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Abstract: The hybrid model for analyzing distortions of a laser beam passed through a moderately
scattering medium with the number of scattering events up to 10 is developed and investigated.
The model implemented the Monte Carlo technique to simulate the beam propagation through a
scattering layer, a ray-tracing technique to propagate the scattered beam to the measurements plane,
and the Shack-Hartmann technique to calculate the scattered laser beam distortions. The results
obtained from the developed model were confirmed during the laboratory experiment. Both the
numerical model and laboratory experiment showed that with an increase of the concentration value
of scattering particles in the range from 10° to 10 mm 3, the amplitude of distortions of laser beam
propagated through the layer of the scattering medium increases exponentially.

Keywords: Shack-Hartmann sensor; Monte Carlo simulation; ray-tracing algorithm; geometrical
optics; hybrid algorithm; scattering medium; scattered laser beam; adaptive optics

1. Introduction

Currently, optical diagnostic techniques are essential experimental tools employed in
a large and diverse set of research and industrial applications. Based on measurements of
scattering intensity and light extinction, a number of these techniques are able to determine
the parameters of scattering particles, such as size, shape, and concentration [1]. Examples
of applications are numerous: in meteorology, the measurement of atmospheric constituents
is performed by analyzing the backscattering light signal via the LIDAR (Light Detection
and Ranging) technique [2]. In oceanography, marine picoplankton is characterized from
the laser light scattered by the illuminated particles [3]. The optical radiation is actively
used in various bio-medical applications as a non-invasive diagnostic tool, as well as to
treat a number of diseases [4]. During the past three decades, the investigation of laser light
propagation in skin tissue and the human brain has been particularly extensive [4-10]. In
combustion engineering, a variety of laser-based diagnostics have been developed over
more than three decades in order to determine the physical properties of fuel droplets
from atomizing sprays [6]. These optical measurements are of fundamental importance
in the improvement of combustion efficiency and in the reduction of pollutant emissions
from modern internal combustion engines and gas turbines. Another field where optical
diagnostic techniques are of particular significance is free-space transmission of energy or
information, namely, free-space optical communications, wireless energy transfer through
the scattering and turbulent atmosphere, imaging objects through scattering atmospheric
aerosol, space debris removal, etc.

One of the limitations of the optical techniques is related to the radiation attenuation
and scattering. Under optically thick conditions, the scattering can significantly decrease the
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quality of the beam and thus introduce errors in measurements. However, it is necessary
not only to simulate the propagation of the radiation through the medium but also to
establish techniques to measure the beam distortions introduced by that medium.

Measuring laser beam distortions is one of the existing problems that has to be solved.
Another problem that is also of great importance is compensating measured distortions.
As is known, in a turbid medium, a part of a laser beam energy is absorbed while the
rest is scattered. This scattered light makes objects look blurred and degrades beam-
focusing efficiency. There are a wide variety of applications for which the solution of the
problem is very important, i.e., wireless data transmission, pattern recognition, and medical
noninvasive diagnosis, among others [11,12]. The wavefront-shaping technique to focus
the radiation that propagates through a strongly scattering layer was developed back in
2007 [13]. The authors used the SLM and were able to properly shape the wavefront to
focus the radiation through scattering objects. Various techniques have been developed
since 2007 to resolve the focusing of light through scattering media [14,15]. Authors of [16]
showed the ability to obtain clear images of objects by means of holographic techniques that
reverse a scattering process. Authors of [17] use coherence and spatial gating to produce
images of optical properties of a tissue up to 9-mm deep with millimeter-scale resolution
via a technique known as multispectral multiple-scattering low-coherence interferometry.
Imaging of fluorescent objects when the space behind a scattering medium is limited can
be achieved using the technique described in [18]. SLM can be used to obtain images of
objects located within or behind a scattering layer [19-22]. In [23], authors demonstrated a
steady-state focusing of coherent light through dynamic scattering media. In [24], authors
demonstrated the use of the method of inversion of transmission matrix. They proved
that the focus” peak-to-background intensity ratio can be higher compared to conventional
methods. In [25], the authors proposed a new technique that allowed for the 204-fold
increase of the peak-to-noise ratio. Another group of scientists proposed the system that
uses the full-polarization optical digital-phase conjugation and doubles the peak-to-noise
ratio [26]. In [27], programmable acoustic optic deflectors were used to obtain the images
of the targets in the living tissue. Bimorph deformable mirrors, as well as stacked-actuator
mirrors, are also used to increase the radiation energy in the far field while focusing a laser
beam through a scattering medium [28-30], turbulent medium [31,32], or a pinhole [33]
for free-space optical communication systems. Spatial-light modulators are widely used in
different areas of research; their use is not limited to the imaging and focusing applications
only. Spatial-light modulators also show vast potential in such applications as micro- and
nano-scale fabrication [34], and laser beam shaping [35,36].

