
Citation: Nigro, L.; Fränti, P. Two

Medoid-Based Algorithms for

Clustering Sets. Algorithms 2023, 16,

349. https://doi.org/10.3390/

a16070349

Academic Editors: Mario Rosario

Guarracino, Laura Antonelli and

Pietro Hiram Guzzi

Received: 5 July 2023

Revised: 13 July 2023

Accepted: 17 July 2023

Published: 20 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Two Medoid-Based Algorithms for Clustering Sets
Libero Nigro 1,* and Pasi Fränti 2

1 Engineering Department of Informatics Modelling Electronics and Systems Science, University of Calabria,
87036 Rende, Italy

2 School of Computing, Machine Learning Group, University of Eastern Finland, P.O. Box 111,
80101 Joensuu, Finland; franti@cs.uef.fi

* Correspondence: libero.nigro@unical.it

Abstract: This paper proposes two algorithms for clustering data, which are variable-sized sets of
elementary items. An example of such data occurs in the analysis of a medical diagnosis, where
the goal is to detect human subjects who share common diseases to possibly predict future illnesses
from previous medical history. The first proposed algorithm is based on K-medoids and the second
algorithm extends the random swap algorithm, which has proven to be capable of efficient and
careful clustering; both algorithms depend on a distance function among data objects (sets), which
can use application-sensitive weights or priorities. The proposed distance function makes it possible
to exploit several seeding methods that can improve clustering accuracy. A key factor in the two
algorithms is their parallel implementation in Java, based on functional programming using streams
and lambda expressions. The use of parallelism smooths out the O(N2) computational cost behind
K-medoids and clustering indexes such as the Silhouette index and allows for the handling of non-
trivial datasets. This paper applies the algorithms to several benchmark case studies of sets and
demonstrates how accurate and time-efficient clustering solutions can be achieved.

Keywords: unsupervised clustering; K-means; K-medoids; random swap; seeding methods; cluster-
ing sets; clustering indexes; benchmark datasets; java; parallel streams

1. Introduction

Unsupervised clustering aims to group data into clusters in such a way that data within
the same cluster are similar to each other, and data in different clusters are dissimilar.

K-means [1,2] is a widely used clustering algorithm due to its simplicity and efficiency.
Another reason to prefer K-means instead of a more sophisticated algorithm is the fact that
its properties and limitations have been thoroughly investigated [3,4]. Two main limitations
of K-means are that (1) it operates on numerical data using Euclidean distance and (2) it
requires calculation of the mean of the objects (centroid) in the set.

Dealing with data that have mixed numerical and categorical attributes or only categor-
ical attributes is difficult [5]. Such data can be handled either by preliminarily converting,
most often in an unnatural way that can imply sparsity and multi-dimensional problem, cat-
egorical attributes to numerical ones, or by introducing a non-Euclidean distance function.

Adapting K-means to deal with data objects which are sets of elementary items [6]
poses similar problems to coping with categorical attributes. In addition, the need exists to
handle sets of different sizes.

A histogram-based approach has been used for clustering categorical data [5,7] and
recently for clustering sets [8]. The idea is to use a histogram of the categorical values to
represent the cluster. This eliminates the need to define the mean value. In the case of
categorical data, the distance to the cluster can be defined based on the frequency of the
category labels of the object in the cluster. In the case of sets, the distance between objects
and the clusters can be derived from classical set-matching measures such as Jaccard and
Otsuka–Ochiai cosine distance [8].

Algorithms 2023, 16, 349. https://doi.org/10.3390/a16070349 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16070349
https://doi.org/10.3390/a16070349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6577-4777
https://orcid.org/0000-0002-9554-2827
https://doi.org/10.3390/a16070349
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16070349?type=check_update&version=4

Algorithms 2023, 16, 349 2 of 17

As a practical example of an application of clustering sets, the records of medical
patient diagnoses can be considered, where the goal is to find groups of similar patients to
support the estimation of the risk for a patient to develop some future illness due to his/her
previous medical history and from correlations to other patients with similar diseases.

In this paper, we propose a new approach for clustering sets which is based on K-
medoids. Medoid is the object in the cluster having a minimum total distance from all
other objects in the cluster. Then, all we need is a distance measure between the objects.
Since both the data and the cluster representative (medoid) are sets, we can apply the
classical set-distance measures slightly modified, as in [8], by considering application-
sensitive information.

