo-solution
given by the least squares method is always obtained and it is the best approximation:

x = argmin
x∈RN

f (x), where f (x) = ‖Ax− b‖2
2. (2)

The element realizing the minimum of Functional (2) can be found by solving the
system of normal equations

AT A x = ATb. (3)

In the most common case, when the matrix A is nondegenerate, System (3) can be
solved using direct methods for solving systems of linear algebraic equations with a square
matrix (see, for example, [1]).

Note that the matrix AT A of System (3) has dimension N × N. As a consequence,
the implementation of direct solution methods in the case of an arbitrary matrix A re-
quires O(MN2) operations: (2M− 1)N2 operations to determine the matrix of System (3),
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(2M− 1)N operations to determine the right hand side, and O(N3) operations to imple-
ment the direct method of solving System (3). Therefore, for large values of M and N, the
quality of the solution can be critically affected by rounding errors accumulating during
the execution of these ∼ MN2 operations.

In this regard, in practice, one often searches for an element that implements the
minimum of Functional (2), not by solving a system of normal Equations (3), but by using
gradient methods to minimize Functional (2) itself. These methods are iterative: they start
from an arbitrary initial approximation for the solution and, at each iteration, find the
next better approximation for the desired solution. When calculating without errors for an
infinite number of iterations, such methods converge to the element x, which realizes the
minimum of Functional (2).

Given that the problem (1) is linear, the most efficient gradient method for solving it is
the conjugate gradient method (see, for example, [2–4]) . This method, in the case of exact
calculations, is able to find an element that implements the minimum of Functional (2)
in exactly N iterations, each of which requires O(MN) operations. However, taking into
account the fact that when solving practical problems, all calculations are performed only
approximately (due to the presence of rounding errors), the statement about the possibility
of minimizing the functional in exactly N iterations turns out to be incorrect. In practice,
the following three situations are possible.

1. Starting from some iteration, the number of which is less than N, the value of the
minimized functional becomes comparable to the background of rounding errors. This
means that all subsequent iterations are meaningless and the iterative process can be
stopped, because the value of the functional will not decrease at subsequent iterations.
Knowing such an iteration number makes it possible to interrupt calculations and
save computational resources by finding an approximate solution by performing a
much smaller number of operations compared to direct solution methods.

2. In the first case, it is also possible that the execution of the full set of N iterations leads
to “destruction” of the numerical solution. Thus, the possibility of early termination
of the iterative process can be especially useful in solving applied problems. The
implementation of this possibility in practice not only saves computational resources,
but also makes it possible to find an adequate approximate solution.

3. Due to the influence of rounding errors on the accuracy of determining the minimiza-
tion directions and steps along them, after performing N iterations, the value of the
minimized functional remains sufficiently large. This means that the approximate
solution found after N iterations can be refined further if the iterative process is
continued. In this case, the iterative process must be continued until the value of the
functional reaches the background of rounding errors.

In other words, if in practice the “classic” criterion for stopping the iterative process in
the conjugate gradient method is used (by a fixed number of iterations equal to N), then, in
the first case, an approximate solution will be found, but excessive computational resources
will be spent on its search; in the second case, the approximate solution will not be found
at all; in the third case, a very rough approximate solution will be found, which can still
be refined.

Thus, when solving many applied problems, the question of the possibility of develop-
ing such a criterion for terminating the iterative process in the conjugate gradient method,
which would be able to take into account rounding errors accumulating in the process of
calculations, is extremely important. Much work has been devoted to similar issues (see,
for example, [5–22]). However, in the opinion of the author, it was in paper [23] that a
rather detailed answer was given precisely to the question posed above. In this work, an
algorithm was formulated that, in practice, allows for successfully solving all three of the
above problem situations.

However, in work [23], the question of the ways of effective software implementation
of the proposed algorithm was not considered. This issue is also extremely important. This
is due to the fact that in order to solve many real systems of linear algebraic equations,
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it is necessary to use supercomputer (cluster) systems with many computing nodes. If
such a supercomputer system is a multiprocessor system with distributed memory, then to
organize the interaction of various computing nodes the message passing interface (MPI)
message passing technology is usually used. At the same time, the efficiency of parallel
software implementation is affected by the overhead costs for the interaction of computing
nodes through the use of a communication network and the transmission of messages
through it. Compared to the “classical” algorithm, the algorithm proposed in paper [23] has
a lot of additional relatively small calculations, the execution of which on many computing
nodes can generate a significant increase in overhead costs for the interaction of computing
nodes [24–26]. That is, a fairly common problem in solving real applied problems may
arise: the algorithm seems “good”, but its application to solving real applied problems is
inefficient. However, the algorithm from [23] was designed in such a way that it allows for
a fairly efficient parallel software implementation. Therefore, the purpose of this work is
to demonstrate how the algorithm proposed in [23] can be effectively parallelized using
the MPI parallel programming technology and using the MPI+OpenMP(+CUDA) parallel
programming technologies. Thus, the novelty of this work lies in the development of an
efficient parallel software implementation of the algorithm using the advantages of modern
parallel programming technologies (MPI-4.0 standard of 2021).

The structure of this work is as follows. Section 2 describes the sequential algorithm
from [23] and its software implementation. Section 3 describes parallel algorithms for
implementing some basic linear algebra operations that will be used to construct a parallel
version of the algorithm under consideration. Section 4 describes various approaches to
constructing a parallel version of an algorithm and its software implementation, taking
into account the capabilities of various MPI standards. Section 5 provides some tests of the
proposed software implementations for the presence of strong and weak scalability and
also gives recommendations for their use in computing on large parallel systems.

2. Sequential Algorithm and Its Software Implementation

For the sake of integrity of the presentation of the material, let us first recall (see
Section 2.1) one of the classical implementations of the conjugate gradient method for
solving System (1). This version of the conjugate gradient method was taken as the basis
for the algorithm considered in [23] (see Section 2.2), the parallel version of which is the
main subject of discussion of this work.

2.1. Classical Implementation of the Conjugate Gradient Method

The vector x with N components, which is a solution (pseudo-solution) of System (1),
can be found using the following iterative algorithm that constructs the sequence x(s).
We set p(0) = 0, s = 1, and an arbitrary initial approximation x(1). Then we execute the
following sequence of actions N times:

r(s) =


AT(A x(s) − b

)
, if s = 1,

r(s−1) − q(s−1)(
p(s−1), q(s−1)

) , if s > 2,

p(s) = p(s−1) +
r(s)(

r(s), r(s)
) ,

q(s) = AT(A p(s)
)
,

x(s+1) = x(s) − p(s)(
p(s), q(s)

) ,

s = s + 1.

As a result, after N steps, the vector xres = x(N+1) will be a solution (pseudo-solution)
of System (1), based on the assumption that all calculations are done exactly [2].
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Remark 1. If we do not use the recurrent notation and calculate the residual r(s) at each iteration
in the same way as at the first iteration (s = 1), then the number of arithmetic operations required
to complete the iteration process will double. When solving “large” problems, this is the motivation
for using the recursive form of the conjugate gradient method.

This algorithm can be written as the following pseudocode (see Algorithm 1).

Algorithm 1: Pseudocode for a sequential version of the “classical” algorithm

Data: A, b, x ≡ x(1)

Result: x
s← 1
p← 0
while s 6 N do

if s = 1 then
r ← AT(Ax− b)

else
r ← r− q

(p, q)
end

p← p +
r

(r, r)
q← AT(Ap)
x ← x− p

(p, q)
s← s + 1

end

The Python code for the function that implements the conjugate gradient method for
solving System (1) will have a fairly compact form (see Listing 1).

