

 algorithms-16-00321

algorithms-16-00321

Algorithms 2023, 16(7), 321; doi:10.3390/a16070321

Article

A Surprisal-Based Greedy Heuristic for the Set Covering Problem

Tommaso Adamo[image: Orcid], Gianpaolo Ghiani[image: Orcid], Emanuela Guerriero *[image: Orcid] and Deborah Pareo[image: Orcid]

Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy

*

Correspondence: emanuela.guerriero@unisalento.it

Academic Editors: Frank Werner and Roberto Montemanni

Received: 1 June 2023 / Revised: 23 June 2023 / Accepted: 28 June 2023 / Published: 29 June 2023

Abstract

:

In this paper we exploit concepts from Information Theory to improve the classical Chvatal greedy algorithm for the set covering problem. In particular, we develop a new greedy procedure, called Surprisal-Based Greedy Heuristic (SBH), incorporating the computation of a “surprisal” measure when selecting the solution columns. Computational experiments, performed on instances from the OR-Library, showed that SBH yields a 2.5% improvement in terms of the objective function value over the Chvatal’s algorithm while retaining similar execution times, making it suitable for real-time applications. The new heuristic was also compared with Kordalewski’s greedy algorithm, obtaining similar solutions in much shorter times on large instances, and Grossmann and Wool’s algorithm for unicost instances, where SBH obtained better solutions.

Keywords:

set covering; greedy; heuristic; real-time applications

1. Introduction

The Set Covering Problem (SCP) is a classical combinatorial optimization problem which, given a collection of elements, aims to find the minimum number of sets that incorporate (cover) all of these elements. More formally, let I be a set of m items and J = { S 1 , S 2 … , S n } a collection of n subsets of I where each subset S j (j = 1 , ⋯ , n) is associated to a non-negative cost c j . The SCP finds a minimum cost sub-collection of J that covers all the elements of I at minimum cost, the cost being defined as the sum of subsets cost.

The SCP finds applications in many fields. One of the most important is crew scheduling, where SCP provides a minumum-cost set of crews in order to cover a given set of trips. These problems include airline crew scheduling (see, for example, Rubin [1] and Marchiori [2]) and railway crew scheduling (see, example, Caprara [3]). Other applications are the winner determination problem in combinatorial auctions, a class of sales mechanisms (Abrache et al. [4]) and vehicle routing (Foster et al. [5], Cacchiani et al. [6] and Bai et al. [7]). The SCP is also relevant in a number of production planning problems, as described by Vemuganti in [8], wherein solving is often required in real-time. In addition, it is worth noting that the set covering problem is equivalent to the hitting set problem [9]. Indeed, we can view an instance of set covering as a bipartite graph in which vertices on the left represent the items, whilst vertices on the right represent the sets, and edges represent the inclusion of items in sets. The goal of the hitting set problem is to find a subset with the minimum number of right vertices such that all left vertices are covered.

Garey and Johnson in [10] have proven that the SCP is NP-hard in the strong sense. Exact algorithms are mostly based on branch-and-bound and branch-and-cut techniques. Etcheberry [11] utilizes sub-gradient optimization in a branch-and-bound framework. Balas and Ho [12] present a procedure based on cutting planes from conditional bounds, i.e., valid lower bounds if the constraint set is amended by certain inequalities. Beasley [13] introduces an algorithm which blends dual ascent, sub-gradient optimization and linear programming. In [14], Beasley and Jornsten incorporate the [13] algorithm into a Lagrangian heuristic. Fisher and Kedia [15] use continuous heuristics applied to the dual of the linear programming relaxation, obtaining lower bounds for a branch-and-bound algorithm. Finally, we mention Balas and Carrera [16] with their procedure based on a dynamic sub-gradient optimization and branch-and-bound. These algorithms were tested on instances involving up to 200 rows and 2000 columns in the case of Balas and Fisher’s algorithms and 400 rows and 4000 columns in [13,14,16]. Among these algorithms the fastest one is the Balas and Carrera’s algorithm, with an average time in the order of 100 s on small instances and 1000 s on the largest ones (on a Cray-1S computer). Caprara [17] compared these methods with the general-purpose ILP solvers CPLEX 4.0.8 and MINTO 2.3, observing that the latter ones have execution times competitive with that of the best exact algorithms for the SCP in the literature.

In most industrial applications it is important to rely on heuristic methods in order to obtain “good” solutions quickly enough to meet the expectations of decision-makers. To this purpose, many heuristics have been presented in the literature. The classical greedy algorithm proposed by Chvatal [18] sequentially inserts the set with a minimum score in the solution. Chvatal proved that the worst case performance ratio does not exceed H (d) = ∑ i = 1 d 1 i , where d is the size of the largest set. More recently, Kordalewski [19] described a new approximation heuristics for the SCP. His algorithm involves the same scheme of Chvatal’s procedure, but modifies the score by including a new parameter, named difficulty. Wang et al. [20] presented the TS-IDS algorithm designed for deep web crawling and, then, Singhania [21] tested it in a resource management application. Feo and Resende [22] presented a Greedy Randomized Adaptive Procedure (GRASP), in which they first constructed an initial solution through an adaptive randomized greedy function and then applied a local search procedure. Haouari and Chaouachi [23] introduced PROGRES, a probabilistic greedy search heuristic which uses diversification schemes along with a learning strategy.

Regarding Lagrangian heuristics, we mention the algorithm developed by Beasley [24] and later improved by Haddadi [25], which consists of a sub-gradient optimization procedure coupled with a greedy algorithm and Lagrangian cost fixing. A similar procedure was designed by Caprara et al. [26], which includes three phases, sub-gradient, heuristic and column fixing, followed by a refining procedure. Beasley and Chu [27] proposed a genetic algorithm in which a variable mutation rate and two new operators are defined. Similarly Aickelin [28] describes an indirect genetic algorithm. In this procedure actual solutions are found by an external decoder function and then another indirect optimization layer is used to improve the result. Lastly, we mention Meta-Raps, introduced by Lan et al. [29], an iterative search procedure that uses randomness as a way to avoid local optima. All the mentioned heuristics present calculation times not compatible with real contexts. For example, Caprara’s algorithm [26] produces solutions with an average computing time of about 400 s (on a DECstation 5000/240 CPU), if executed on non-unicost instances from Beasley’s OR Library, with 500 × 5000 and 1000 × 10,000 as matrix sizes. Indeed, the difficulty of the problem leads to very high computational costs, which has led academics to research heuristics and meta-heuristics capable of obtaining good solutions, as close as possible to the optimal, in a very short time, in order to tackle real-time applications. In this respect, it is worth noting the paper by Grossman and Wool [30], in which a comparative study of eight approximation algorithms for the unicost SCP are proposed. Among these there were several greedy variants, fractional relaxations and randomized algorithms. Other investigations carried out over the years include the following: Galinier et al. [31], who studied a variant of SCP, called the Large Set Covering Problem (LSCP), in which sets are possibly infinite; Lanza-Gutierrez et al. [32], who were interested in the difficulty of applying metaheuristics designed for solving continuous optimization problems to the SCP; Sundar et al. [33], who proposed another algorithm to solve the SCP by combining an artificial bee colony (ABC) algorithm with local search; Maneengam et al. [34], who, in order to solve the green ship routing and scheduling problem (GSRSP), developed a set covering model based on route representation which includes berth time-window constraints; finally, an empiric complexity analysis over the set covering problem, and other problems, was recently conducted by Derpich et al. [35].

In this paper, we exploit concepts from Information Theory (see Borda [36]) to improve Chvatal’s greedy algorithm. Our purpose is to devise a heuristic able to improve the quality of the solution while retaining similar execution times to those of Chvatal’s algorithm, making it suitable for real-time applications. The main contributions of the current work can be summarized as follows.