We apply the medoid approach within two clustering algorithms: K-medoids [9,10]
and random swap [11,12]. The proposed approach retains the generality and effectiveness
of the corresponding K-sets and K-swaps algorithms described in [8] at the cost of a
somewhat slower running time.

The original contributions provided by this paper are the following:

• Introducing two new algorithms for clustering sets: K-medoids and random swap
using medoid and the two classical set-matching distances of Jaccard and Otsuka–
Ochiai cosine coefficients [13], adapted by considering the frequency of use of the
items in the whole dataset.

• Exploring the effect of random initialization versus K-means++ initialization [14–18].
• Implementing parallel variants using Java parallel streams and lambda expressions [12,

19,20], which provide better time efficiency on a multi-core machine.

The effectiveness of the new approach is demonstrated by applying it to the 15 syn-
thetic datasets used in [8]. The algorithms both achieve good clustering quality, which is
very similar to that of the previous K-swaps algorithm. However, the proposed medoid-
based approach is simpler to implement, and it avoids the threshold parameter for trun-
cating the histogram size. While this might not be the big issue with most data, there are
always some potential pathological cases that the proposed approach is likely to avoid.

This paper is organized as follows: Section 2 summarizes the previous work on
adopting K-means to the sets of data; Section 3 describes the proposed algorithms for
clustering sets based on medoids, together with some Java implementation issues; Section 4
describes the experimental setup; Section 5 reports the achieved clustering results; Section 6
concludes this paper by highlighting some directions for further work.

2. Related Work

In this section, the work of [8] is summarized as the fundamental background upon
which the new approach proposed in this paper is based. For further related work the
reader is referred to [8].

A dataset consists of variable-sized sets of elementary items taken from a vocabulary
of size L (which is said to be the problem resolution). Practical data can be the records
of patient diagnoses expressed by ICD-10 [8,21] disease codes, preliminarily grouped by
similar diseases, for medical applications.

To each cluster a representative data object (centroid) is associated in the form of a
histogram which records the frequency of each item occurring in the cluster. A histogram
contains at most m = 20 distinct items. For clusters with more items, the m most frequent
items are selected. To apply K-means clustering, a distance measure between a data object
(a set) X of size l and a representative histogram h must be defined. In [8], adapted versions
of the Jaccard or the Otsuka–Ochiai cosine distance were introduced. Adaptation is needed
because in the case of large values of L, an intersection between two sets may contain only
a few common elements, and the distance measure becomes meaningless. A weight is,
therefore, defined as the frequency of the item in the local histogram h.

The two distance notions (Jaccard and cosine) are defined accordingly:

Algorithms 2023, 16, 349 3 of 17

dJ(X, h) = 1−
∑xi∈X&xi∈h fh(xi)

∑yi∈h fh(yi) + ∑xi∈X,xi /∈h 1
(1)

dC(X, h) = 1−
∑xi∈X&xi∈h fh(xi)√
∑yi∈h(fh(yi))

2 ∗
√

l
(2)

2.1. Example

The following example, taken from [8], refers to a cluster with five data objects that
are sets of elementary items denoted by a single capital letter:

X1 = {A, E, B, C, F}
X2 = {D, G, A, B}
X3 = {A, H, C, B}
X4 = {I, A, C, J, B}
X5 = {B, D, C, A}

The approach in [8] first associates the representative (centroid) to the cluster in the
form of a histogram with local frequencies of use of the data items, thus:

h:

A B C D E F G H I J
5 5 4 2 1 1 1 1 1 1

Since the number of distinct data items in the cluster (10) is less than 20, all items of the
data objects are included in h. Then, the distances of the data objects to the representative
can be calculated by (1) or (2). For example:

dJ(X1, h) = 1− fh(A)+ fh(E)+ fh(B)+ fh(C)+ fh(F)
∑yi∈h fh(yi)

= 1− 5+1+5+4+1
22 = 1− 16

22 = 0.27

dC(X1, h) = 1− 16√
52+52+42+22+6 ∗

√
5
= 1− 16√

76 ∗
√

5
= 1− 0.819 = 0.18

These distance measures are used to detect the nearest representative of a data object
and to evaluate the contribution of a cluster to the sum of distances to histogram (SDH)
function cost: dJ(X1, h) + dJ(X2, h) + dJ(X3, h) + dJ(X4, h) + dJ(X5, h).

The distance function is the basis of an adaptation of K-means [1,2] and random
swap [11,12] to sets.