Listing 1. The Python code for a sequential version of the “classical” algorithm.

def conjugate_gradient_method(A, b, x) :
s = 1
p = zeros(size(x))
while s <= N :

i f s == 1 :
r = dot(A.T, dot(A,x) - b)

e l s e :
r = r - q/dot(p, q)

p = p + r/dot(r, r)
q = dot(A.T, dot(A, p))
x = x - p/dot(p,q)
s = s + 1

r e t u r n x

It is assumed that the standard package numpy is used for calculations. As a con-
sequence, this seemingly sequential software implementation of the algorithm actually
contains parallel computing. This is due to the peculiarity of the function dot() used
for basic calculations from the package numpy. This function is implemented in the C++
programming language and automatically uses multithreading in calculations if the pro-
gram is running on a multi-core processor—all processor cores are used through the use of
OpenMP parallel programming technology.

2.2. Improved Implementation of the Conjugate Gradient Method

In work [23], a modification of the above conjugate gradient method was proposed,
which takes into account rounding errors accumulated during of calculations when making
a decision to terminate the iterative process.
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We set p(0) = 0, s = 1, and an arbitrary initial approximation x(1). Then we repeatedly
perform the following sequence of actions:

r(s) =


AT(A x(s) − b

)
, if s = 1,

r(s−1) − q(s−1)(
p(s−1), q(s−1)

) , if s > 2,

σ2
r(s) =


(

AT)◦2(A◦2x◦2 + b◦2
)

, if s = 1,

σ2
r(s−1) +

(
q(s−1))◦2(

p(s−1), q(s−1)
)2 , if s > 2,

if
∆2

N
∑

n=1

(
σ2

r(s)
)

n

‖r(s)‖2
2

> 1, then the iterative process is interrupted, and x(s) is the solution,

p(s) = p(s−1) +
r(s)(

r(s), r(s)
) ,

q(s) = AT(A p(s)
)
,

x(s+1) = x(s) − p(s)(
p(s), q(s)

) ,

s = s + 1.

Here, ◦2 is Hadamard power, that is, element-wise raising of a vector/matrix to
the second power, ∆—relative rounding error. For half-precision calculation (float16)
∆ = 10−3.3, for single precision calculation (float32) ∆ = 10−7.6, for calculation with
double precision (float64) ∆ = 10−16.3, and for calculating with quadruple precision
∆ = 10−34.0.

This algorithm can be written as the following pseudocode (see Algorithm 2). In this
algorithm, the lines highlighted in red correspond to the actions that must be performed in
order to implement the improved criterion for terminating the iterative process. If these
lines are removed and the condition True is changed to s 6 N, then we get the “classical”
implementation of the conjugate gradient method for solving System (1).

The Python code for the function that implements the conjugate gradient method for
solving System (1) with the improved iterative process termination criterion is presented at
Listing 2.

This software implementation contains the following features:

1. The function returns (1) the array x that contains the solution of System (1) found
by the improved Algorithm 2, (2) the number of iterations s that needed to be done
by the algorithm to find an approximate solution, (3) the array x_classic, which
contains the solution found using the “classical” Algorithm 1 (this array contains such
a solution only if the number of iterations performed by the algorithm s > N + 1).

2. This implementation (and the corresponding pseudocode) takes into account that the
result of each dot product is used twice, so the result of the dot product is stored in a
separate variable.

3. At the first iteration of the algorithm (s = 1), the value of σ2
r is calculated using the

command

sigma2_r = dot(A.T**2, dot(A**2, x**2) + b**2)

A feature of Python is that under the arrays A**2 and A.T**2, which contain the
matrices A◦2 and

(
AT)◦2, a separate memory space is allocated. This is very bad,

because it is assumed that problem (1) is being solved with a huge matrix A.
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Algorithm 2: Pseudocode for a sequential version of the improved algorithm

Data: A, b, x ≡ x(1)

Result: x
s← 1
p← 0
while True do

if s = 1 then
r ← AT(Ax− b)
σ2

r ←
(

AT)◦2(A◦2x◦2 + b◦2
)

else
r ← r− q

scalar_product_pq

σ2
r ← σ2

r +
q◦2

(scalar_product_pq)2

end
scalar_product_rr← (r, r)

criterion←
∆2 ∑

n
(σ2

r )n

scalar_product_rr
if criterion > 1 then

return x
end

p← p +
r

scalar_product_rr
q← AT(Ap)
scalar_product_pq← (p, q)
x ← x− p

scalar_product_pq
s← s + 1

end

Listing 2. The Python code for a sequential version of the improved algorithm.

def conjugate_gradient_method(A, b, x) :
x_classic = None
s = 1
p = zeros(size(x))
while True :

i f s == 1 :
r = dot(A.T, dot(A,x) - b)
sigma2_r = dot(A.T**2, dot(A**2, x**2) + b**2)

e l s e :
r = r - q/scalar_product_pq
sigma2_r = sigma2_r + q**2/ scalar_product_pq **2

scalar_product_rr = dot(r, r)
delta = finfo(r.dtype).eps
criterion = delta **2 * sum(sigma2_r)/scalar_product_rr
i f criterion >= 1 :

r e t u r n x, s, x_classic
p = p + r/scalar_product_rr
q = dot(A.T, dot(A, p))
scalar_product_pq = dot(p, q)
x = x - p/scalar_product_pq
s = s + 1
i f s == size(x) + 1 :

x_classic = x.copy()
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Therefore, when solving real “large” problems, an array containing matrix A can take
up a large part of the memory. As a result, there may not be enough space in memory for
additional arrays.

This problem can be worked around in several ways.
In the first case, it is possible to issue the specified command as a separate function in

the C/C++/Fortran programming language, using for calculations only the elements of
the array in which matrix A is stored.

In the second case, it can be used a specially written function

sigma2_r = dot_special(A.T, dot_special(A,x**2,M,N)+b**2, N, M)

that uses “jit”-compilation using the package numba:

from numba import jit ,prange

@jit(nopython=True , parallel=True)
def dot_special(A, x, M, N):

b = empty(M)
f o r m in prange(M):

b[m] = 0.
f o r n in range(N):

b[m] = b[m] + A[m, n]**2*x[n]
r e t u r n b

However, in order not to overload the software implementation of the algorithm with
such technical features, we will choose the third way.

In the third case, we can neglect the accumulating machine rounding error at the first
iteration and set at the first iteration (s = 1) σ2

r = 0 :

sigma2_r = zeros(N)

Further, in all software implementations, we will choose the third way, as numerous
numerical experiments have shown that when solving real applied problems, the accu-
mulating machine rounding error at the first iteration (s = 1) can be neglected. However,
if desired, the corresponding programs can be easily improved to take into account the
rounding error at the first iteration.

2.3. An Example of How the Algorithm Works

To demonstrate the capabilities of the algorithm proposed in [23], we will use 1) a
matrix A of dimension M×N with elements generated as random variables with a uniform
distribution in the range [0, 1], 2 ) model solution xmodel—a vector of dimension N, whose
elements correspond to uniformly distributed values of the sine on the interval [0, 2π]:

xmodel
n = sin

2π(n− 1)
N − 1

, n ∈ 1, N.