	
The development of a real-time algorithm, named Surprisal-Based Greedy Heuristic (SBH), for the fast computation of high quality solutions for the set covering problem. In particular, our algorithm introduces a surprisal measure, also known as self-information, to partly account for the problem structure while constructing the solution.

	
A comparison of the proposed heuristic with three other greedy algorithms, namely Chvatal’s greedy procedure [18], Kordalewski’s algorithm [19] and the Altgreedy procedure [30] for unicost problems. SBH improves the classical Chvatal greedy algorithm [18] in terms of objective function and has the same scalability in computation time, while Kordalewski’s algorithm produces slightly better solutions but has computation times that are much higher than those of the SBH algorithm, making it impractical for real-time applications.

We emphasize that there is a plethora of other methods in the literature for solving the SCP, but most of them are time-consuming. We are only interested in fast heuristics that are compatible with real-time applications.

The remainder of the article is organized as follows. In Section 2 we describe the three algorithms involved in our analysis and illustrate SBH. Section 3 presents an experimental campaign which compares the greedy algorithms mentioned above. Finally, Section 4 reports on some of the conclusions.

2. Surprisal-Based Greedy Heuristic

2.1. Problem Formulation

The SCP can be formulated as follows. In addition to the notation introduced in Section 1, let a i j be a constant equal to 1 if item i is covered by subset j and 0 otherwise. Moreover, let x j denote a binary variable defined as follows:

 x j = 1 if column j is selected , 0 otherwise .

An SCP formulation is:

 minimize ∑ j ∈ J c j x j

(1)

 ∑ j ∈ J a i j x j ≥ 1 i ∈ I ,

(2)

 x j ∈ { 0 , 1 } j ∈ J ,

(3)

where (1) aims to minimize the total cost of the selected columns and (2) imposes the condition that every row is covered by at least one column.

2.2. Greedy Algorithms

As we explained in the previous section, we were interested in greedy procedures in order to produce good solutions in a very short time, suitable for real-time applications. SCP greedy algorithms are sequential procedures that identify the best unselected column with respect to a given score and then insert this in the solution set.

Let I j be the set of rows covered by column j and J i the set of columns covering row i. Algorithm 1 shows the pseudocode of Chvatal’s greedy algorithm [18]. Each column j is given a score equal to the column cost c j divided by the number of rows I j covered by j. At each step, the algorithm inserts the column j * with the minimum score in the solution set.

	Algorithm 1 Chvatal’s greedy algorithm

	
	1:

	
 S ← ⌀                           ▹ initially empty set

	2:

	
while I ≠ ⌀ do

	3:

	
 j ∗ ← arg min j ∈ J c j I j                 ▹ selection of the best column

	4:

	
 add j * to S

	5:

	
 I ← I ∖ I j *

	6:

	
 for j ∈ J do               ▹ remove the already covered rows

	7:

	
 I j ← I j ∖ I j *

A variant of Chvatal’s procedure for unicost problems was suggested by Grossman and Wool [30], named Altgreedy. This algorithm is composed of two main steps: in the first phase, the column with the highest number of covered rows is inserted in the solution; then, in the secomd phase, some columns are removed from the solution set according to lexicographic order, as long as the number of the new uncovered rows remains smaller than the last number of new rows covered.

More recently, Kordalewski [19] proposed a new greedy heuristic which is a recursive procedure that introduces two new terms: valuation and difficulty. In the first step, valuation is computed for all columns j by dividing the number of rows, covered by j, by the column cost, as in Chvatal’s score. For each row i is defined a parameter, difficulty, which is the inverse of the sum of the valuations of the sets covering i, used to indicate how difficult it might be to cover that row. This is based on the observation that a low valuation implies a low probability of selection. The valuation v can be computed as:

 v j = ∑ i ∈ I j d i c j

while difficulty d will be only updated with the new valuations.

2.3. The SBH Algorithm

In this section, we describe the SBH greedy heuristic, that constitutes an improvement on the classic Chvatal greedy procedure. As illustrated in Section 2.2, Chvatal’s algorithm assigns each column j a score equal to the unit cost to cover the rows in I j . Then it iteratively inserts the columns with the lowest score in the solution set. However, this approach is flawed when rows in I j are poorly covered. Indeed, it does not consider the probability that rows i ∈ I j are covered by other columns j ′ ∈ J i . Our algorithm aims to correct this by introducing an additional term expressing the “surprisal” that a column j is selected. Therefore, our score considers two aspects: the cost of a column j and the probability that the rows in I j can be covered by other columns.

To formally describe our procedure, we introduce some concepts from Information Theory. The term information refers to any message which gives details in an uncertain problem and is closely related with the probability of occurrence of an uncertain event. Information is an additive and non-negative measure which is equal to 0 when the event is certain and it grows when its probability decreases. More specifically, given an event A with probability to occur p A , the self-information I A is defined as:

 I A = − log p A .

(4)

Self-information is also called surprisal because it expresses the “surprise” of seeing event A as the outcome of an experiment. In the SBH algorithm, at each stage we compute the surprisal of each column. The columns containing row i are considered independent of each other, so the probability of selecting one of them (denoted as event A -) is

 p A - = 1 | J i | .

(5)

Therefore, the opposite event, i.e., selecting row i with a column different from the current one, is:

 p A = 1 − 1 | J i | = | J i | − 1 | J i | .

(6)

The self-information measure contained in this event is:

 I i = − log | J i | − 1 | J i | .

(7)

Thanks to the additivity of the self-information measure, surprisal of a column j can be written as:

 I j = ∑ i ∈ I j I i = ∑ i ∈ I j − log | J i | − 1 | J i | .

(8)

We modify Chvatal’s cost of column j, i.e., c j | I j | , by introducing the surprisal of j to the denominator, in order to favor columns with high self-information. In particular, at each step we select the column that minimizes:

 min j ∈ J c j | I j | · I j ,

(9)

which is equivalent to

 min j ∈ J c j | I j | ∏ i ∈ I j | J i | − 1 | J i | .

(10)

This formulation is the same as minimizing the probability of the intersection of independent events, each of which selects a column, other than the current one, covering row i. Two extreme cases can occur:

	
if column j is the only one covering a row i ∈ I j , it is no surprise that it is selected: in this case I j is high and the modified cost (9) of column j is 0 so that column j is included in the solution;

	
if, on the other hand, all rows i ∈ I j are covered by a high number of other columns j ′ ∈ J i , surprisal I j is very low. In this case, the cost attributed to column j is greater than its Chvatal’s cost.

To illustrate this concept, we now present a numerical example. Let

 (a i j) = 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 , (c j) = 3 1 2 5

be the coverage matrix and the column cost vector. We denote, with C H s c o r e i and S B H s c o r e i , respectively, as the Chvatal and SBH scores vectors, at the i-th iteration. A hyphen is inserted to indicate that the corresponding column can no longer be considered because it either has already been selected or it is empty, meaning that the column does not cover rows that still need to be covered. At the first iteration of Chvatal’s algorithm we have the following scores:

 C H s c o r e 1 = 1 ; 1 2 ; 1 ; 5 2 .

(11)

The second column (the one with lowest score) is selected. Subsequently, at the second iteration the scores are as follows:

 C H s c o r e 2 = 3 ; − ; 2 ; 5 2 .

(12)

At this point, the third column is selected. Finally, it is worth noting that the first column covers only rows already covered by the other selected columns. Then, at the third iteration, the scores become:

 C H s c o r e 3 = − ; − ; − ; 5 .

(13)

Therefore, column 4 is selected and the total cost for the current solution (columns 2, 3 and 4) amounts to 8 units. On the other hand, computing the SBH score for each column j according to (10): our SBH algorithm, at the first iteration, produces:

 S B H s c o r e 1 = 2 9 ; 1 6 ; 4 9 ; 0 .