In this particular paper, we will not concentrate on the problem of compensating
distortions. Instead, we present the hybrid model for (1) The simulation of laser beam
propagation through the moderately scattering medium using the Monte Carlo technique;
and (2) Measuring distortions obtained by the laser beam by means of the numerical model
of the Shack-Hartmann sensor. The proposed model was briefly mentioned in the authors’
previous paper [37], which was devoted to the compensation of measured laser beam
distortions using bimorph deformable mirrors. In this paper, we would like to describe the
proposed model in detail and provide the results of the numerical analysis, as well as the
experimental validation of the model.

The research is organized as follows. First, a radiative transfer equation and its possible
solutions are presented. Second, a Monte Carlo technique to solve the radiative transfer
equation is described; its software implementation and verification are provided. Third, the
Shack-Hartmann principle is explained, and the developed numerical model is described.
Fourth, the laboratory experimental setup with the Shack—-Hartmann sensor is shown. A
comparison and discussion of numerical and experimental results obtained are presented.
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2. Materials and Methods
2.1. Radiative Transfer Equation

Estimation of radiation attenuation and multiple scattering effects requires knowledge
of the radiative transfer of optical energy through the medium [1]. In the field of optical
diagnostics, the radiative transfer equation is commonly used to describe the photons
transport, specifying a balance of optical energy distributed between the incident, outgoing,
absorbing, and scattering radiation propagated through the medium. The radiative transfer
equation is presented below:

- —
r,s
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47t

where [ is a radiance in the particular direction (either s or s’), t is time, r is the vector

—
position, s is the incident direction of propagation, . is an extinction coefficient [38,39],
and p; is a scattering coefficient. This is a value inverse proportional to the distance on

which the collimated light flux will be reduced due to the scattering [40,41]. f (2,, ?) is
the scattering phase function derived from the appropriate scattering theory (e.g., Mie or

Rayleigh theory), d()/ is the solid angle spanning ?l, and c is the speed of the light in the
surrounding medium.
In other words, Equation (1) can be explained as follows: The resultant radiance along

TR . . . —/
the direction s is a sum of the scattered radiance coming from all directions s to the

direction s and the radiance loss due to the absorption. The total extinction represented by
the first right-side term of Equation (1) describes two processes that contribute to the total
resultant radiance, namely the radiance loss due to the scattering process and the radiance
loss due to the absorption process. Though the radiative transfer equation can be applied
for a wide variety of media, the analytical solution of this equation is available for rather
simple circumstances with different assumptions. Thus, techniques such as the method of
path integrals, diffusion approximation, light scattering by Brownian particles [42], and the
method of the small-angle approximation [43] were developed.

Nevertheless, the techniques mentioned above are supposed to be used under dif-
ferent assumptions and simplifications. For example, the methods of light scattering by
Brownian particles, as well as the diffusion approximation, only suit the small anisotropy
factor-scattering media. The method of small-angle approximation does not consider the
diffusively scattered light and cannot be applied to our task because the idea of the research
is to analyze the influence of both quasi-ballistic and diffusive components of the scattered
radiation. The method of path integrals has two variations: analytical and stochastic. Ana-
lytical method is basically the modified method of Brownian particles, whereas stochastic
method is Monte Carlo method. As is known, Monte Carlo technique [44,45] is the most
versatile and widely used numerical technique that provides an approximate solution of
the radiative transfer equation for the vast majority of conditions.

2.2. Monte Carlo Simulation

The Monte Carlo technique is a widely used approach toward sampling probability
density functions for simulating a wide range of problems. The first use of the method for
photon transport in biological materials was Adams and Wilson in 1983, which considered
isotropic scattering [46]. Keijzer et. al. introduced anisotropic scattering into the Monte
Carlo simulation of biological tissues, implementing a simulation that propagated photons
using cylindrical coordinates, which introduced the Hop/Drop/Spin nomenclature for
organizing the program [47]. Prahl et al. reformulated the program using photon propa-
gation based on Cartesian coordinates, which made the program much simpler to convey
in written form [48]. Wang and Jacques adapted and augmented the work of Keizer and
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Prahl to write the Monte Carlo Multi-Layered (MCML) program that considers tissues with
many planar layers with different optical properties [8].