Given matrix A and model solution xmodel , first calculate the right side b: b = Axmodel .
To solve System (1) with this matrix A and the right side b, we apply the considered imple-
mentation of the conjugate gradient method with an improved criterion for terminating
the iterative process. We will perform all calculations with double precision (float64), i.e.,
∆ ∼ 10−16.

Remark 2. Note that all subsequent results may slightly differ in details during reproduction, as
A matrix is randomly assigned.

Figure 1 shows an approximate solution—vector xres for M = 1000, N = 1000. The
algorithm needed to complete s = 2476 iterations, which is significantly more than s = 1000
in the case of using the “classical” implementation of the conjugate gradient method to
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solve System (1). However, it is perfectly clear that the approximate solution found by the
classical method (marked in red on the graph) is quite different from the exact one (sine),
even visually. At the same time, the solution found using the improved algorithm does not
visually differ from the exact solution.

Figure 1. Graph of dependence of xres
n component values on component number n.

If, however, calculations are made for M = 3000, N = 1000, then the approximate
solution, which does not visually differ from the exact model solution, will be found in just
s = 75 iterations, which is fewer than the 1000 iterations that would be required to find a
solution using the classical algorithm.

Thus, this example clearly demonstrates that the algorithm proposed in [23], depend-
ing on the situation, allows for both stopping the iteration process ahead of schedule (thus
saving computational resources) and continuing the iteration process (thus obtaining a
better approximation solution).

3. Approaches to Building a Parallel Algorithm and Its Software Implementation

This section will describe the main approaches that will be used to construct a parallel
version of the considered algorithm and its subsequent software implementation. In this
case, the capabilities of the MPI parallel programming technology will be taken into account.

3.1. Parallelizable Operations

In the considered implementation of the conjugate gradient method for solving Prob-
lem (1), all calculations fall on the following four operations.

1. The scalar product of two vectors of dimension N.
This operation requires N multiplications and N − 1 additions—for a total of 2N − 1
arithmetic operations. It is customary to denote 2N − 1 = O(N1), which indicates the
linear computational complexity of the scalar product operation.

2. Multiplication of a matrix of dimension M× N by a vector of dimension N.
To obtain each element of the final vector, it is necessary to scalarly multiply the
corresponding row of the A matrix by the multiplied vector. Such calculations must
be carried out for each element of the vector, which is the result of multiplication.
Thus, M · (2N − 1) arithmetic operations must be performed in total. In the case of
a square matrix (M = N), there will be O(N2) of such operations, which indicates
the quadratic computational complexity of the operation of multiplying a matrix by a
vector.

3. Multiplication of a transposed matrix of dimension N ×M by a vector of dimension
M.
The computational complexity of this operation is equivalent to the operation of
multiplying a matrix by a vector.

4. Addition of two vectors of dimension N.
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This operation requires N additions. That is, the computational complexity of this
operation is linear.

Next, the algorithms used to parallelize these operations are considered, which will be
used to build a parallel version of Algorithm 2 and its software implementation.

3.2. Distribution of Data by MPI Processes Participating in Computations

We will assume that the software implementation of the developed parallel algo-
rithm will use the MPI parallel programming technology and run on the number of
MPI processes equal to numprocs. All these processes will be included in the commu-
nicator comm ≡ MPI.COMM_WORLD, inside which they will have their number/identifier
rank ∈ 0, numprocs− 1.

Let us distribute all elements of the matrix A into blocks between the processes
involved in the calculations using the two-dimensional division of the matrix into blocks
(see Figure 2).

Figure 2. An example of data distribution among nine MPI processes that form a 3× 3 grid.

In this case, the number of splits along the vertical will be denoted as num_row (short
for number of rows), and the number of splits along the horizontal—num_col (short for
number of columns). As a result, matrix A of dimension M× N will be divided into parts
Apart(rank) of dimension Mpart(m)

× Npart(n). Here, the process number rank is related to
indices m and n as follows:

m =

⌊
rank

num_col

⌋
, n = rank−

⌊
rank

num_col

⌋
· num_col.

Remark 3. Let us immediately pay attention to the fact that the chosen indexing method assumes
that all processes will take part in the calculations, that is, num_row · num_col ≡numprocs.

Note also that

num_row−1

∑
m=0

Mpart(m)
= M,

num_col−1

∑
n=0

Npart(n) = N.

Thus, it is assumed that each MPI process contains the array A_part, which contains
one of the parts Apart(·) of matrix A. In addition, each process contains arrays x_part and
b_part, which contain one of the parts xpart(·) and bpart(·) of vectors x and b, respectively.
The storage structure of the vectors x and b on different processes is also shown in Figure 2.
It is clearly seen that the part xpart(n) of the vector x for a fixed index n is stored in all cells
of the process grid column with index n. Similarly, the part bpart(m)

of vector b for a fixed
index m is stored in all cells of the process grid row with index m.
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3.3. Parallel Algorithm for Matrix–Vector Multiplication in the Case of Two-Dimensional Division
of the Matrix into Blocks

The terms that arise when calculating the product of a matrix and a vector can be
divided into groups as follows (we give an example corresponding to Figure 3, when only
nine MPI processes are involved in the calculations).

Figure 3. A parallel algorithm for matrix–vector multiplication in the case of a two-dimensional
division of the matrix into blocks.

Ax =

Apart(0) Apart(1) Apart(2)
Apart(3) Apart(4) Apart(5)
Apart(6) Apart(7) Apart(8)


xpart(0)

xpart(1)
xpart(2)

 =

=

Apart(0)xpart(0) + Apart(1)xpart(1) + Apart(2)xpart(2)
Apart(3)xpart(0) + Apart(4)xpart(1) + Apart(5)xpart(2)
Apart(6)xpart(0) + Apart(7)xpart(1) + Apart(8)xpart(2)

 =

=

Apart(0)xpart(0)
Apart(3)xpart(0)
Apart(6)xpart(0)

+

Apart(1)xpart(1)
Apart(4)xpart(1)
Apart(7)xpart(1)

+

Apart(2)xpart(2)
Apart(5)xpart(2)
Apart(8)xpart(2)

 =

=

bpart_temp(0,0)
bpart_temp(1,0)
bpart_temp(2,0)

+

bpart_temp(0,1)
bpart_temp(1,1)
bpart_temp(2,1)

+

bpart_temp(0,2)
bpart_temp(1,2)
bpart_temp(2,2)

 =

= btemp(0) + btemp(1) + btemp(2) =

bpart(0)
bpart(1)
bpart(2)

 = b.

This form of representation of the multiplication of a matrix by a vector was chosen in
order to clearly show that the vector x (it is assumed that it consists of N elements) does
not need to be stored entirely on each process. Each process needs only its own part xpart(n)

of this vector with Npart(n) elements, where n ∈ 0, num_col− 1.
Then, each process participating in the calculations will perform the operation of

multiplying its part Apart(rank) of matrix A by its part xpart(n) of vector x. As a result of this
operation, the vector bpart_temp(m,n) will be calculated, which will be one of the terms of the
part bpart(m)

of the final vector b. Each process participating in the calculation can perform
this action independently of other processes while operating only with the data that are
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located in the memory of this process. These calculation actions can be implemented in
parallel. Then, the corresponding summands bpart_temp(m,n) along each line of the process
grid (i.e., index m is fixed) must be collected (due to message exchange between processes)
at least on one process and summed up.

Thus, this parallel algorithm (taking into account the two-dimensional division of
matrix A into blocks) contains the following features.