(14)

The fourth column has the least score, and is embedded in the current solution. At the second iteration, the scores are the following:

 S B H s c o r e 2 = 1 2 ; 1 6 ; 4 3 ; − .

(15)

Column 2 is selected and the procedure ends. In conclusion, our algorithm selects only two columns (4 and 2), with a total cost of 6 units, in contrast to Chvatal’s greedy algorithm which ends up with a greater solution cost. Therefore, SBH outperforms Chvatal’s procedure because the latter cannot recognize the column 4 that must necessarily be part of the solution.

It is worth noting that SBH has the same computational complexity as Chvatal’s algorithm, since they require the same number of steps in order to compute the score measure.

3. Experimental Results

The aim of our computational experiments was to assess the performance of the SBH heuristic procedure with respect to the other greedy heuristics proposed in literature. We implemented the heuristics in C++ and performed our experiments on a stand-alone Linux machine with a 4 core processor clocked at 3 GHz and equipped with 16 GB of RAM. The algorithm was tested on 77 instances from Beasley’s OR Library [37]. Table 1 describes the main features of the test instances and, in particular, the column density, i.e., the percentage of ones in matrix a and column range, i.e., the minimum and maximum values of objective function coefficients. The remaining column headings are self-explanatory. Instances are divided into sets having sizes ranging from 200 × 1000 to 1000 × 10,000. Set E contains small unicost instances of size 50 × 500 . Sets 4, 5 and 6 were generated by Balas and Ho [12] and consist of small instances with low density, while sets A to E come from Beasley [13]. The remaining instances (sets N R E to N R H) are from [24]. Such instances are significantly larger and optimal solutions are not available. Similarly, Table 2 reports features of seven large scale real-word instances derived from the crew-scheduling problem [26].

We compared SBH with Chvatal’s procedure [18] (CH) and the heuristic by Kordalewski [19] (KORD). Table 3, Table 4 and Table 5 report the computational results for each instance under the following headings:

	
Instance: the name of the instance where the string before “dot” refers to the set which the instance belongs to;

	
BS: objective function value of the best known solution;

	
SOL: the objective function value of the best solution determined by the heuristic;

	
TIME: the execution time in seconds;

	
GAP: percentage gap between BS and the SOL value, i.e.,

 GAP = 100 × SOL − BS BS

Columns “SBH vs. CH” and “SBH vs. KORD” report the percentage improvement of SBH w.r.t. CH and KORD, respectively. Regarding Table 3, it is worth noting that our heuristic, compared to Chvatal’s greedy procedure, had a smaller gap, ranging from 12.65 % to 11.03 % , with an average improvement of 1.42 % . Among these instances, SBH provided a better solution than [18] in 19 out of 24 instance problems. We point out that the best objective function value was given by Kordalewski’s algorithm, which was slightly better than our SBH procedure (by only 0.59 %), but was slower.

Similar observations can be derived from Table 4. Here, SBH performed better, even though it differed from the Kordalewski algorithm by only 0.07 % . Comparing SBH with CH, it is worth noting that only in 4 instances out of 45 did SBH obtain a worse solution. SBH came close to the optimal solution, with an average gap of 10.69 % , and was better than CH by 2.62 % . The execution time for all the instances averaged 0.113 s for CH, 0.230 s for the Kordalewski procedure and 0.564 s for SBH. Increasing the size of the instances (which is the case in r a i l problems), Kordalewski’s algorithm became much slower. Consequently, on these instances we compared only the CH and SBH heuristics. On these instances, our SBH algorithm provided an average objective function improvement of 5.82 % with comparable execution times. In conclusion, this first analysis showed that the new SBH heuristic generally produced very similar results with respect to Kordalewski’s heuristic. This is due to the fact that both heuristics consider the degree of row coverage, although in different ways, and, thus, the difficulty in covering them. However, the large amount of time the KORD algorithm took to solve r a i l instances points out that the use of SBH meets the requirements of real-time applications. Finally, the average percentage improvement of SBH with respect to CH, taking into account all instances, i.e., sets 4–6, scp and rail, amounted to 2.5 % .

We next compared the algorithms on unicost instances, obtained by setting the cost of all columns equal to 1, as in Grossman and Wool’s paper [30]. In particular, we compared SBH with the Altgreedy (ALTG) algorithm proposed by Grossman and Wool [30], introduced in Section 2.2. The results are shown in Table 6, Table 7 and Table 8, where the subdivision of instances was the same as before. The additional column “SBH vs. ALTG” reports the percentage improvement of SBH with respect to ALTG algorithm. Looking at Table 6, it is worth noting that the heuristic which performed better was that of Kordalewski. Indeed, our heuristic SBH was worse than KORD by about 3.49 % , while it was better than the other two greedy procedures, with a gap of 1.15 % . Here, computation times were all comparable and ranged between 0.002 and 0.007 s. SBH improved its performance in larger instances, as shown in Table 7 and Table 8. We would like to point out that ALTG and CH produced the same solution cost for all of the instances, except for the r a i l ones. In particular, SBH yielded an average improvement of 1.50 % on CH and ALTG ([30]) on s c p instances, and, respectively, 1.39 % and 12.97 % on r a i l instances. Comparing SBH and K O R D on the s c p instances, we observed that they were very similar with a 0.07 % improvement. In the largest instances (Table 8), as said before, it emerged that the computational time of KORD maade it impractical for real-time applications. The analysis showed that, in most cases, SBH produced better solutions than classical Chvatal’s algorithm. However, in a few instances CH presented a better solution. This phenomenon was attributable to the features of the instances. As shown in the example provided in Section 2.3, SBH immediately recognizes columns that must necessarily be present in the solution, while CH only selects them when they exhibit the lowest unit cost. In conclusion, the computational campaign revealed that SBH generally outperformed CH when considering instances containing columns with few covered rows.

4. Conclusions

In this paper, we proposed a new greedy heuristic, SBH, an improvement on the classical greedy algorithm proposed by Chvatal [18]. We showed that, in the vast majority of the test instances, SBH generated better solutions than other greedy algorithms, such as Kordalewski’s algorithm [19] and Altgreedy [30]. Computational tests also showed that Kordalewski’s algorithm is not suitable for real-time application, since it presents very large execution times, while our SBH algorithm runs in a few seconds, even on very large instances.

Author Contributions

Conceptualization, G.G. and E.G.; methodology and validation, T.A.; formal analysis and software, D.P. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data sharing not applicable. No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

This work was partly supported by Ministero dell’Università e della Ricerca (MUR) of Italy. This support is gratefully acknowledged (“Decreto Ministeriale n. 1062 del 10-08-2021. PON Ricerca e Innovazione 14-20 nuove risorse per contratti di ricerca su temi dell’innovazione” contract number 12-I-13147-10).