2.2. K-Sets and K-Swaps

K-sets is the direct adaption of k-means to sets. It initializes the K centroids (represen-
tatives) through a uniform random selection in the dataset. The initial representatives have
unitary frequency for each component item.

Then, the two basic steps, object assignment and centroids update, are carried out as
follows: In the assignment step, each data object (set) is assigned to the cluster according to
the nearest centroid rule. In the update step, the representative of each cluster is redefined
by calculating the new histogram (of m length) with the number of occurrences of each item
in the data objects of the cluster. This operation replaces the classical centroid update of
K-means because we cannot compute the mean of the data objects which are variable-sized
sets of elementary items. The quality of the clustering is evaluated by the sum of the
distances to the histogram (SDH):

SDH =
K

∑
j=1

∑
X∈Cj

d
(
X, hj

)
(3)

The two basic steps (assignment and update) are iterated until SDH stabilizes, that is,
the difference between the current and previous value of SDH is smaller than a threshold
TH = 10−8.

Algorithms 2023, 16, 349 4 of 17

Similar modifications were also introduced in the random swap algorithm [11] that
result in the so-called K-swaps algorithm [8]. It integrates K-sets in the logic of pursuing
a global search strategy via centroids swaps. The initialization step is the same as in
K-sets, which is immediately followed by a first partitioning. At each swap iteration, a
centroid is randomly chosen among the K representatives, and replaced by a randomly
chosen data object in the dataset. After the swap, two K-sets iterations are executed and
the corresponding SDH value is evaluated. If the swap improves (reduces) SDH, the
new centroid configuration is accepted and becomes the current solution for the next
swap iteration.

Good clustering results are documented in [8], by applying K-sets and K-swaps to
15 benchmark datasets, referred to as Sets data in [22]. K-swaps resulted in low SDH values
and high clustering accuracy, measured in terms of the adjusted rand index (ARI) [23,24]
values in the case of all benchmark datasets, and K-sets in the case of most datasets.

3. Medoid-Based Approaches

In the approach proposed in this paper, we use medoid [9,10] as the cluster represen-
tative instead of a histogram. Medoid is defined as the data object in the cluster with a
minimal sum of the distances to the other data objects in the same cluster. The medoid-
based approach has two advantages. First, medoid is a more natural cluster representative
than a histogram and does not require any parameters such as the threshold for the his-
togram size. Second, we can use the same distance measures for sets as in [8] but with an
adaption of the measures which considers the global frequency of using elementary items
in the application dataset.

Specifically, we present two novel medoid-based algorithms. The first algorithm is the
classical K-medoids adopted to the sets. The second algorithm is the random swap variant,
in which medoid is used instead of the mean of the objects as the clustering representatives.

3.1. New Distance Functions

A dataset is defined as a set X of N objects, where each object Xj is a set of l items
taken from a vocabulary of L distinct items:

Xj =
{

xji
}l

i=1

From the dataset, a global histogram H is built from all the L items and their corre-
sponding frequencies in the dataset, denoted by fH(xi). The global histogram was adopted
because the frequency of occurrences of an item (for example the disease code in a medical
application) naturally can be interpreted as the relative importance of the item with refer-
ence to all the other items. Similar to [8], the global frequency of an item, instead of its local
frequency in a cluster, is here used as an application-dependent weight (priority) which
replaces 1 when counting, by exact match, the size of the intersection of two sets.

We use two weighted distance functions, Jaccard and Otsuka–Ochiai cosine distance.
They are defined as follows:

dJ(X1, X2) = 1−
∑xj

δ
(
xj
)

∑xj
δ
(
xj
)
+ ∑xi

δ(xi)
(4)

dC(X1, X2) = 1−
∑xj

δ
(
xj
)√

∑xj
δ
(

xj
)
+ ∑xi

δ1(xi)×
√

∑xj
δ
(

xj
)
+ ∑xi

δ2(xi)
(5)

Here, δ
(

xj
)
= fH

(
xj
)

if xj ∈ X1 ∩ X2, 0 otherwise; δ(xi) = 1 if xi /∈ X1 ∩ X2, 0
otherwise; δ1(xi) = 1 if xi ∈ X1\X2, 0 otherwise; δ2(xi) = 1 if xi ∈ X2\X1, 0 otherwise.
So, the maximal distance between two sets is 1 and the minimal one is 0. If the weights
of items evaluate to 1, the two distance measures reduce to the standard Jaccard and
cosine distances.