1. Each process should store not the whole vector x, but only a part xpart(n) of this vector.
The vector xpart(n) will have to be sent not to all processes of the comm communicator,
but only to a part of the processes of this communicator—to the processes of the
column with index n of the process grid. In this case, the transfer of data among the
processes of each column of the process grid can be organized in parallel with the
transfer of data among the processes of other columns of the grid of processes, which
will give a gain in time.

2. When calculating part bpart(m)
of the final vector b, it is necessary to exchange messages

not to all processes of the comm communicator, but only to part of the processes of this
communicator—to the processes of the line with index m of the introduced grid of
processes. In this case, the data transfer along each line of the process grid can be
organized in parallel with the transfer of data among the processes of other lines of
the process grid, which will also give a gain in time.

Let us now describe some features of the software implementation of this algorithm,
taking into account the capabilities of the MPI parallel programming technology.

As is known, message exchange between processes for the aforementioned algorithm,
organized using the MPI functions Send() and Recv(), is possible, but inefficient. It is
much more efficient to use the MPI functions of the collective interaction of processes.
However, such functions must be called on all processes of the communicator. At the
moment, we are working only with the communicator comm, which, in addition to the
processes that we want to use (processes from a separate column or row of the process
grid), also contains other processes that will not interact with one another. Thus, we come
to the need to create additional communicators that will contain only those groups of
processes within which we want to organize data exchange interactions using the functions
of collective interaction of processes.

Such communicator groups can be created, for example, as follows.

comm_col = comm.Split(rank % num_col , rank)
comm_row = comm.Split(rank // num_col , rank)

Here, for example, the communicators comm_col are generated in the first line. Let
us pay attention to the fact that it is the communicators (in the plural) that are generated,
and not just one communicator. Let us give an explanatory example for the case of nine
MPI processes (that is, numprocs = 9). The first argument of the Split() function is the
color value, defined by us as rank % num_col, which, for processes with rank = 0, 1,
2, 3, 4, 5, 6, 7, 8, will be 0, 1, 2, 0, 1, 2, 0, 1, 2. Thus, three communicators
will be created: the first one will include processes with the value color = 0, the second
one—with the value color = 1, the third one—with the value color = 2. One can give a
visual interpretation of such a grouping of processes—see Figure 2: if the processes of the
communicator comm form a two-dimensional grid, then the processes of the communicators
comm_col are columns of this two-dimensional grid of processes.

In this case, the object comm_col on each MPI process will contain information about
different processes. For example, on processes with rank = 1, 4 of the communicator
comm, the object comm_col will contain information about processes with rank = 1, 4, 7
of the communicator comm. And on a process with rank = 2 of the communicator comm,
the object comm_col will contain information about processes with rank = 2, 5, 8 of the
communicator comm.
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Similarly, if the processes of the communicator comm form a two-dimensional grid,
then the processes of communicators comm_row are rows of this two-dimensional grid of
processes.

Thus, a parallel software implementation of matrix-vector multiplication can be pre-
sented in the following form:

b_part_temp = dot(A_part , x_part)
b_part = empty(M_part , dtype=float64)
comm_row.Allreduce ([ b_part_temp , M_part , MPI.DOUBLE],

[b_part , M_part , MPI.DOUBLE], op=MPI.SUM)

Note that the result of such a multiplication (vector b) will be stored on all processes
in parts: a part bpart(m)

of the vector b for a fixed index m will be stored in all cells of the
process grid row with index m.

Remark 4. Recall that the message exchange time is proportional to log2 numprocs, but the
volume of transmitted messages is proportional to numprocs−1/2 in the case of a two-dimensional
matrix division by blocks and is constant in the case of one-dimensional division of the matrix into
blocks [1,27].

3.4. A Parallel Algorithm for Multiplying a Transposed Matrix by a Vector in the Case of
Two-Dimensional Division of a Matrix into Blocks

The parallel algorithm for multiplying a transposed matrix by a vector in the case
of a two-dimensional division of a matrix into blocks is quite similar to the algorithm
considered in the previous section, and in a sense has symmetry with respect to it. Because
we are interested in the multiplication of a transposed matrix by a vector in the context
of the conjugate gradient method, we assume that system matrix A is stored over the
processes of the grid of processes as shown in Figure 2. This is due to the fact that it is
necessary to build an algorithm for multiplying matrix AT by a vector in such a way as
to avoid creating additional arrays in memory for the transposed matrix. Indeed, when
solving real applied problems, the total available memory on all processes may not be
enough. We build algorithms for solving very large problems!

Therefore, the terms that arise when calculating the product of a transposed matrix by
a vector can be divided into groups as follows (as in the previous section, we will give an
example in which only nine MPI processes are involved in the calculations, see Figure 4):

Figure 4. A parallel algorithm for multiplying a transposed matrix by a vector in the case of two-
dimensional division of a matrix into blocks.
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ATb =


AT

part(0)
AT

part(3)
AT

part(6)
AT

part(1)
AT

part(4)
AT

part(7)
AT

part(2)
AT

part(5)
AT

part(8)


bpart(0)

bpart(1)
bpart(2)

 =

=


AT

part(0)
bpart(0) + AT

part(3)
bpart(1) + AT

part(6)
bpart(2)

AT
part(1)

bpart(0) + AT
part(4)

bpart(1) + AT
part(7)

bpart(2)

AT
part(2)

bpart(0) + AT
part(5)

bpart(1) + AT
part(8)

bpart(2)

 =

=


AT

part(0)
bpart(0)

AT
part(1)

bpart(0)

AT
part(2)

bpart(0)

+


AT

part(3)
bpart(1)

AT
part(4)

bpart(1)

AT
part(5)

bpart(1)

+


AT

part(6)
bpart(2)

AT
part(7)

bpart(2)

AT
part(8)

bpart(2)

 =

=

xpart_temp(0,0)
xpart_temp(0,1)
xpart_temp(0,2)

+

xpart_temp(1,0)
xpart_temp(1,1)
xpart_temp(1,2)

+

xpart_temp(2,0)
xpart_temp(2,1)
xpart_temp(2,2)

 =

= xtemp(0) + xtemp(1) + xtemp(2) =

xpart(0)
xpart(1)
xpart(2)

 = x.

Then, each process participating in the calculations will perform the operation of
multiplying its part AT

part(rank)
of matrix AT by its part bpart(m)

of vector b. As a result

of this operation, the vector xpart_temp(m,n) will be calculated, which will be one of the
terms of the part xpart(n) of the final vector x. Each process participating in the calculation
can perform this action independently of other processes while operating only with the
data that are located in the memory of this process. We are implementing these actions
in parallel. Then, the corresponding summands xpart_temp(m,n) along each column of the
process grid (i.e., index n is fixed) must be collected (due to message exchange between
processes) and measured on at least one process and summed up.

Thus, this parallel algorithm (taking into account the two-dimensional division of
matrix A into blocks) contains the following features.

1. Each process should store not the whole vector b, but only a part bpart(m)
of this vector.

The vector bpart(m)
will have to be sent not to all the processes of the communicator

comm, but only to a part of the processes of this communicator—to the processes of
the row with index m of the process grid. In this case, the transfer of data among the
processes of each row of the process grid can be organized in parallel with the transfer
of data among the processes of other rows of the grid of processes, which will give a
gain in time.