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Rubin, J. A technique for the solution of massive set covering problems, with application to airline crew scheduling. Transp. Sci. 1973, 7, 34–48. [Google Scholar] [CrossRef]

	

Marchiori, E.; Steenbeek, A. An evolutionary algorithm for large scale set covering problems with application to airline crew scheduling. In Proceedings of the Real-World Applications of Evolutionary Computing: EvoWorkshops 2000: EvoIASP, EvoSCONDI, EvoTel, EvoSTIM, EvoRob, and EvoFlight Edinburgh, Scotland, UK, 17 April 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 370–384. [Google Scholar]

	

Caprara, A.; Fischetti, M.; Toth, P.; Vigo, D.; Guida, P.L. Algorithms for railway crew management. Math. Program. 1997, 79, 125–141. [Google Scholar] [CrossRef]

	

Abrache, J.; Crainic, T.G.; Gendreau, M.; Rekik, M. Combinatorial auctions. Ann. Oper. Res. 2007, 153, 131–164. [Google Scholar] [CrossRef]

	

Foster, B.A.; Ryan, D.M. An integer programming approach to the vehicle scheduling problem. J. Oper. Res. Soc. 1976, 27, 367–384. [Google Scholar] [CrossRef]

	

Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F. A set-covering based heuristic algorithm for the periodic vehicle routing problem. Discret. Appl. Math. 2014, 163, 53–64. [Google Scholar] [CrossRef]

	

Bai, R.; Xue, N.; Chen, J.; Roberts, G.W. A set-covering model for a bidirectional multi-shift full truckload vehicle routing problem. Transp. Res. Part B Methodol. 2015, 79, 134–148. [Google Scholar] [CrossRef]

	

Vemuganti, R.R. Applications of set covering, set packing and set partitioning models: A survey. In Handbook of Combinatorial Optimization: Volume 1–3; Springer: Boston, MA, USA, 1998; pp. 573–746. [Google Scholar]

	

Karp, R.M. Reducibility among Combinatorial Problems; Miller, R.E., Thatcher, J.W., Eds.; Complexity of Computer Computations; Plenum Press: New York, NY, USA, 1972; Volume 10, pp. 978–981. [Google Scholar]

	

Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 174. [Google Scholar]

	

Etcheberry, J. The set-covering problem: A new implicit enumeration algorithm. Oper. Res. 1977, 25, 760–772. [Google Scholar] [CrossRef]

	

Balas, E.; Ho, A. Set Covering Algorithms Using Cutting Planes, Heuristics, and Subgradient Optimization: A Computational Study; Springer: Berlin/Heidelberg, Germany, 1980. [Google Scholar]

	

Beasley, J.E. An algorithm for set covering problem. Eur. J. Oper. Res. 1987, 31, 85–93. [Google Scholar] [CrossRef]

	

Beasley, J.E.; Jörnsten, K. Enhancing an algorithm for set covering problems. Eur. J. Oper. Res. 1992, 58, 293–300. [Google Scholar] [CrossRef]

	

Fisher, M.L.; Kedia, P. Optimal solution of set covering/partitioning problems using dual heuristics. Manag. Sci. 1990, 36, 674–688. [Google Scholar] [CrossRef]

	

Balas, E.; Carrera, M.C. A dynamic subgradient-based branch-and-bound procedure for set covering. Oper. Res. 1996, 44, 875–890. [Google Scholar] [CrossRef]

	

Caprara, A.; Toth, P.; Fischetti, M. Algorithms for the set covering problem. Ann. Oper. Res. 2000, 98, 353–371. [Google Scholar] [CrossRef]

	

Chvatal, V. A greedy heuristic for the set-covering problem. Math. Oper. Res. 1979, 4, 233–235. [Google Scholar] [CrossRef]

	

Kordalewski, D. New greedy heuristics for set cover and set packing. arXiv 2013, arXiv:1305.3584. [Google Scholar]

	

Wang, Y.; Lu, J.; Chen, J. Ts-ids algorithm for query selection in the deep web crawling. In Proceedings of the Web Technologies and Applications: 16th Asia-Pacific Web Conference, APWeb 2014, Changsha, China, 5–7 September 2014; Proceedings 16. Springer: Berlin/Heidelberg, Germany, 2014; pp. 189–200. [Google Scholar]

	

Singhania, S. Variations in Greedy Approach to Set Covering Problem. Ph.D. Thesis, University of Windsor (Canada), Windsor, ON, Canada, 2019. [Google Scholar]

	

Feo, T.A.; Resende, M.G. Greedy randomized adaptive search procedures. J. Glob. Optim. 1995, 6, 109–133. [Google Scholar] [CrossRef]

	

Haouari, M.; Chaouachi, J. A probabilistic greedy search algorithm for combinatorial optimisation with application to the set covering problem. J. Oper. Res. Soc. 2002, 53, 792–799. [Google Scholar] [CrossRef]

	

Beasley, J.E. A lagrangian heuristic for set-covering problems. Nav. Res. Logist. NRL 1990, 37, 151–164. [Google Scholar] [CrossRef]

	

Haddadi, S. Simple Lagrangian heuristic for the set covering problem. Eur. J. Oper. Res. 1997, 97, 200–204. [Google Scholar] [CrossRef]

	

Caprara, A.; Fischetti, M.; Toth, P. A heuristic method for the set covering problem. Oper. Res. 1999, 47, 730–743. [Google Scholar] [CrossRef]

	

Beasley, J.E.; Chu, P.C. A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 1996, 94, 392–404. [Google Scholar] [CrossRef]

	

Aickelin, U. An indirect genetic algorithm for set covering problems. J. Oper. Res. Soc. 2002, 53, 1118–1126. [Google Scholar] [CrossRef]

	

Lan, G.; DePuy, G.W.; Whitehouse, G.E. An effective and simple heuristic for the set covering problem. Eur. J. Oper. Res. 2007, 176, 1387–1403. [Google Scholar] [CrossRef]

	

Wool, A.; Grossman, T. Computational Experience with Approxima-Tion Algorithms for the Set Covering Problem; Technical Report CS94-25; Weizmann Institute of Science; Elsevier: Amsterdam, Netherlands, 1997. [Google Scholar]

	

Galinier, P.; Hertz, A. Solution Techniques for the Large Set Covering Problem. Les Cah. Du GERAD ISSN 2003, 7112440, 1–19. [Google Scholar] [CrossRef]

	

Lanza-Gutierrez, J.M.; Crawford, B.; Soto, R.; Berrios, N.; Gomez-Pulido, J.A.; Paredes, F. Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 2017, 70, 67–82. [Google Scholar] [CrossRef]

	

Sundar, S.; Singh, A. A hybrid heuristic for the set covering problem. Oper. Res. 2012, 12, 345–365. [Google Scholar] [CrossRef]

	

Maneengam, A.; Udomsakdigool, A. A set covering model for a green ship routing and scheduling problem with berth time-window constraints for use in the bulk cargo industry. Appl. Sci. 2021, 11, 4840. [Google Scholar] [CrossRef]

	

Derpich, I.; Valencia, J.; Lopez, M. The set covering and other problems: An empiric complexity analysis using the minimum ellipsoidal width. Mathematics 2023, 11, 2794. [Google Scholar] [CrossRef]

	

Borda, M. Fundamentals in Information Theory and Coding; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]

	

Beasley, J.E. OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 1990, 41, 1069–1072. [Google Scholar] [CrossRef]

[image: Table]

Table 1. Instances features: sets 4–6, A-E and NRE-NRH.

Table 1. Instances features: sets 4–6, A-E and NRE-NRH.

	Set
	|I|
	|J|
	Density
	Range
	Count

	4
	200
	1000
	2%
	1–100
	10

	5
	200
	2000
	2%
	1–100
	10

	6
	200
	1000
	5%
	1–100
	5

	A
	300
	3000
	2%
	1–100
	5

	B
	300
	3000
	5%
	1–100
	5

	C
	400
	4000
	2%
	1–100
	5

	D
	400
	4000
	5%
	1–100
	5

	E
	50
	500
	20%
	1–100
	5

	NRE
	500
	5000
	10%
	1–100
	5

	NRF
	500
	5000
	20%
	1–100
	5

	NRG
	1000
	10,000
	2%
	1–100
	5

	NRH
	1000
	10,000
	5%
	1–100
	5

[image: Table]

Table 2. Instance features: rail sets.

Table 2. Instance features: rail sets.