Monte Carlo technique simulates the behavior of the elementary parts of a physical
system. In regards to light propagation through a medium, this technique uses quantum
nature of light and simulates the propagation of photon flux [49].

In general, there are two Monte Carlo techniques: corpuscular and wave [50]. Both
methods have their advantages and disadvantages.

The “Wave Monte Carlo” treats the propagation of radiation as a wave propagation.
It describes the propagation of a wave through a set of screens that contains scattering
particles. The resultant wave becomes stochastic due to the interference between the
unscattered and scattered waves. As a result, we get the complex amplitude of the random
field. An ensemble of the obtained fields for the statistically independent sets of screens is
the calculated intensity distribution. This technique is particularly applied for the mono-
direction radiation.

In contrast, the “Corpuscular Monte Carlo” treats the propagation of radiation as a
corpuscula (photon) flux. This technique performs the statistical calculation of the ensemble
of photons—the average number of photons depending on the coordinate equals to the
intensity distribution. “Corpuscular Monte Carlo” is applied for both the weakly and
strongly scattering media. Another feature of this method is that it is not supposed to
model the fixed position of the scatterers. It instead models the events of the photon—particle
interaction with the desired probability density. From this point of view, the Brownian
movement of scatterers is considered in the simulation by default.

Choosing each method is a matter of opinion, since both show similar results [50]. We
have chosen the “Corpuscular Monte Carlo” technique for our simulation.

First, we simulated the initial uniform intensity distribution of a laser beam with
diameter equal to 4 mm and wavelength equal to 0.65 pm. The random number generator
was used to calculate the initial position of each of the 2.5 x 10! photons within the beam
aperture. Afterward, we calculated the trajectory of propagation of each photon through
the 5-mm layer of scattering medium consisted of a monodisperse spheres of 1-um diameter
and refractive index of 1.582 (refractive index of the medium was 1.33). The influence of
relative refractive index is rather complicated [51]. For small particles, the influence on the
forward-scattering signals is mainly due to the part of the internal reflection if the relative
refractive index deviates from 1. However, when the relative refractive index is close to
1, the effects on the forward-scattered light from both the surface reflection and internal
reflection are great. For large particles, the contributions of the surface reflection and the
internal reflection to the forward-scattered light are much weaker than the diffraction when
the relative refractive index deviates from 1. When the relative refractive index is very close
to 1, the effects on the forward-scattered light from the internal reflection are great.

The absorption coefficient for such conditions (i.e., for the selected wavelength and
refractive index) will be negligible according to [52]. Thus, no absorption will appear,
and we do not have to track whether a particular photon should be excluded from the
simulation. The concentration value, or a number of spheres per cubic millimeter, of the
scattering suspension was varied approximately from 10° to 10® mm 3.

In order to define the trajectory of the photon, three key parameters have to be
calculated. First, free path length I—the distance between two scattering events or between
two sequential interactions between the photon and a particle (Equation (2)). Second,
scattering angle 0—the angle between the current and the new direction of photon’s
propagation (Equation (3)). Third, azimuthal angle ¢—the angle between the projection
of the new direction on the plane perpendicular to the initial direction of the photon’s
propagation (Equation (4)).

L= —In(&))/ps, @)
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where (j, Gy, o—random numbers uniformly distributed within the interval [0, 1),
us—scattering coefficient, g—anisotropy factor.

The direction of photon after a scattering event is defined by scattering diagram
or phase function [53,54]. The phase function is a function of the probability density of
scattering in the direction s’ of a photon moving in the direction s, i.e., a function that
characterizes the elementary act of scattering. In other words, the phase function describes
the angular distribution of the intensity of light scattered by an elementary volume. The
shape of the scattering diagram depends on the wavelength of the incident radiation,
the size of the scatterer, and the relative refractive index [55]. The phase function is also
characterized by the mean cosine of the scattering angle g, or the so-called anisotropy
factor [56].

Anisotropy factor g shows the degree of isotropy of scattering process. If particle
scatters light equally in all directions, then g = 0; if a particle scatters more energy in the
forward direction, then g > 0; if a particle scatters more energy in the backward direction,
then g < 0. Comprehensive study on the dependance of anisotropy factor on the radiation
wavelength and scattering particle diameter can be found in [57-60].