2. When calculating the part xpart(n) of the final vector x, it is necessary to exchange
messages not with all processes of the communicator comm, but only with part of the
processes of this communicator—with the processes of the column with index n of
the introduced grid of processes. In this case, the data transfer along each column
of the process grid can be organized in parallel with the transfer of data among the
processes of other columns of the process grid, which will also give a gain in time.

As you can clearly see, the parallel algorithm for multiplying a transposed matrix by
a vector in the case of a two-dimensional division of a matrix into blocks has symmetry
with respect to the parallel algorithm for multiplying a matrix by a vector, considered
in the previous section. This algorithm is obtained from the previous one by replacing
m ↔ n and “rows”↔ “columns”. In this case, all actions are performed not with parts
of the matrix Apart(rank), but with their transposed parts AT

part(rank)
. Thus, the software
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implementation of this algorithm will not differ much from the software implementation
of the parallel algorithm for matrix–vector multiplication (including the need to work with
additional communicators that will contain only those groups of processes among which
we want to organize data exchange interactions using the functions of the collective process
interactions).

Thus, a parallel software implementation of multiplying a transposed matrix by a
vector (taking into account the fact that we operate with elements of the original non-
transposed matrix) can be formalized in the following form:

x_part_temp = dot(A_part.T, b_part)
x_part = empty(N_part , dtype=float64)
comm_col.Allreduce ([ x_part_temp , N_part , MPI.DOUBLE],

[x_part , N_part , MPI.DOUBLE], op=MPI.SUM)

Note that the result of such a multiplication (vector x) will be stored on all processes in
parts: part xpart(n) of the vector x for a fixed index n will be stored in all cells of the process
grid column with index n.

3.5. Parallel Algorithm for Scalar Multiplication of Vectors

We will assume that the storage structure of the elements of vectors a and b (which
each contain N elements) is the same as that of vector x (see Figure 2) . We will denote
such parts of vectors stored on different processes as apart(n) and bpart(n). Each such part
will consist of Npart(n) elements. To simplify the presentation of the material, consider
indexing for vectors stored in the first row of the process grid (with index m = 0). Therefore,
n ∈ 0, num_col− 1.

The terms that arise when calculating the scalar product of vectors can be divided
into groups as follows (we will also give an example in which only nine MPI processes are
involved in the calculations):

(a, b) =
([

apart(0) apart(1) apart(2)

]
,
[
bpart(0) bpart(1) bpart(2)

])
=

=
(
apart(0), bpart(0)

)
+
(
apart(1), bpart(1)

)
+
(
apart(2), bpart(2)

)
=

= scalar_producttemp(0)
+ scalar_producttemp(1)

+ scalar_producttemp(2)
=

= scalar_product.

Then, each process involved in the calculation will perform the operation (apart(rank),
bpart(rank)). As a result of this operation, one of the terms that make up the final scalar
product will be calculated. Each process participating in the calculation can perform this
action independently of other processes while operating only with the data that are located
in the memory of this process. We implement these calculations in parallel. Then, the
corresponding terms along each line of the process grid must be collected (due to the
exchange of messages between processes) on at least one process and summed up.

Thus, the parallel software implementation of the scalar multiplication of vectors can
be formalized in the following form:

scalar_product_temp = array(dot(r_part , r_part), dtype=float64)
scalar_product = array(0, dtype=float64)
comm_row.Allreduce ([ scalar_product_temp , 1, MPI.DOUBLE],

[scalar_product , 1, MPI.DOUBLE], op=MPI.SUM)

Note that the result of such a software implementation of scalar multiplication will be
stored on all processes of the communicator comm.
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Remark 5. The downside of this algorithm is that different groups of processes, each of which forms
its own communicator comm_row, perform the same actions. However, this minus is insignificant in
the context of the parallel implementation of the conjugate gradient method, in which this algorithm
accounts for a negligibly small part of the calculations in the case of solving “large” problems.

4. Parallel Version of the Improved Algorithm and Its Software Implementation

This section describes various approaches to building a parallel version of Algorithm 2
and its software implementation. These approaches take into account the possibilities of
various MPI standards. First (see Section 4.1), the “naive” approach to parallelization is
described, which is based on the use of the MPI-2 standard. In this approach, additional
time is spent on all additional operations related to accounting for rounding errors that
accumulate in the process of calculations. Among other things, there are additional time
costs for receiving/transmitting additional messages between processes that are required
to organize additional calculations. Then (see Section 4.2), an approach to parallelization
based on the MPI-3 standard is described. This approach, due to the use of non-blocking
(asynchronous) messaging operations between processes, will make it possible to hide all
additional calculations against the background of message exchange between processes
in the main algorithm and hide additional message transfers against the background of
calculations of the main algorithm. Due to this, all additional operations (calculations and
message forwarding between MPI processes) do not require additional time. As a result,
the efficiency of the software implementation of the improved algorithm does not differ
from the efficiency of the software implementation of the classical algorithm. Then (see
Section 4.3), comments are given regarding the use of the MPI-4 standard, which allows for
increasing the efficiency of parallel software implementation through the use of persistent
requests.

4.1. Taking into Account the Capabilities of the Standard MPI-2

A “naive” parallel version of Algorithm 2, which implements an improved imple-
mentation of the conjugate gradient method for solving System (1), can be written as the
following pseudocode (see Algorithm 3). In this algorithm, the rows highlighted in red
correspond to the actions that must be performed in order to implement the improved
criterion for terminating the iterative process. If these lines are removed and the condition
True is changed to s 6 N, then we get the classical implementation of the conjugate gradient
method for solving System (1).

The software implementation of the function that implements Algorithm 3 for solving
System (1) will look like Listing 3.

Similarly to the sequential version of the program, as a result of the operation of
this function, each MPI process returns 1) an array x_part, which contains a part of the
solution of System (1) found using the improved algorithm, and which, when combined
with similar data from other processes will give an array x containing the complete solution
of System (1); 2) the number of iterations s that the algorithm needed to do to find an
approximate solution; and 3) the array x_classic_part, which contains a part of the
solution found using the classical algorithm (this array contains such data only if the
number of iterations performed by the algorithm is s > N + 1).

4.2. Taking into Account the Capabilities of the Standard MPI-3

Taking into account the capabilities of the MPI-3 standard allows one, through the use
of non-blocking (asynchronous) MPI operations (highlighted in the subsequent algorithm
in blue), to perform additional calculations related to taking into account accumulated
machine rounding errors, simultaneously with the transmission of the largest messages in
the main algorithm, as well as forward additional messages against the background of the
calculations of the main algorithm. The corresponding parallel algorithm can be written as
the following pseudocode (see Algorithm 4).
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The software implementation of the function that implements Algorithm 4 for solving
System (1) will look like Listing 4.