	Instance
	|I|
	|J|
	Range
	Density

	rail516
	516
	47,311
	1–2
	1.3%

	rail582
	582
	55,515
	1–2
	1.2%

	rail2536
	2536
	1,081,841
	1–2
	0.4%

	rail507
	507
	63,009
	1–2
	1.3%

	rail2586
	2586
	920,683
	1–2
	0.3%

	rail4284
	4284
	1,092,610
	1–2
	0.2%

	rail4872
	4872
	968,672
	1–2
	0.2%

[image: Table]

Table 3. Results for instance sets 4–6.

Table 3. Results for instance sets 4–6.

	
Instance

	
BS

	
CH

	
KORD

	
SBH

	
SBH vs. CH

	
SBH vs. KORD

	
SOL

	
TIME

	
GAP

	
SOL

	
TIME

	
GAP

	
SOL

	
TIME

	
GAP

	
4.1

	
429

	
463

	
0.002

	
7.93%

	
458

	
0.011

	
6.76%

	
471

	
0.002

	
9.79%

	
1.73%

	
2.84%

	
4.2

	
512

	
582

	
0.002

	
13.67%

	
569

	
0.010

	
11.13%

	
587

	
0.002

	
14.65%

	
0.86%

	
3.16%

	
4.3

	
516

	
598

	
0.002

	
15.89%

	
576

	
0.011

	
11.63%

	
577

	
0.003

	
11.82%

	
−3.51%

	
0.17%

	
4.4

	
494

	
548

	
0.002

	
10.93%

	
540

	
0.009

	
9.31%

	
542

	
0.002

	
9.72%

	
−1.09%

	
0.37%

	
4.5

	
512

	
577

	
0.002

	
12.70%

	
572

	
0.009

	
11.72%

	
571

	
0.003

	
11.52%

	
−1.04%

	
−0.17%

	
4.6

	
560

	
615

	
0.002

	
9.82%

	
603

	
0.008

	
7.68%

	
599

	
0.002

	
6.96%

	
−2.60%

	
−0.66%

	
4.7

	
430

	
476

	
0.003

	
10.70%

	
480

	
0.008

	
11.63%

	
474

	
0.002

	
10.23%

	
−0.42%

	
−1.25%

	
4.8

	
492

	
533

	
0.003

	
8.33%

	
520

	
0.009

	
5.69%

	
553

	
0.002

	
12.40%

	
3.75%

	
6.35%

	
4.9

	
641

	
747

	
0.003

	
16.54%

	
721

	
0.010

	
12.48%

	
723

	
0.003

	
12.79%

	
−3.21%

	
0.28%

	
4.10

	
514

	
556

	
0.002

	
8.17%

	
551

	
0.010

	
7.20%

	
548

	
0.002

	
6.61%

	
−1.44%

	
−0.54%

	
5.1

	
253

	
289

	
0.005

	
14.23%

	
289

	
0.016

	
14.23%

	
289

	
0.005

	
14.23%

	
0.00%

	
0.00%

	
5.2

	
302

	
348

	
0.005

	
15.23%

	
345

	
0.019

	
14.24%

	
337

	
0.006

	
11.59%

	
−3.16%

	
−2.32%

	
5.3

	
226

	
246

	
0.004

	
8.85%

	
246

	
0.017

	
8.85%

	
243

	
0.005

	
7.52%

	
−1.22%

	
−1.22%

	
5.4

	
242

	
265

	
0.004

	
9.50%

	
264

	
0.016

	
9.09%

	
266

	
0.004

	
9.92%

	
0.38%

	
0.76%

	
5.5

	
211

	
236

	
0.004

	
11.85%

	
228

	
0.016

	
8.06%

	
230

	
0.004

	
9.00%

	
−2.54%

	
0.88%

	
5.6

	
213

	
251

	
0.004

	
17.84%

	
249

	
0.016

	
16.90%

	
245

	
0.004

	
15.02%

	
−2.39%

	
−1.61%

	
5.7

	
293

	
326

	
0.004

	
11.26%

	
314

	
0.017

	
7.17%

	
322

	
0.004

	
9.90%

	
−1.23%

	
2.55%

	
5.8

	
288

	
323

	
0.004

	
12.15%

	
316

	
0.016

	
9.72%

	
315

	
0.005

	
9.38%

	
−2.48%

	
−0.32%

	
5.9

	
279

	
312

	
0.004

	
11.83%

	
304

	
0.015

	
8.96%

	
304

	
0.005

	
8.96%

	
−2.56%

	
0.00%

	
5.10

	
265

	
293

	
0.003

	
10.57%

	
285

	
0.016

	
7.55%

	
286

	
0.008

	
7.92%

	
−2.39%

	
0.35%

	
6.1

	
138

	
159

	
0.004

	
15.22%

	
156

	
0.010

	
13.04%

	
156

	
0.006

	
13.04%

	
−1.89%

	
0.00%

	
6.2

	
146

	
170

	
0.004

	
16.44%

	
164

	
0.009

	
12.33%

	
167

	
0.007

	
14.38%

	
−1.76%

	
1.83%

	
6.3

	
145

	
161

	
0.004

	
11.03%

	
152

	
0.009

	
4.83%

	
163

	
0.006

	
12.41%

	
1.24%

	
7.24%

	
6.4

	
131

	
149

	
0.004

	
13.74%

	
147

	
0.009

	
12.21%

	
138

	
0.007

	
5.34%

	
−7.38%

	
−6.12%

	
6.5

	
161

	
196

	
0.004

	
21.74%

	
190

	
0.009

	
18.01%

	
194

	
0.006

	
20.50%

	
−1.02%

	
2.11%

	
Average

	

	
0.003

	
12.65%

	

	
0.012

	
10.42%

	

	
0.004

	
11.03%

	
−1.42%

	
0.59%

[image: Table]

Table 4. Results for instance sets s c p .

Table 4. Results for instance sets s c p .