Scattering coefficient y; is one of the key parameters of a scattering medium. It is
measured in inverse millimeters and characterizes the scattering strength per unit length.
The scattering coefficient is calculated using Mie theory [8].

After calculation of free-path length, scattering and azimuthal angles of the new
position of the photon is defined. If this position was inside the scattering medium, the
calculation of the next set of [, 6, ¢ is repeated. Once the photon reached the border of
the medium, its parameters (e.g., total travelled optical path length, last coordinates, last
direction of propagation, total number of encountered scattering events, etc.) were saved,
and the photon was traced to the measurements plane (emulation of camera sensor). The
procedure is repeated for each photon. When trajectories of all photons were calculated, we
obtained the intensity distribution at the measurements’ plane. Figure 1 shows the results
of the simulation of laser beam propagation through the scattering medium with three
different scatterers’ concentration values—from 1.5 x 10° mm~2 to 7.5 x 10° mm~3.
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Figure 1. Results obtained from a numerical simulation. Intensity distributions and cross-sections of
laser beam propagated through the scattering medium with particular concentration values. Here,
FWHM (full width at half maximum) shows the broadening of the beam due to scattering.
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In order to verify our implementation of Monte Carlo technique, we compared the
results of our simulation with the results obtained from “MCML” model written by Lihong
Wang and Steven Jacques [8]. We considered the following parameters of simulation: half-
infinite 10-mm thick layer, 1-um diameter spheres, 1.5 x 10° mm 2 concentration value,
0.9 anisotropy factor, 0.2 mm~! scattering coefficient, 6.8-mm initial laser beam diameter,
10 x 10-mm measurement plane size.

We used three comparison criteria:

1. Number of photons transmitted through and reflected from the medium.

2. Distributions of photons per scattering order (number of photons undergone 1, 2, ...
etc. scattering events).

3. Intensity distributions at the exit edge of the medium (in Table 1, we presented
percentage of photons located within specified regions).

Table 1. Model verification: comparison of results obtained from the developed model and MCML.

Criteria MCML Developed Model

Transmittance, % 94.380 94.377

Reflectance, % 5.620 5.623

% of single scattered photons 25.080 25.060

% of double scattered photons 23.910 23.910

% of photons with scattering order = 3 16.280 16.288

% of photons with scattering order = 4 9.110 9.120

% of photons with scattering order = 5 4.660 4.660

% of photons with scattering order = 6 2410 2410

% of photons with scattering order = 7 1.370 1.370

% of photons in circle (radius = 100 pm) 16.540 16.550

% of photons in ring (r1 = 100 um, 12 = 200 um) 3.350 3.330
% of photons in ring (r1 = 200 pm, r2 = 300 um) 3.410 3.420
% of photons in ring (r1 = 300 um, r2 = 400 um) 3.390 3.370
% of photons in ring (r1 = 400 um, 2 = 500 um) 3.300 3.290
% of photons in ring (r1 = 500 pm, r2 = 600 pm) 3.160 3.160

Table 1 contains results of comparison of our model with MCML.

2.3. Shack—Hartmann Technique

Shack-Hartmann sensor [61-66] is well-known device that is widely used in large
and diverse sets of applications, primarily to measure distortions of the wavefront of
the radiation passed through different media—turbulent and/or scattering atmosphere,
biological tissues, etc. Since, in our work, we consider the case of moderately scattering
medium where average number of scattering events is from 0 to 10—the so-called cross-
over scattering regime [67,68]—we assumed (and proved it experimentally) that the Shack—
Hartmann technique still could be applied to measure the scattered laser beam distortions.
We will cover this point later in Section 2.4.

In a conventional Shack-Hartmann technique, the wavefront of the incident radiation
is divided into a number of sub-apertures by means of lenslet array. Lenslet array is a thin,
flat base with a grid of micro lenses (lenslets) etched on the base. Each lenslet commonly
has diameter from 100 to 300 um and focal length f from 3 mm to 8 mm. Radiation passes
through these lenslets and forms a set of focal spots at the measurement (sensor) plane
(Figure 2a).