Algorithm 3: Pseudocode for a (“naive”) parallel version of the improved algorithm

Data: Apart, bpart, xpart ≡ x(1)part, comm_row, comm_col, N
Result: xpart
s← 1
ppart ← 0
while True do

if s = 1 then
Axpart_temp ← Apartxpart
Axpart ← comm_row.Allreduce(Axpart_temp)
bpart ← Axpart − bpart
rpart_temp ← AT

partbpart

rpart ← comm_col.Allreduce(rpart_temp)
σ2

r part ← 0
else

rpart ← rpart −
qpart

scalar_product_pq

σ2
r part ← σ2

r part +
qpart

◦2

(scalar_product_pq)2

end
scalar_producttemp ← (rpart, rpart)

scalar_product_rr← comm_row.Allreduce(scalar_producttemp)

criteriontemp ←
∆2 ∑

n
(σ2

r part)n

scalar_product_rr
criterion← comm_row.Allreduce(criteriontemp)
if criterion > 1 then

return xpart
end

ppart ← ppart +
rpart

scalar_product_rr
Appart_temp ← Apart ppart
Appart ← comm_row.Allreduce(Appart_temp)
qpart_temp ← AT

part(Appart)

qpart ← comm_col.Allreduce(qpart_temp)
scalar_producttemp ← (ppart, qpart)

scalar_product_pq← comm_row.Allreduce(scalar_producttemp)

xpart ← xpart −
ppart

scalar_product_pq
s← s + 1

end

Listing 3. The Python code for a (“naive”) parallel version of the improved algorithm.

def conjugate_gradient_method(A_part , b_part , x_part ,
comm_row , comm_col , N) :

N_part = size(x_part); M_part = size(b_part)

x_classic_part = None
delta = finfo(float64).eps

s = 1
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p_part = zeros(N_part , dtype=float64)

while True :

i f s == 1 :
Ax_part_temp = dot(A_part , x_part)
Ax_part = empty(M_part , dtype=float64)
comm_row.Allreduce ([ Ax_part_temp , M_part , MPI.DOUBLE],

[Ax_part , M_part , MPI.DOUBLE],
op=MPI.SUM)

b_part = Ax_part - b_part
r_part_temp = dot(A_part.T, b_part)
r_part = empty(N_part , dtype=float64)
comm_col.Allreduce ([ r_part_temp , N_part , MPI.DOUBLE],

[r_part , N_part , MPI.DOUBLE],
op=MPI.SUM)

sigma2_r_part = zeros(N_part , dtype=float64)
e l s e :

r_part = r_part - q_part/scalar_product_pq

sigma2_r_part = sigma2_r_part + \
q_part **2/ scalar_product_pq **2

scalar_product_temp = array(dot(r_part , r_part),
dtype=float64)

scalar_product_rr = array(0, dtype=float64)
comm_row.Allreduce ([ scalar_product_temp , 1, MPI.DOUBLE],

[scalar_product_rr , 1, MPI.DOUBLE],
op=MPI.SUM)

criterion_temp = array(delta **2*sum(sigma2_r_part)/
scalar_product_rr , dtype=float64)

criterion = array(0, dtype=float64)
comm_row.Allreduce ([ criterion_temp , 1, MPI.DOUBLE],

[criterion , 1, MPI.DOUBLE],
op=MPI.SUM)

i f criterion >= 1 :
r e t u r n x_part , s, x_classic_part

p_part = p_part + r_part/scalar_product_rr

Ap_part_temp = dot(A_part , p_part)
Ap_part = empty(M_part , dtype=float64)
comm_row.Allreduce ([ Ap_part_temp , M_part , MPI.DOUBLE],

[Ap_part , M_part , MPI.DOUBLE],
op=MPI.SUM)

q_part_temp = dot(A_part.T, Ap_part)
q_part = empty(N_part , dtype=float64)
comm_col.Allreduce ([ q_part_temp , N_part , MPI.DOUBLE],

[q_part , N_part , MPI.DOUBLE],
op=MPI.SUM)

scalar_product_temp = array(dot(p_part , q_part),
dtype=float64)

scalar_product_pq = array(0, dtype=float64)
comm_row.Allreduce ([ scalar_product_temp , 1, MPI.DOUBLE],

[scalar_product_pq , 1, MPI.DOUBLE],
op=MPI.SUM)

x_part = x_part - p_part/scalar_product_pq
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s = s + 1
i f s == N + 1 : x_classic_part = x_part.copy()

Algorithm 4: Pseudocode for an efficient parallel version of the improved algorithm

Data: Apart, bpart, xpart ≡ x(1)part, comm_row, comm_col, N
Result: xpart
s← 1
ppart ← 0
while True do

if s = 1 then
Axpart_temp ← Apartxpart
Axpart ← comm_row.Allreduce(Axpart_temp)
bpart ← Axpart − bpart
rpart_temp ← AT

partbpart

rpart ← comm_col.Allreduce(rpart_temp)
σ2

r part ← 0
else

rpart ← rpart −
qpart

scalar_product_pq
end
scalar_producttemp ← (rpart, rpart)

scalar_product_rr← comm_row.Allreduce(scalar_producttemp)

ppart ← ppart +
rpart

scalar_product_rr
Appart_temp ← Apart ppart
Appart ← comm_row.Iallreduce(Appart_temp)
if s > 2 then

σ2
r part ← σ2

r part +
qpart

◦2

(scalar_product_pq)2

end

criteriontemp ←
∆2 ∑

n
(σ2

r part)n

scalar_product_rr
criterion← comm_row.Iallreduce(criteriontemp)
Wait(Appart)
qpart_temp ← AT

part(Appart)

qpart ← comm_col.Allreduce(qpart_temp)
scalar_producttemp ← (ppart, qpart)

scalar_product_pq← comm_row.Allreduce(scalar_producttemp)

Wait(criterion)
if criterion > 1 then

return xpart
end

xpart ← xpart −
ppart

scalar_product_pq
s← s + 1

end
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Listing 4. The Python code for an efficient parallel version of the improved algorithm

def conjugate_gradient_method(A_part , b_part , x_part ,
comm_row , comm_col , N) :

N_part = size(x_part); M_part = size(b_part)

x_classic_part = None
delta = finfo(float64).eps

requests = [MPI.Request () f o r i in range (2)]

s = 1
p_part = zeros(N_part , dtype=float64)

while True :

i f s == 1 :
Ax_part_temp = dot(A_part , x_part)
Ax_part = empty(M_part , dtype=float64)
comm_row.Allreduce ([ Ax_part_temp , M_part , MPI.DOUBLE],

[Ax_part , M_part , MPI.DOUBLE],
op=MPI.SUM)

b_part = Ax_part - b_part
r_part_temp = dot(A_part.T, b_part)
r_part = empty(N_part , dtype=float64)
comm_col.Allreduce ([ r_part_temp , N_part , MPI.DOUBLE],

[r_part , N_part , MPI.DOUBLE],
op=MPI.SUM)

sigma2_r_part = zeros(N_part , dtype=float64)
e l s e :

r_part = r_part - q_part/scalar_product_pq

scalar_product_temp = array(dot(r_part , r_part),
dtype=float64)

scalar_product_rr = array(0, dtype=float64)
comm_row.Allreduce ([ scalar_product_temp , 1, MPI.DOUBLE],

[scalar_product_rr , 1, MPI.DOUBLE],
op=MPI.SUM)

p_part = p_part + r_part/scalar_product_rr

Ap_part_temp = dot(A_part , p_part)
Ap_part = empty(M_part , dtype=float64)
requests [0] = comm_row.Iallreduce(

[Ap_part_temp , M_part , MPI.DOUBLE],
[Ap_part , M_part , MPI.DOUBLE],
op=MPI.SUM)

i f s >= 2 :
sigma2_r_part = sigma2_r_part + \

q_part **2/ scalar_product_pq **2
criterion_temp = array(delta **2*sum(sigma2_r_part)/

scalar_product_rr , dtype=float64)
criterion = array(0, dtype=float64)
requests [1] = comm_row.Iallreduce(

[criterion_temp , 1, MPI.DOUBLE],
[criterion , 1, MPI.DOUBLE],
op=MPI.SUM)
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MPI.Request.Wait(requests [0], status=None)
q_part_temp = dot(A_part.T, Ap_part)
q_part = empty(N_part , dtype=float64)
comm_col.Allreduce ([ q_part_temp , N_part , MPI.DOUBLE],