	
Instance

	
BS

	
CH

	
KORD

	
SBH

	
SBH vs. CH

	
SBH vs. KORD

	
SOL

	
TIME

	
GAP

	
SOL

	
TIME

	
GAP

	
SOL

	
TIME

	
GAP

	
A.1

	
253

	
288

	
0.008

	
13.83%

	
279

	
0.033

	
10.28%

	
281

	
0.012

	
11.07%

	
−2.43%

	
0.72%

	
A.2

	
252

	
284

	
0.008

	
12.70%

	
276

	
0.035

	
9.52%

	
282

	
0.011

	
11.90%

	
−0.70%

	
2.17%

	
A.3

	
232

	
270

	
0.008

	
16.38%

	
253

	
0.037

	
9.05%

	
253

	
0.012

	
9.05%

	
−6.30%

	
0.00%

	
A.4

	
234

	
278

	
0.008

	
18.80%

	
265

	
0.037

	
13.25%

	
273

	
0.012

	
16.67%

	
−1.80%

	
3.02%

	
A.5

	
236

	
271

	
0.008

	
14.83%

	
255

	
0.033

	
8.05%

	
258

	
0.012

	
9.32%

	
−4.80%

	
1.18%

	
B.1

	
69

	
77

	
0.019

	
11.59%

	
75

	
0.044

	
8.70%

	
75

	
0.034

	
8.70%

	
−2.60%

	
0.00%

	
B.2

	
76

	
86

	
0.018

	
13.16%

	
84

	
0.036

	
10.53%

	
86

	
0.051

	
13.16%

	
0.00%

	
2.38%

	
B.3

	
80

	
89

	
0.019

	
11.25%

	
85

	
0.039

	
6.25%

	
85

	
0.038

	
6.25%

	
−4.49%

	
0.00%

	
B.4

	
79

	
89

	
0.021

	
12.66%

	
89

	
0.046

	
12.66%

	
87

	
0.035

	
10.13%

	
−2.25%

	
−2.25%

	
B.5

	
72

	
78

	
0.019

	
8.33%

	
78

	
0.037

	
8.33%

	
79

	
0.052

	
9.72%

	
1.28%

	
1.28%

	
C.1

	
227

	
258

	
0.014

	
13.66%

	
254

	
0.059

	
11.89%

	
255

	
0.028

	
12.33%

	
−1.16%

	
0.39%

	
C.2

	
219

	
258

	
0.017

	
17.81%

	
251

	
0.061

	
14.61%

	
249

	
0.023

	
13.70%

	
−3.49%

	
−0.80%

	
C.3

	
243

	
276

	
0.014

	
13.58%

	
271

	
0.059

	
11.52%

	
270

	
0.021

	
11.11%

	
−2.17%

	
−0.37%

	
C.4

	
219

	
257

	
0.014

	
17.35%

	
252

	
0.059

	
15.07%

	
256

	
0.030

	
16.89%

	
−0.39%

	
1.59%

	
C.5

	
215

	
233

	
0.013

	
8.37%

	
229

	
0.060

	
6.51%

	
230

	
0.026

	
6.98%

	
−1.29%

	
0.44%

	
D.1

	
60

	
74

	
0.049

	
23.33%

	
68

	
0.066

	
13.33%

	
71

	
0.086

	
18.33%

	
−4.05%

	
4.41%

	
D.2

	
66

	
74

	
0.042

	
12.12%

	
70

	
0.070

	
6.06%

	
71

	
0.088

	
7.58%

	
−4.05%

	
1.43%

	
D.3

	
72

	
83

	
0.037

	
15.28%

	
81

	
0.081

	
12.50%

	
79

	
0.104

	
9.72%

	
−4.82%

	
−2.47%

	
D.4

	
62

	
71

	
0.042

	
14.52%

	
67

	
0.071

	
8.06%

	
65

	
0.085

	
4.84%

	
−8.45%

	
−2.99%

	
D.5

	
61

	
69

	
0.037

	
13.11%

	
70

	
0.070

	
14.75%

	
74

	
0.098

	
21.31%

	
7.25%

	
5.71%

	
E.1

	
5

	
5

	
0.002

	
0.00%

	
5

	
0.001

	
0.00%

	
5

	
0.005

	
0.00%

	
0.00%

	
0.00%

	
E.2

	
5

	
5

	
0.003

	
0.00%

	
6

	
0.002

	
20.00%

	
5

	
0.003

	
0.00%

	
0.00%

	
−16.67%

	
E.3

	
5

	
5

	
0.002

	
0.00%

	
5

	
0.002

	
0.00%

	
5

	
0.003

	
0.00%

	
0.00%

	
0.00%

	
E.4

	
5

	
6

	
0.002

	
20.00%

	
5

	
0.001

	
0.00%

	
5

	
0.005

	
0.00%

	
−16.67%

	
0.00%

	
E.5

	
5

	
5

	
0.002

	
0.00%

	
5

	
0.002

	
0.00%

	
5

	
0.003

	
0.00%

	
0.00%

	
0.00%

	
NRE.1

	
29

	
30

	
0.150

	
3.45%

	
32

	
0.217

	
10.34%

	
30

	
0.772

	
3.45%

	
0.00%

	
−6.25%

	
NRE.2

	
30

	
36

	
0.163

	
20.00%

	
34

	
0.202

	
13.33%

	
35

	
0.836

	
16.67%

	
−2.78%

	
2.94%

	
NRE.3

	
27

	
31

	
0.145

	
14.81%

	
31

	
0.204

	
14.81%

	
30

	
0.661

	
11.11%

	
−3.23%

	
−3.23%

	
NRE.4

	
28

	
32

	
0.153

	
14.29%

	
33

	
0.211

	
17.86%

	
31

	
0.622

	
10.71%

	
−3.13%

	
−6.06%

	
NRE.5

	
28

	
33

	
0.151

	
17.86%

	
31

	
0.202

	
10.71%

	
32

	
0.579

	
14.29%

	
−3.03%

	
3.23%

	
NRF.1

	
14

	
16

	
0.324

	
14.29%

	
15

	
0.312

	
7.14%

	
16

	
2.216

	
14.29%

	
0.00%

	
6.67%

	
NRF.2

	
15

	
16

	
0.316

	
6.67%

	
16

	
0.369

	
6.67%

	
16

	
2.544

	
6.67%

	
0.00%

	
0.00%

	
NRF.3

	
14

	
17

	
0.318

	
21.43%

	
15

	
0.328

	
7.14%

	
16

	
2.346

	
14.29%

	
−5.88%

	
6.67%

	
NRF.4

	
14

	
17

	
0.322

	
21.43%

	
16

	
0.318

	
14.29%

	
16

	
2.510

	
14.29%

	
−5.88%

	
0.00%

	
NRF.5

	
13

	
16

	
0.320

	
23.08%

	
15

	
0.312

	
15.38%

	
15

	
2.465

	
15.38%

	
−6.25%

	
0.00%

	
NRG.1

	
176

	
203

	
0.120

	
15.34%

	
197

	
0.545

	
11.93%

	
197

	
0.287

	
11.93%

	
−2.96%

	
0.00%

	
NRG.2

	
154

	
182

	
0.136

	
18.18%

	
176

	
0.512

	
14.29%

	
171

	
0.297

	
11.04%

	
−6.04%

	
−2.84%

	
NRG.3

	
166

	
192

	
0.123

	
15.66%

	
186

	
0.549

	
12.05%

	
186

	
0.322

	
12.05%

	
−3.13%

	
0.00%

	
NRG.4

	
168

	
191

	
0.137

	
13.69%

	
191

	
0.518

	
13.69%

	
193

	
0.307

	
14.88%

	
1.05%

	
1.05%

	
NRG.5

	
168

	
194

	
0.120

	
15.48%

	
188

	
0.528

	
11.90%

	
190

	
0.312

	
13.10%

	
−2.06%

	
1.06%

	
NRH.1

	
63

	
76

	
0.330

	
20.63%

	
74

	
0.826

	
17.46%

	
72

	
1.453

	
14.29%

	
−5.26%

	
−2.70%

	
NRH.2

	
63

	
74

	
0.340

	
17.46%

	
72

	
0.824

	
14.29%

	
74

	
1.432

	
17.46%

	
0.00%

	
2.78%

	
NRH.3

	
59

	
65

	
0.335

	
10.17%

	
71

	
0.785

	
20.34%

	
67

	
1.516

	
13.56%

	
3.08%

	
−5.63%

	
NRH.4

	
58

	
69

	
0.322

	
18.97%

	
65

	
0.784

	
12.07%

	
65

	
1.610

	
12.07%

	
−5.80%

	
0.00%

	
NRH.5

	
55

	
63

	
0.327

	
14.55%

	
61

	
0.779

	
10.91%

	
61

	
1.399

	
10.91%

	
−3.17%

	
0.00%

	
Average

	

	
0.113

	
13.78%

	

	
0.230

	
10.83%

	

	
0.564

	
10.69%

	
−2.62%

	
−0.07%

[image: Table]

Table 5. Results for instance set r a i l .

Table 5. Results for instance set r a i l .

	
Instance

	
BS

	
CH

	
SBH

	
SBH vs. CH

	
SOL

	
TIME

	
GAP

	
SOL

	
TIME

	
GAP

	
rail507

	
174

	
216

	
0.193

	
24.14%

	
199

	
0.277

	
14.37%

	
−7.87%

	
rail516

	
182

	
204

	
0.160

	
12.09%

	
196

	
0.211

	
7.69%

	
−3.92%

	
rail582

	
211

	
251

	
0.214

	
18.96%

	
240

	
0.310

	
13.74%

	
−4.38%

	
rail2536

	
691

	
894

	
7.276

	
29.38%

	
828

	
10.206

	
19.83%

	
−7.38%

	
rail2586

	
952

	
1166

	
5.521

	
22.48%

	
1089

	
8.224

	
14.39%

	
−6.60%

	
rail4284

	
1065

	
1376

	
8.284

	
29.20%

	
1311

	
12.165

	
23.10%

	
−4.72%

	
rail4872

	
1538

	
1902

	
7.318

	
23.67%

	
1790

	
10.199

	
16.38%

	
−5.89%

	
Average

	

	
4.138

	
22.84%

	

	
5.942

	
15.64%

	
−5.82%

[image: Table]

Table 6. Results for unicost instance sets 4–6.