Since the diameter of each lenslet is rather small, it is assumed that the wavefront W is
flat within a single lenslet, and the only aberration it has is tip-tilt. In case a tip-tilt equals
zero (i.e., a wavefront is flat and parallel to the plane of the lenslet), radiation is focused to
the center of the corresponding sub-aperture of the sensor. In case a wavefront has non-zero
tip-tilt within a lenslet, then the focal spot will be displaced (S, Sy) from the center of the
sub-aperture proportional to the tip-tilt value (Figure 2b). In other words, if we measure
these displacements Sy and S, of the focal spot per X and Y axis, correspondingly, we will
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obtain the values of partial derivatives 9W/dx and dW /9y of the wavefront W within each
sub-aperture (Equation (5)):
oW (xy) 1(S
T :{X}, ©)
W) [ = 71,
where W, %;’y)—partial derivatives of the wavefront W,

f—focal spot of each lenslet,
Sx, Sy—displacements of a focal spot within a sub-aperture per X and Y axis.

X
1 ow
Wavefront W Lensletarray Focal spots in ., x 3
measurements ° H f
S\ . Lo
plane N Sub-region of the Single lenslet Focal spot inside
A\ wavefront W single sub-aperture/

(a) (®)

Figure 2. (a) Set of focal spots (focal spot field, hartmannogram) formed by a lenslet array at the
sensor plane of a Shack-Hartmann sensor; (b) Principle of calculation of wavefront derivatives by
means of measurements of focal-spot displacement. Image adapted from [35].

On the other hand, in order to analytically describe and visualize the wavefront
surface, one can use the polynomial approximation; for example, B-Splines [69] or Zernike
polynomials [70-73], which are commonly used in optics. These polynomials are orthogonal
within the unity circle and are analytically expressed in polar coordinates as follows:

! _ [RL(p)-cos(I-8) for I <0
Zn(p,9) = {Rln(p)-sin(l-ﬂ) forl >0 , (6)

Rh(p)= Ri2"(0) =X (—1)° gy 02

Thus, the wavefront W can be presented in a form of Zernike polynomial expansion:

N k
W=3 i arZilxy) =), 22:0 aumZy (0, 9), )

where a,,,—Zernike coefficient that represents the aberration value,

N—number of the Zernike polynomials used, | =n — 2m.

Knowing the analytical representation of polynomials, we can calculate the partial
derivatives 0W/dx and 0W /9y of a wavefront W:

N (x
Wy ) [ La Ay
ax — 1 . (8)
AW (xy) N 9zixy)

ay 3y

Lai
1

Thus, the wavefront partial derivatives dW/dx and dW/dy can be analytically defined
using Zernike polynomials (Equation (8)). However, they can also be calculated using the
measured displacements Sy and Sy, of focal spots on the Shack-Hartmann sensor:

N (X
awa(x,y) Z a;: 4azza(x,y) 1(S,
(=44 =240 ©)
awa(y/y) gai.azi(%y) f {Sy}

)
7 Y
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Finally, we determine the overdetermined system of linear equations with the un-
known coefficients a;. Solving this least square problem [74], we obtain the coefficients a;.
From here on, the wavefront can be analytically described and analyzed.

2.4. Hybrid Model Implementation

Since we implemented the simulation of a laser beam propagation through a scattering
layer using Monte Carlo technique, and since we know how to estimate distortions of
laser radiation using Shack-Hartmann technique, we can combine these techniques and
numerically estimate what distortions (in terms of focal spots displacements) the beam will
obtain after passing the scattering medium.

To solve this, we upgraded our beam propagation model by adding the implementa-
tion of Shack-Hartmann technique. In order to do so, we placed the measurements plane,
as well as the plane that simulates the lenslet array, at the specified distance from the output
edge of the scattering layer (this distance can be varied by the user). Since Monte Carlo
technique treats the light as a huge number of photons (or photon packets), we can use
the ray-tracing technique and principles of geometrical optics to calculate the trajectory
of propagation of photon in free space after it leaves the scattering layer. For this, we
calculate the direction cosines dirCosX r dirCosY s and dirCosZ I of each photon that left
the scattering layer:

sinb-(dirCosX;-dirCosZ;-cosqp—dirCosY;-sing)

dirCosXy = 1 drCossy + dirCosX;-cosf
. . [ 1—airCossi .
dirCosz _ sm9~(derosYi-i;fosdzi;osgzderoin.sm(p) +di1’COSYi~COSG (10)
—dirCosZ;

dirCosZy = —sinf-cosg-/1 — dirCole-2 + dirCosZ;-cosf,

where dirCosX;, dirCosY;, and dirCosZ;—direction cosines of the photon’s propagation
trajectory before it left the scattering medium (before the last photon—particle interaction).