Algorithms 2023, 16, 349 5 of 17

The use of modified dJ or dC distance measure, enables K-medoids [9,10] (see Algo-
rithm 1) and random swap [11,12] (see Algorithm 2) to easily adapt to sets, and also to
possibly exploit careful seeding methods.

Algorithm 1: Pseudo-code of K-Medoids for sets

Input: The dataset X and the number K of required clusters
Output: The partitions and medoids of the emerged clustering solution, together with some
accuracy measures including the SDM cost
1. Initialization. Initialize the K medoids by a certain seeding method
2. Partitioning: Assign each data object Xi ∈ X to the cluster Cj, if mj = nm(Xi)

3. Update. Define the new medoid of each cluster as that data object m′ j which has minimal sum of
the distances from all the remaining points of the cluster:
m′ j|Kj=1 = Y ∈ Cj : Y = argminXp∈Cj ∑

Xi∈Cj ,Xp 6=Xi

d
(
Xp, Xi

)
4. Check termination. If medoids are not stable, restart from Step 2; otherwise stop

Algorithm 2: Pseudo-code of Random Swap for sets

Input: The dataset X and the number K of required clusters
Output: The partitions and medoids of the emerged clustering solution, together with some
accuracy measures including the SDM cost
1. Initialization. Initialize the K medoids by a certain seeding method
2. Initial Partitioning. Assign data objects to clusters according to the nearest initial medoids;
previous_cost = SDM
Repeat T times:

3. Swap. A medoid is uniform randomly chosen in the vector of medoids, and it gets
replaced by a data object uniform randomly chosen in the dataset:

ms ← Xi , s = rand(1, K), i = rand(1, N)

4. Medoids refinement. A few iterations of K-medoids (Algorithm 1) are executed to
refine medoids; currentcost = SDM

5. Test. If(current_cost < previous_cost) then the new solution is accepted and becomes
current for the next iteration, with previous_cost = current_cost; otherwise, previous
medoids and corresponding partitioning are restored.

End Repeat

As in [8], the total sum of distances to medoids (SDM) objective function is assumed to
be minimized by clusters. Let {C1, C2, . . . , CK} denote the K clusters and {m1, m2, . . . , mK}
be the corresponding medoid data objects. SDM is defined as:

SDM =
N

∑
i=1

∑
Xi∈Cj

d
(
Xi, mj

)
where mj = nm(Xi) is the nearest medoid to the data object Xi, that is:

mj = nm(Xi) with j = argmin1≤h≤K d(Xi, mh).

3.2. K-Medoids Algorithm for Sets

Algorithm 1 describes the steps of the algorithm in pseudo-code which differs from
the Lloyd’s classical K-means only in the Update step, where instead of computing the mean
of the points associated with a cluster, the medoid of the cluster is identified.

The two steps, Steps 2 and 3, are repeated until the medoids stop moving. The
computational cost of the algorithm is O

(
N2KT

)
where T is the number of iterations. The

cost is dominated by the O
(

N2) cost for all pairwise distances calculation. The matrix
of all pairwise distances can be built for tiny datasets in the initialization step. More in

Algorithms 2023, 16, 349 6 of 17

general, though, distances between data objects are computed on demand. Therefore,
implementation of a parallel algorithm can be required to reduce the computational needs
(see later in this paper).

Example

The process of computing medoids can be demonstrated using the cluster example
introduced in the Section 2.1. First, the global histogram H of the frequencies of elementary
items in the dataset is defined:

H:

A B C D E F G H I J . . .
35 20 22 20 24 12 10 8 22 7 . . .

The objects X1 and X2 of the cluster have two items in common (A, B) and five other
items. The modified distance dJ can be calculated by (4):

dJ(X1, X2) = 1− fH(A) + fH(B)
fH(A) + fH(B) + 5

= 1− 35 + 20
35 + 20 + 5

= 1− 55
60

= 0.08

It should be noted how the classical Jaccard similarity, i.e., |X1∩ X2|
|X1∪ X2|

= 2
7 = 0.29 is

significantly increased by the usage of the global weights fH(A) and fH(B), to 55
60 = 0.92,

and conversely for the distance. Something similar occurs when using (1) with local weights
in [8]. Figure 1 collects all the pairwise distances between the data objects of the cluster.

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 17

3.2. K‐Medoids Algorithm for Sets

Algorithm 1 describes the steps of the algorithm in pseudo‐code which differs from

the Lloyd’s classical K‐means only in the Update step, where instead of computing the

mean of the points associated with a cluster, the medoid of the cluster is identified.