Table 6. Results for unicost instance sets 4–6.

	
Instance

	
CH

	
ALTG

	
KORD

	
SBH

	
SBH vs. CH

	
SBH vs. ALTG

	
SBH vs. KORD

	
SOL

	
TIME

	
SOL

	
TIME

	
SOL

	
TIME

	
SOL

	
TIME

	
4.1

	
41

	
0.003

	
41

	
0.001

	
41

	
0.005

	
42

	
0.003

	
2.44%

	
2.44%

	
2.44%

	
4.2

	
41

	
0.002

	
41

	
0.001

	
38

	
0.004

	
42

	
0.002

	
2.44%

	
2.44%

	
10.53%

	
4.3

	
43

	
0.002

	
43

	
0.001

	
39

	
0.004

	
43

	
0.002

	
0.00%

	
0.00%

	
10.26%

	
4.4

	
44

	
0.002

	
44

	
0.001

	
42

	
0.005

	
45

	
0.002

	
2.27%

	
2.27%

	
7.14%

	
4.5

	
44

	
0.002

	
44

	
0.001

	
40

	
0.004

	
41

	
0.002

	
−6.82%

	
−6.82%

	
2.50%

	
4.6

	
43

	
0.003

	
43

	
0.001

	
40

	
0.006

	
42

	
0.002

	
−2.33%

	
−2.33%

	
5.00%

	
4.7

	
43

	
0.002

	
43

	
0.001

	
41

	
0.005

	
43

	
0.003

	
0.00%

	
0.00%

	
4.88%

	
4.8

	
42

	
0.002

	
42

	
0.001

	
40

	
0.005

	
39

	
0.003

	
−7.14%

	
−7.14%

	
−2.50%

	
4.9

	
42

	
0.002

	
42

	
0.001

	
42

	
0.005

	
42

	
0.003

	
0.00%

	
0.00%

	
0.00%

	
4.10

	
43

	
0.002

	
43

	
0.001

	
41

	
0.006

	
41

	
0.002

	
−4.65%

	
−4.65%

	
0.00%

	
5.1

	
37

	
0.007

	
37

	
0.002

	
37

	
0.009

	
38

	
0.005

	
2.70%

	
2.70%

	
2.70%

	
5.2

	
38

	
0.005

	
38

	
0.004

	
36

	
0.008

	
37

	
0.007

	
−2.63%

	
−2.63%

	
2.78%

	
5.3

	
37

	
0.004

	
37

	
0.003

	
35

	
0.012

	
38

	
0.005

	
2.70%

	
2.70%

	
8.57%

	
5.4

	
39

	
0.003

	
39

	
0.002

	
36

	
0.008

	
37

	
0.004

	
−5.13%

	
−5.13%

	
2.78%

	
5.5

	
37

	
0.004

	
37

	
0.002

	
37

	
0.008

	
37

	
0.007

	
0.00%

	
0.00%

	
0.00%

	
5.6

	
40

	
0.004

	
40

	
0.002

	
36

	
0.008

	
37

	
0.005

	
−7.50%

	
−7.50%

	
2.78%

	
5.7

	
38

	
0.005

	
38

	
0.002

	
37

	
0.008

	
36

	
0.006

	
−5.26%

	
−5.26%

	
−2.70%

	
5.8

	
39

	
0.005

	
39

	
0.002

	
37

	
0.010

	
39

	
0.005

	
0.00%

	
0.00%

	
5.41%

	
5.9

	
38

	
0.003

	
38

	
0.002

	
37

	
0.009

	
39

	
0.005

	
2.63%

	
2.63%

	
5.41%

	
5.10

	
39

	
0.003

	
39

	
0.002

	
36

	
0.009

	
38

	
0.004

	
−2.56%

	
−2.56%

	
5.56%

	
6.1

	
23

	
0.004

	
23

	
0.002

	
22

	
0.005

	
23

	
0.006

	
0.00%

	
0.00%

	
4.55%

	
6.2

	
22

	
0.005

	
22

	
0.003

	
21

	
0.005

	
21

	
0.006

	
−4.55%

	
−4.55%

	
0.00%

	
6.3

	
23

	
0.005

	
23

	
0.002

	
23

	
0.005

	
23

	
0.007

	
0.00%

	
0.00%

	
0.00%

	
6.4

	
22

	
0.004

	
22

	
0.002

	
22

	
0.005

	
23

	
0.008

	
4.55%

	
4.55%

	
4.55%

	
6.5

	
23

	
0.005

	
23

	
0.002

	
22

	
0.006

	
23

	
0.006

	
0.00%

	
0.00%

	
4.55%

	
Average

	

	
0.003

	

	
0.002

	

	
0.007

	

	
0.004

	
−1.15%

	
−1.15%

	
3.49%

[image: Table]

Table 7. Results for unicost instance sets s c p .

Table 7. Results for unicost instance sets s c p .