After calculation of direction cosines, we traced the photon to the plane of the lenslet
array. The photon fell on the particular lenslet that retraced it to the measurement plane
according to the incidence angle. Photon’s coordinates x¢, yf, zy were calculated using

the formulas:
dirCost dirCosz

= .dirCost' Yr= 'dirCOSZf’ =1 (1)

where f—focal length of the lenslet.

As a result, we obtain a set of coordinates of all photons that fell on the lenslet
array and then retraced to the measurement plane. Afterward, we discretize the measure-
ments plane so it becomes more like the real camera sensor—with fixed pixel size and
pixel resolution. The focal spot field also called hartmannogram image obtained on the
4.8 x 4.8-mm measurements plane after the simulation of 4-mm laser beam propagation
through the scattering medium is presented on Figure 3.

It can be observed from Figure 3 that there are extra focal spots that appear out of the
diameter of 4 mm (the diameter of the initial collimated laser beam that fell on the scattering
layer). This effect can be explained by laser beam broadening due to light scattering. A
scattered photon flux contains three components [75]: ballistic, on-axis (or “snake”); and
off-axis (or diffusive) photons. Ballistic photons travel through a turbid medium without
interaction with the scatterers and do not change the initial trajectory. This coherent com-
ponent of the scattered light is the most important for imaging and focusing applications.
On-axis photons undergo few scattering events and travel in near-forward paths along a
trajectory that is close to the initial direction of the beam propagation. These photons play
an important role for imaging and focusing when the thickness of the scattering medium
layer increases because the number of ballistic photons decreases exponentially in this
case [11]. Off-axis photons scatter in all directions and form a noncoherent component of
the scattered light. As noted above, ballistic photons are most valuable for focusing, but
their number decreases exponentially when the layer thickness or scatterer concentration
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increases. When the concentration value of the scattering medium increases, the number of
on-axis and diffusive photons increases as well. In addition, all of these photons together
form the extra focal spots located between yellow and red circle on Figure 3.

4.8 mm

4 mm

LY el |

4.8 mm

Figure 3. Shack-Hartmann focal spot field (hartmannogram) obtained after the beam propagation
through a scattering layer. The inner yellow circle corresponded to the initial diameter (4 mm) of the
collimated beam before entering the scattering volume. The outer red circle corresponded to the area
(4.8 mm diameter) of the Shack-Hartmann sensor where the distortions were analyzed.

At this point, we could apply the Shack-Hartmann technique to estimate the distor-
tions of scattered laser radiation. We calculated the displacements of focal spots Sy and Sy,
(Equation (5)) and solved the system of linear equations (Equation (9)) to find the unknown
coefficients a; of Zernike polynomials.

During the numerical estimations, we varied the concentration value of the scat-
tering medium from 1.3 x 10° to 10° mm~3. We simulated the propagation of the
photon flux through the scattering medium with eight particular concentration values
from this range. Figure 4 shows some of hartmannogram images obtained on Shack-
Hartmann during simulation of laser beam propagation through a scattering medium with
different concentrations.

It can be observed that the spots within the initial aperture of the beam that equaled
4 mm are presented as delta functions centered in the center of the corresponding sub-
apertures—this is because the number of ballistic photons is much bigger than the others.
The peripheral focal spots outside of the initial diameter are much wider in diameter, but
they also have the clear-cut center. This is due to the impact of rather big portion of on-axis
photons (Figure 4a—c). However, with the increase of the concentration of scatterers, the
intensity distribution within each peripheral focal spot became uneven without the strongly
marked center (Figure 4d—f). This is due to the impact of diffusive photons.

As is known, conventional Shack-Hartmann sensor allows for the measurement of the
wavefront of radiation. However, when a laser beam passes through a scattering medium,
it does not have the wavefront in strict physical sense since part of the radiation is scattered.
Figure 5 explains what we actually measure with a Shack-Hartmann sensor in this work.
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(d) (e) (f)
Figure 4. Hartmannogram images obtained from the simulation of laser beam propagation through
a scattering medium with different concentration values: (a) 1.3 x 10° mm~—3, (b) 4.4 x 10° mm 3,
(€) 7.4 x 10° mm~3, (d) 9.4 x 10° mm 3, (e) 10 mm—3, and (f) 1.2 x 10° mm~3. The enlarged region
of top-right corner of each hartmannogram is depicted in red squares.
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Figure 5. Explanation of the term “averaged wavefront”.