[q_part , N_part , MPI.DOUBLE],
op=MPI.SUM)

scalar_product_temp = array(dot(p_part , q_part),
dtype=float64)

scalar_product_pq = array(0, dtype=float64)
comm_row.Allreduce ([ scalar_product_temp , 1, MPI.DOUBLE],

[scalar_product_pq , 1, MPI.DOUBLE],
op=MPI.SUM)

MPI.Request.Wait(requests [1], status=None)
i f criterion >= 1 :

r e t u r n x_part , s, x_classic_part

x_part = x_part - p_part/scalar_product_pq

s = s + 1

i f s == N + 1 :
x_classic_part = x_part.copy()

4.3. Taking into Account the Capabilities of the Standard MPI-4

The program implementation of Algorithm 4 contains collective operations between
processes with the same argument list, which are executed in a loop. This means that
it may be possible to optimize the communication by binding the list of communication
arguments to a persistent communication request once and, then, repeatedly using the
request to initiate and complete messages.

Changes in the software implementation will be fairly simple. The following sequence
of changes must be made.

1. Before the main loop while, it is necessary to form persistent communication request
using MPI functions of the form request[] = Allreduce_init() for all functions of
collective interaction of processes Allreduce() and Iallreduce() that occur inside
the loop.

Remark 6. The arguments to these functions are numpy arrays, namely the fixed memory
areas associated with these arrays. When initializing the persistent communication request, all
data will be taken/written to these memory areas, which are fixed once when the corresponding
persistent request is generated. Therefore, it is necessary to first allocate space in memory for
all arrays that are arguments to these functions and, during subsequent calculations, ensure
that the corresponding results of the calculations are stored in the correct memory areas.

2. Inside the while loop, replace the MPI function Allreduce() with the sequence of
MPI functions Start(request[]) “+” Wait(request[]).

3. Inside the while loop, replace the MPI function Iallreduce() with the MPI function
Start(request[]).

Corresponding software implementation of the function that implements Algorithm 4
for solving System (1) will look like Listing 5.
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Listing 5. The Python code for an efficient parallel version of the improved algorithm with using the
MPI-4.0 standart

def conjugate_gradient_method(A_part , b_part , x_part ,
comm_row , comm_col , N) :

N_part = size(x_part); M_part = size(b_part)

x_classic_part = None
delta = finfo(float64).eps

requests = [MPI.Request () f o r i in range (5)]

scalar_product_temp = empty(1, dtype=float64)
scalar_product_rr = array(0, dtype=float64)
scalar_product_pq = array(0, dtype=float64)

Ap_part_temp = empty(M_part , dtype=float64)
Ap_part = empty(M_part , dtype=float64)

q_part_temp = empty(N_part , dtype=float64)
q_part = empty(N_part , dtype=float64)

criterion_temp = empty(1, dtype=float64)
criterion = array(0, dtype=float64)

requests [0] = comm_row.Allreduce_init(
[scalar_product_temp , 1, MPI.DOUBLE],
[scalar_product_rr , 1, MPI.DOUBLE],
op=MPI.SUM)

requests [1] = comm_row.Allreduce_init(
[Ap_part_temp , M_part , MPI.DOUBLE],
[Ap_part , M_part , MPI.DOUBLE],
op=MPI.SUM)

requests [2] = comm_row.Allreduce_init(
[criterion_temp , 1, MPI.DOUBLE],
[criterion , 1, MPI.DOUBLE],
op=MPI.SUM)

requests [3] = comm_col.Allreduce_init(
[q_part_temp , N_part , MPI.DOUBLE],
[q_part , N_part , MPI.DOUBLE],
op=MPI.SUM)

requests [4] = comm_row.Allreduce_init(
[scalar_product_temp , 1, MPI.DOUBLE],
[scalar_product_pq , 1, MPI.DOUBLE],
op=MPI.SUM)

s = 1
p_part = zeros(N_part , dtype=float64)

while True :

i f s == 1 :
Ax_part_temp = dot(A_part , x_part)
Ax_part = empty(M_part , dtype=float64)
comm_row.Allreduce ([ Ax_part_temp , M_part , MPI.DOUBLE],

[Ax_part , M_part , MPI.DOUBLE],
op=MPI.SUM)

b_part = Ax_part - b_part
r_part_temp = dot(A_part.T, b_part)
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r_part = empty(N_part , dtype=float64)
comm_col.Allreduce ([ r_part_temp , N_part , MPI.DOUBLE],

[r_part , N_part , MPI.DOUBLE],
op=MPI.SUM)

sigma2_r_part = zeros(N_part , dtype=float64)
e l s e :

r_part = r_part - q_part/scalar_product_pq

scalar_product_temp [:] = array(dot(r_part , r_part),
dtype=float64)

MPI.Prequest.Start(requests [0])
MPI.Request.Wait(requests [0], status=None)
p_part = p_part + r_part/scalar_product_rr

Ap_part_temp [:] = dot(A_part , p_part)
MPI.Prequest.Start(requests [1])
i f s >= 2 :

sigma2_r_part = sigma2_r_part + \
q_part **2/ scalar_product_pq **2

criterion_temp [:] = array(delta **2*sum(sigma2_r_part)/
scalar_product_rr , dtype=float64)

MPI.Prequest.Start(requests [2])
MPI.Request.Wait(requests [1], status=None)
q_part_temp [:] = dot(A_part.T, Ap_part)
MPI.Prequest.Start(requests [3])
MPI.Request.Wait(requests [3], status=None)

scalar_product_temp [:] = array(dot(p_part , q_part),
dtype=float64)

MPI.Prequest.Start(requests [4])
MPI.Request.Wait(requests [4], status=None)

MPI.Request.Wait(requests [2], status=None)
i f criterion >= 1 :

r e t u r n x_part , s, x_classic_part

x_part = x_part - p_part/scalar_product_pq

s = s + 1

i f s == N + 1 :
x_classic_part = x_part.copy()

5. Estimation of the Efficiency and Scalability of a Software Implementation of the
Parallel Algorithm

This section discusses the efficiency and scalability of the proposed software imple-
mentation of the parallel algorithm. First (see Section 5.1), a description of the test example
and the multiprocessor system used for test calculations is given. Then (see Section 5.2),
the results of studying the proposed software implementations for the presence of strong
and strict scaling are discussed.

5.1. Description of the Test Example

To test the efficiency of software implementations of the parallel algorithm, the section
“compute” of the supercomputer “Lomonosov-2” [28] of the Research Computing Center of
Lomonosov Moscow State University was used. Each node in the section contains 14-core
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Intel Xeon E5-2697 v3 2.60GHz processors with 64 GB of RAM (4.5 GB per core) and a Tesla
K40s video-card with 11.56 GB of video memory.

The problem with M = 90, 000, N = 70, 000 was chosen as a test problem. The
choice of such parameters is due to the fact that we want to carry out calculations for a
system with the largest possible matrix A, but at the same time this matrix should fit into
the RAM of one computing node (otherwise we will not be able to detect the running
time T1 of the sequential version of programs). In the case of the chosen parameters,
N ×M× 8 bytes = 46.93 GB is required to store matrix A. For test calculations, we limited
ourselves to s = 400 iterations of the conjugate gradient method. In this case, the running
time T1 of the sequential version of the function conjugate_gradient_method() on one
computing node was∼755 s (in the case of N iterations using the “classic” stopping criteria,
this time would increase to ∼1.5 days).