	
Instance

	
CH

	
ALTG

	
KORD

	
SBH

	
SBH vs. CH

	
SBH vs. ALTG

	
SBH vs. KORD

	
SOL

	
TIME

	
SOL

	
TIME

	
SOL

	
TIME

	
SOL

	
TIME

	
A.1

	
42

	
0.009

	
42

	
0.004

	
41

	
0.019

	
43

	
0.011

	
2.38%

	
2.38%

	
4.88%

	
A.2

	
42

	
0.008

	
42

	
0.005

	
41

	
0.020

	
42

	
0.011

	
0.00%

	
0.00%

	
2.44%

	
A.3

	
43

	
0.009

	
43

	
0.004

	
41

	
0.020

	
42

	
0.011

	
−2.33%

	
−2.33%

	
2.44%

	
A.4

	
41

	
0.008

	
41

	
0.005

	
39

	
0.018

	
41

	
0.011

	
0.00%

	
0.00%

	
5.13%

	
A.5

	
43

	
0.007

	
43

	
0.004

	
41

	
0.017

	
41

	
0.011

	
−4.65%

	
−4.65%

	
0.00%

	
B.1

	
24

	
0.019

	
24

	
0.010

	
23

	
0.027

	
23

	
0.044

	
−4.17%

	
−4.17%

	
0.00%

	
B.2

	
23

	
0.020

	
23

	
0.013

	
24

	
0.028

	
22

	
0.038

	
−4.35%

	
−4.35%

	
−8.33%

	
B.3

	
23

	
0.019

	
23

	
0.011

	
23

	
0.026

	
23

	
0.036

	
0.00%

	
0.00%

	
0.00%

	
B.4

	
24

	
0.024

	
24

	
0.011

	
23

	
0.031

	
23

	
0.037

	
−4.17%

	
−4.17%

	
0.00%

	
B.5

	
25

	
0.021

	
25

	
0.011

	
24

	
0.029

	
24

	
0.038

	
−4.00%

	
−4.00%

	
0.00%

	
C.1

	
47

	
0.015

	
47

	
0.008

	
46

	
0.041

	
46

	
0.023

	
−2.13%

	
−2.13%

	
0.00%

	
C.2

	
47

	
0.018

	
47

	
0.009

	
47

	
0.037

	
45

	
0.023

	
−4.26%

	
−4.26%

	
−4.26%

	
C.3

	
47

	
0.017

	
47

	
0.007

	
46

	
0.038

	
46

	
0.023

	
−2.13%

	
−2.13%

	
0.00%

	
C.4

	
46

	
0.013

	
46

	
0.008

	
45

	
0.036

	
46

	
0.023

	
0.00%

	
0.00%

	
2.22%

	
C.5

	
47

	
0.013

	
47

	
0.012

	
46

	
0.040

	
46

	
0.023

	
−2.13%

	
−2.13%

	
0.00%

	
D.1

	
27

	
0.036

	
27

	
0.020

	
26

	
0.047

	
27

	
0.078

	
0.00%

	
0.00%

	
3.85%

	
D.2

	
26

	
0.037

	
26

	
0.021

	
26

	
0.048

	
27

	
0.082

	
3.85%

	
3.85%

	
3.85%

	
D.3

	
27

	
0.040

	
27

	
0.020

	
27

	
0.049

	
26

	
0.077

	
−3.70%

	
−3.70%

	
−3.70%

	
D.4

	
26

	
0.038

	
26

	
0.020

	
26

	
0.048

	
27

	
0.080

	
3.85%

	
3.85%

	
3.85%

	
D.5

	
27

	
0.039

	
27

	
0.020

	
26

	
0.050

	
27

	
0.091

	
0.00%

	
0.00%

	
3.85%

	
E.1

	
5

	
0.002

	
5

	
0.001

	
5

	
0.001

	
5

	
0.003

	
0.00%

	
0.00%

	
0.00%

	
E.2

	
5

	
0.002

	
5

	
0.001

	
6

	
0.001

	
5

	
0.004

	
0.00%

	
0.00%

	
−16.67%

	
E.3

	
5

	
0.002

	
5

	
0.001

	
5

	
0.001

	
5

	
0.003

	
0.00%

	
0.00%

	
0.00%

	
E.4

	
6

	
0.002

	
6

	
0.001

	
5

	
0.001

	
5

	
0.004

	
−16.67%

	
−16.67%

	
0.00%

	
E.5

	
5

	
0.002

	
5

	
0.001

	
5

	
0.001

	
5

	
0.003

	
0.00%

	
0.00%

	
0.00%

	
NRE.1

	
18

	
0.144

	
18

	
0.089

	
18

	
0.178

	
18

	
0.577

	
0.00%

	
0.00%

	
0.00%

	
NRE.2

	
18

	
0.150

	
18

	
0.088

	
18

	
0.188

	
18

	
0.570

	
0.00%

	
0.00%

	
0.00%

	
NRE.3

	
18

	
0.145

	
18

	
0.089

	
18

	
0.172

	
18

	
0.560

	
0.00%

	
0.00%

	
0.00%

	
NRE.4

	
18

	
0.142

	
18

	
0.087

	
18

	
0.174

	
18

	
0.552

	
0.00%

	
0.00%

	
0.00%

	
NRE.5

	
18

	
0.148

	
18

	
0.088

	
18

	
0.180

	
18

	
0.551

	
0.00%

	
0.00%

	
0.00%

	
NRF.1

	
11

	
0.311

	
11

	
0.201

	
11

	
0.321

	
11

	
2.513

	
0.00%

	
0.00%

	
0.00%

	
NRF.2

	
11

	
0.309

	
11

	
0.214

	
11

	
0.315

	
11

	
2.609

	
0.00%

	
0.00%

	
0.00%

	
NRF.3

	
11

	
0.307

	
11

	
0.211

	
11

	
0.309

	
11

	
2.560

	
0.00%

	
0.00%

	
0.00%

	
NRF.4

	
11

	
0.299

	
11

	
0.203

	
11

	
0.339

	
11

	
2.313

	
0.00%

	
0.00%

	
0.00%

	
NRF.5

	
11

	
0.309

	
11

	
0.204

	
11

	
0.306

	
11

	
2.320

	
0.00%

	
0.00%

	
0.00%

	
NRG.1

	
65

	
0.116

	
65

	
0.077

	
64

	
0.463

	
64

	
0.262

	
−1.54%

	
−1.54%

	
0.00%

	
NRG.2

	
65

	
0.115

	
65

	
0.125

	
65

	
0.402

	
65

	
0.258

	
0.00%

	
0.00%

	
0.00%

	
NRG.3

	
66

	
0.125

	
66

	
0.110

	
64

	
0.442

	
64

	
0.273

	
−3.03%

	
−3.03%

	
0.00%

	
NRG.4

	
66

	
0.124

	
66

	
0.136

	
65

	
0.437

	
65

	
0.279

	
−1.52%

	
−1.52%

	
0.00%

	
NRG.5

	
66

	
0.115

	
66

	
0.076

	
64

	
0.490

	
64

	
0.271

	
−3.03%

	
−3.03%

	
0.00%

	
NRH.1

	
36

	
0.340

	
36

	
0.217

	
36

	
0.712

	
35

	
1.460

	
−2.78%

	
−2.78%

	
−2.78%

	
NRH.2

	
36

	
0.327

	
36

	
0.247

	
35

	
0.658

	
35

	
1.424

	
−2.78%

	
−2.78%

	
0.00%

	
NRH.3

	
36

	
0.323

	
36

	
0.236

	
35

	
0.640

	
35

	
1.458

	
−2.78%

	
−2.78%

	
0.00%

	
NRH.4

	
36

	
0.334

	
36

	
0.216

	
35

	
0.653

	
35

	
1.436

	
−2.78%

	
−2.78%

	
0.00%

	
NRH.5

	
36

	
0.324

	
36

	
0.211

	
35

	
0.644

	
35

	
1.427

	
−2.78%

	
−2.78%

	
0.00%

	
Average

	

	
0.110

	

	
0.075

	

	
0.193

	

	
0.544

	
−1.50%

	
−1.50%

	
−0.07%

[image: Table]

Table 8. Results for unicost instance sets r a i l .

Table 8. Results for unicost instance sets r a i l .

	
Instance

	
CH

	
ALTG

	
KORD

	
SBH

	
SBH vs. CH

	
SBH vs. ALTG

	
SBH vs. KORD

	
SOL

	
TIME

	
SOL

	
TIME

	
SOL

	
TIME

	
SOL

	
TIME

	
rail2536

	
894

	
7.263

	
975

	
5.561

	
821

	
126.091

	
847

	
10.030

	
−5.26%

	
−13.13%

	
3.17%

	
rail2586

	
1166

	
5.562

	
1253

	
4.539

	
1112

	
172.448

	
1139

	
7.300

	
−2.32%

	
−9.10%

	
2.43%

	
rail4284

	
1376

	
8.372

	
1563

	
6.637

	
1285

	
260.187

	
1339

	
12.740

	
−2.69%

	
−14.33%

	
4.20%

	
rail4872

	
1902

	
7.399

	
2137

	
6.178

	
1848

	
315.863

	
1860

	
11.312

	
−2.21%

	
−12.96%

	
0.65%

	
rail507

	
216

	
0.193

	
237

	
0.144

	
211

	
1.276

	
211

	
0.267

	
−2.31%

	
−10.97%

	
0.00%

	
rail516

	
204

	
0.156

	
259

	
0.121

	
232

	
1.432

	
211

	
0.218

	
3.43%

	
−18.53%

	
−9.05%

	
rail582

	
251

	
0.215

	
289

	
0.148

	
265

	
1.729

	
255

	
0.300

	
1.59%

	
−11.76%

	
−3.77%

	
Average

	

	
4.166

	

	
3.333

	

	
125.575

	

	
6.024

	
−1.39%

	
−12.97%

	
−0.34%

	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

nav.xhtml

 algorithms-16-00321

 		
 algorithms-16-00321

media/file0.png