Initially, before the scattering medium, the beam has a flat-incident wavefront. The
scatterers with which radiation interacts become point sources of secondary spherical waves

=
with their own wave vectors k. At the same time, part of the radiation passes through the

medium without scattering k_(; (so-called ballistic component), retaining the original flat
wavefront. As a result, a focal spot is formed at the focal plane of the lenslet. In addition,
the displacement of this focal spot from the optical axis of the lenslet is proportional to the
local slope of a so-called “average wavefront”, which is composed of a set of, generally
speaking, independent wavefronts corresponding to different point sources (i.e., scatterers
in the medium). Moreover, we measure and analyze this average wavefront.

Due to the axial symmetry nature of the Mie scattering process, only symmetrical dis-
tortions of the average wavefront were obtained in the simulation. The obtained coefficients
of symmetrical Zernike polynomials (#3, #8, #15, #24) are presented on Figure 6.



Algorithms 2023, 16, 337

11 of 17

1 pal
& B Zernike polynomial #3
z: B Zernike polynomial #8
2 075 - ¥ Zernike polynomial #15
g B Zernike polynomial #24
——
3
g 0.5 4
b
o
S |
o 025 -
7
— | e 2
5 il
N 0 - '

1.3 25 4.5 6 7.4 8.5 9.4 10.3

Concentration value, 105 mm™

Figure 6. Symmetrical Zernike coefficient dependence on the concentration value of scatter-

ing medium.

It can be clearly seen from Figure 6 that the amplitude of distortions (values of Zernike
coefficients) increased with the increase of the scatterers” concentration. The reason for
that is explained by the decrease of ballistic photons and, at the same time, the increase of
non-ballistic photons. Finally, it led to the displacements of the focal spot centers from its
reference positions.

3. Hybrid Model Verification: Experimental Results and Discussion

In order to verify the developed hybrid model of the estimation of distortions of a
laser beam that passed through a scattering layer, we assembled the experimental setup.
The photo of the laboratory setup is presented in Figure 7.

-~

“Diode‘laser

A=0.65pm Cuvette with
scattering medium

Shack-Hartmann
sensor |

i,

Figure 7. Photo of the experimental setup with a diode laser and a Shack-Hartmann sensor.

Laser radiation comes from the fiber-coupled diode laser and propagates through
the collimator. The collimated laser beam of 4 mm in diameter then passes through the
transparent glass cuvette with the thickness of 5 mm and dimensions of 18 x 18 mm, filled
with the scattering suspension of 1 um-diameter polystyrene microbeads produced by
Magsphere, Inc. (Pasadena, CA, USA) [76] with the refractive index equaled to 1.582 [52]
diluted in distilled water (refractive index is 1.33). The beam resulting from the cuvette
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is registered on the Shack-Hartmann sensor [77]. According to the specification sheet
on the polystyrene microbeads, the diameter variation was within 10%. The microbeads
have a smooth surface [78] so that no complicated shape-scattering diagram from a single
microbead is produced. Shack-Hartmann sensor consisted of a digital CCD camera Basler
A302fs (1/2-inch sensor with the size of the receiving area equaled to 6.4 x 4.8 mm, camera
frame rate is 30 Hz) and a lenslet array (focal length—6 mm, diameter of a lenslet—150 pm,
total number of lenslets—greater than 1300). The distance between the Shack-Hartmann
sensor and the cuvette was set to 450 mm in order to decrease the impact of the totally
diffused photons on the quality of the measurements. Since we made the experiments
in a very short period after the preparation of the suspension of scattering particles, the
concentration during the experimental measurements was not varied; or, at least, its
variation has no impact on the measurements. Moreover, for all of our measurements,
we averaged hartmannograms in order to increase the accuracy. For each experiment,
we prepared the new suspension. If the cuvette with the initial high-concentration so-
lution was not used for a long period of time, we used the ultrasonic bath to split the
coagulated microbeads.

We analyze the average wavefront of scattered light in the circular aperture of 4.8 mm.
The aperture’s center and the cameras’ center coincide. The initial laser beam diameter was
4 mm, whereas the aperture diameter was 4.8 mm. It was necessary to analyze how the
non-ballistic photons impact on the distortions of scattered light. The average wavefront
measured by the Shack-Hartmann sensor was approximated by Zernike polynomials, as it
was done in the simulation.