The parallel version of the program was launched with each MPI process bound to
exactly one computing node. Recall the feature of the function dot() from the package
numpy, which performs the bulk of the calculations when implementing the algorithm:
this function is implemented in the C++ programming language and automatically uses
multithreading in calculations if the program is running on a multi-core processor—all
processor cores are used through the use of OpenMP parallel programming technology.
Thus, by linking each MPI process to a separate computing node, the MPI+OpenMP hybrid
parallel programming technology was automatically implemented.

Python packages used were: (1) numpy version 1.24.3, (2) mpi4py version 4.0.0.dev0,
(3) mpich version 4.1.1.

The program was run on the number of processes n ≡ numprocs, which is the square
of a natural number (1, 4, 9, 16, 25, 36, 49, etc.). This is due to the fact that the test
programs used a virtual topology of processes with a two-dimensional Cartesian grid
with parameters num_row = num_col =

√
n. The running time Tn of the parallel version

of the function conjugate_gradient_method() was detected for each value n from the
specified number of processes. Using the estimated running time T1 of the sequential
version of the function conjugate_gradient_method(), the acceleration Sn was calculated

using the formula Sn =
T1

Tn
, and then the efficiency En =

Sn

n
was also calculated. Figure 5

shows graphs of the parallelization efficiency En depending on the number of computing
nodes n involved in the calculations. Graphs of such dependencies are presented for three
software implementations of the algorithm using different MPI standards. This shows the
undeniable advantage of using the MPI-4 standard. The charts fully correspond to the
previously stated expectations.

Figure 5. Plots of parallelization efficiency depending on the number of computing nodes for various
software implementations of the parallel algorithm. Strong scalability is present only for software
implementation using the standard MPI-4.

It is important to note the following. The design of the parallel algorithm assumes that
the MPI processes involved in the calculations form a two-dimensional Cartesian grid (see
Figures 3 and 4). The MPI function Allreduce() used in the parallel implementation of the
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algorithm will work most efficiently if this two-dimensional Cartesian grid of processes is
periodic in both directions. Therefore, for calculations, the virtual topology of processes of
the “two-dimensional torus” type was used. Thus, comm := comm_cart, where comm_cart:

comm_cart = comm.Create_cart(dims=(num_row , num_col),
periods =(True , True),
reorder=True)

However, the virtual topology of MPI processes cannot always be effectively mapped
onto a real physical communication network connecting the computing nodes of a super-
computer system. Therefore, situations are possible in which MPI processes, neighboring in
the virtual topology, work on computing nodes located far from each other in the communi-
cation environment. This will lead to a significant increase in message passing time between
some MPI processes (see Figure 6). This, as a consequence, can lead to a catastrophic drop
in efficiency.

Figure 6. Graphs of the dependence of the parallel program running time in the case of good
localization of computing nodes in the communication network (solid line) and poor localization
(dotted line).

Note that the results shown in Figure 5 correspond to the averaged values over a series
of parallel program launches on arbitrary distributions of MPI processes over the computing
nodes of the supercomputer “Lomonosov-2”. If only nodes with good localization in the
communication environment are used for computing, better results for the efficiency of
software implementation can be obtained compared to the results shown in Figure 5.

5.2. Scalability: Strong and Weak Scaling

It is well known that the weak point of parallel algorithms for solving systems of linear
algebraic equations with a dense matrix is the relatively poor strong scalability of many
possible software implementations (as can be seen from Figure 5).

This can be explained as follows on the example of a parallel algorithm for matrix-
vector multiplication (see Figure 3), which is the main operation in the considered
Algorithms 3 and 4.

All MPI processes participate in parallel computations, and, as a result, all com-
putations are accelerated by n times (n ≡ numprocs). At the same time, the volume of

transmitted messages is proportional to
1√
n

, which means that it decreases with an increase

in the number of processes involved in the calculations. However, with an increase in
the number of processes participating in calculations, the number of message exchanges
between the processes of auxiliary communicators increases, which is proportional to
log2
√

n.
It turns out that with an increase in the number n of processes involved in calculations,

the computation time is proportional to
1
n

, and the time to exchange messages between

processes is proportional to
log2
√

n√
n

.
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Thus, starting from a certain number of processes (this number depends on the
computational size of the problem and on the configuration of the multiprocessor system),
the portion of overhead costs for the exchange of messages between processes will begin
to increase. This, as a consequence, will inevitably lead to a decrease in the efficiency
of software implementation with an increase in the number of processes involved in the
calculations.

Therefore, additional calculations were carried out to test the proposed software
implementations for weak scalability. Weak scalability means maintaining efficiency as the
number of processes participating in computations increases while keeping the amount of
computational work that each process performs constant.

Thus, the weak scalability test was performed by simultaneously increasing the prob-
lem size (M := 3

√
n M, N := 3

√
n N, s := 3

√
n s) and the number n of processes involved in

the computation. Figure 7 shows graphs of the parallelization efficiency En =
T1

Tn
depend-

ing on the number of computing nodes n involved in the calculations. As can be seen from
the presented graphs, the proposed software implementations of the algorithm have the
property of weak scalability. This again shows the advantage of using the MPI-4 standard.

Figure 7. Graph showing the weak scalability of the proposed software implementations.

6. Discussion

1. All program examples are built in such a way that they can be easily rewritten using
the C/C++/Fortran programming languages. This is due to the fact that all MPI
functions used in Python software implementations use a syntax equivalent to the
syntax of the corresponding MPI functions in the C/C++/Fortran programming
languages.

2. If there are GPUs on the computing nodes, the programs can be easily modified by
replacing the main calculations using the function dot() from the package numpy with
calculations using a similar function from the package cupy, which will allow for the
use of GPUs for calculations. Thus, it is easy to use MPI+OpenMP+CUDA hybrid
parallel programming technologies. Due to the fact that changes in the software
implementation will be quite simple, the program code is not shown here.

3. The algorithm is primarily designed to solve systems of linear equations with a
dense matrix. It has not been tested for solving systems of linear equations with a
sparse matrix. Due to the technical features of working with sparse matrices, it is
possible that the results regarding the efficiency of software implementation may
differ significantly (both for better and for worse). More research is required on this
issue.

4. If System (1) is ill-conditioned, then regularizing algorithms are usually used to solve
it [29]. One of the important stages in the application of regularizing algorithms is
the stage of choosing the regularization parameter, which must be consistent with
the error in specifying the input data and the measure of inconsistency of the system
being solved. The considered algorithm makes it possible to accurately estimate the
measure of incompatibility of the system being solved.
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7. Conclusions

In this work, a fairly efficient parallel algorithm for solving large overdetermined
systems of linear algebraic equations with a dense matrix was proposed. This algorithm is
based on the use of a modification of the conjugate gradient method, which is able to take
into account rounding errors accumulated during of calculations when making a decision
to terminate the iterative process. This modification of the conjugate gradient method is
constructed in such a way that it was possible to hide additional calculations in a parallel
software implementation against the background of message forwarding of the main part
of the algorithm. Thus, the proposed parallel software implementation of the considered
algorithm, on the one hand, makes it possible to obtain an adequate approximate solution,
and, on the other hand, does not increase the computational complexity. Moreover, the
undeniable advantage of using the modern MPI-4 standard in the software implementation
of algorithms of this type has been demonstrated.
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