Figure 8 shows the comparison of the dependence of distortion amplitude (amplitude
of distortions of the averaged wavefront) on the concentration values of scatterers. Both the
model and experimental curves demonstrated similar trends of increasing the amplitude of
distortions while increasing the concentration values of the scatterers.

5
4.5 e Experiment
4 = Model
w = 35
o =
Q ~ 3
o »
25
25
2E
9 15
£ 3
< 1
0.5
0

0 2 4 6 8 10 12 14
Concentration value, x10° mm

Figure 8. Trend lines of the dependence of the amplitude of distortions on the concentration values
for the simulation (red curve) and for the experiment (purple curve). Image adapted from [37].

Figure 8 shows a similar trend of increasing distortions of the average wavefront of
the scattered laser beam with increasing concentrations of scatterers in the medium in the
range from 10° to 10° mm 3, both for the model and laboratory experiment. There are a
few reasons why the model curve differs from the experimental one. The explanation is
schematically represented on Figure 9.
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0w W Simulation

450 mm
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o m w Experiment

450 mm

(b) (d) (f)

Figure 9. Initial intensity distribution of the simulated (a) and real, experimental (b) laser beam;
schematical representation of laser beam propagation without diffraction (c) and with diffraction (d);
reconstructed interference pattern with symmetrical distortions only (e) obtained in the simulation
and with both symmetrical and non-symmetrical distortions (f) obtained in the real experiment.

First, in the model (Figure 9a), we did not reproduce the initial distribution of the
intensity of the real laser source used in the experiment (Figure 9b). In fact, a generator
of uniformly distributed random numbers is used to generate the initial distribution of
photons in the model. Second, the model does not take into account a diffraction phe-
nomenon (Figure 9c), which takes place when the real laser beam is propagating through
the optical path (Figure 9d). In the experiment, as a result of diffraction, the focal spots
on the Shack-Hartmann sensor in the central part of the beam are displaced from the
centers of corresponding sub-apertures at high scatterer concentrations, which leads to
additional defocusing. This effect was not observed in the model. For this reason, the
experimental curve on Figure 8 increases faster than the model curve at high concentrations.
Third, in addition to the centrally symmetric aberrations in the average wavefront, there
were also other distortions (in particular, coma aberration) in the experiment (Figure 9f),
which could not exist in the model (Figure 9e) in principle due to the symmetry of the
nature of Mie scattering on spherical particles. This was due to the fact that the walls of
the glass cuvette were not plane-parallel. We have also examined this problem in detail;
the results can be found in [79]. We made the measurements and determined that the
cuvette walls were not absolutely parallel. The deviation was not huge, but in conjugation
with the impact of the scattering medium, it led to an overall tilt and, finally, coma aber-
ration. Thus, an additional slope was introduced into the laser beam and, as a result, the
coma aberration.

It can be observed from Figure 8 that there is one more data point in the model curve
(for a concentration of the order of 10° mm™3). This is due to the fact that when a laser
beam propagates through a scattering medium with a particles” concentration of the order
of 10 mm 3, only fractions of a percent of the initial radiation energy level reach the sensor
aperture. The traditional, most popular, and widespread CCD cameras have insufficient
quantum efficiency and a limited exposure range to detect radiation of such a low power.
Regarding the numerical simulation, we could use any concentration values, since with a
statistically sufficient number of simulated photons, it is possible to obtain an image of focal
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spot field. We displayed this data point to show that the model curve does not move far
away from the experimental curve even with an increase in the concentration of scatterers.

Thus, the data obtained in the developed model and, subsequently, in a laboratory
experiment showed that with an increase in the concentration of scattering particles in
the range from 10° to 10° mm 3, the amplitude of distortions of the average wavefront of
radiation propagating through the layer of the scattering medium increases.

4. Conclusions

In this paper, we presented the numerical model and algorithm of measurements of
distortions of the laser beam that passed through a moderately scattering medium. The
simulation of beam propagation through a scattering medium was implemented using the
Monte Carlo simulation, the scattered beam propagation in free space from the edge of
scattering medium to the lenslet array of the Shack-Hartmann sensor was implemented
using ray-tracing techniques, and the measurements of beam distortions was implemented
using the Shack-Hartmann technique. We measured the amplitude of distortions of the
scattered beam by estimating the displacements of focal spots on the Shack-Hartmann
sensor. Both the model and experiment demonstrated similar trends of exponential increase
of the amplitude of distortions with the increase of concentration values of the scattering
particles in the medium.
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