The two steps, Steps 2 and 3, are repeated until the medoids stop moving . The
computational cost of the algorithm is 𝑂ሺ𝑁ଶ𝐾𝑇ሻ where 𝑇 is the number of iterations.

The cost is dominated by the 𝑂ሺ𝑁ଶሻ cost for all pairwise distances calculation. The matrix

of all pairwise distances can be built for tiny datasets in the initialization step. More in

general, though, distances between data objects are computed on demand. Therefore,

implementation of a parallel algorithm can be required to reduce the computational needs

(see later in this paper).

Example

The process of computing medoids can be demonstrated using the cluster example

introduced in the Section 2.1. First, the global histogram 𝐻 of the frequencies of
elementary items in the dataset is defined:

𝐻:

A B C D E F G H I J …

35 20 22 20 24 12 10 8 22 7 …

The objects 𝑋ଵ and 𝑋ଶ of the cluster have two items in common (A, B) and five other
items. The modified distance 𝑑 can be calculated by (4):

𝑑ሺ𝑋ଵ, 𝑋ଶሻ ൌ 1 െ
𝑓ுሺ𝐴ሻ 𝑓ுሺ𝐵ሻ

𝑓ுሺ𝐴ሻ 𝑓ுሺ𝐵ሻ 5
 ൌ 1 െ

35 20
35 20 5

 ൌ 1 െ
55
60

 ൌ 0.08

It should be noted how the classical Jaccard similarity, i.e.,
|భ∩మ|

|భ∪మ|
 ൌ

ଶ

 ൌ 0.29 is

significantly increased by the usage of the global weights 𝑓ுሺ𝐴ሻ and 𝑓ுሺ𝐵ሻ, to
ହହ

 ൌ

 0.92, and conversely for the distance. Something similar occurs when using (1) with local

weights in [8]. Figure 1 collects all the pairwise distances between the data objects of the

cluster.

Figure 1. The matrix of all the pairwise distances for the cluster of Section 2.1.

From the matrix in Figure 1, it emerges that the medoid representative of the cluster

is the 𝑋ହ data object, which has a minimal sum (0.14) of the distances to all the other

points in the cluster. Moreover, the contribution of the cluster to the function cost 𝑆𝐷𝑀
is also 0.14.

3.3. Random Swap Algorithm for Sets

The operation of the algorithm is shown in Algorithm 2. With respect to the basic

random swap algorithm [11,12], the use of medoids in the refinement Step 4 should be

noted.

Due to its ability to search for medoid configurations in the whole data space, random

swap is capable of approaching the optimal solution in many practical cases, hopefully,

after a small number of iterations 𝑇.

Figure 1. The matrix of all the pairwise distances for the cluster of Section 2.1.

From the matrix in Figure 1, it emerges that the medoid representative of the cluster is
the X5 data object, which has a minimal sum (0.14) of the distances to all the other points in
the cluster. Moreover, the contribution of the cluster to the function cost SDM is also 0.14.

3.3. Random Swap Algorithm for Sets

The operation of the algorithm is shown in Algorithm 2. With respect to the basic
random swap algorithm [11,12], the use of medoids in the refinement Step 4 should
be noted.

Due to its ability to search for medoid configurations in the whole data space, random
swap is capable of approaching the optimal solution in many practical cases, hopefully,
after a small number of iterations T.

3.4. Medoids Initialization and Seeding Methods

It has been demonstrated [3,4] that the seeding method for centroids initialization can
significantly affect the K-means clustering results. This is likely why the K-sets variant
was inferior to the K-swaps algorithm in [8]. It was shown in [4] that significantly better
results can be obtained for difficult datasets by using better initialization algorithms such
as maximin and K-means++. We, therefore, consider different seeding strategies. We
consider the uniform random method, maximin [16], K-means++ [14], and greedy K-
means++ [15,17,18].

Uniform: The K medoids are defined by K uniform random selections from the dataset.

Algorithms 2023, 16, 349 7 of 17

Let Xi be a data object and D(Xi) the minimal distance of Xi from the currently
defined centroids.

Maximin: The first medoid is chosen in the dataset by a uniform random selection.
Then, maximin chooses the next medoid as a data object with maximal D(Xi) value. The
procedure is continued until all the K medoids have been selected.

K-Means++: This is a randomized variant of the same idea as in maximin; it selects the
next medoid by a random switch among the data objects of the dataset, after associating to
each data object the probability of being chosen as:

π(Xi) =
D(Xi)

2

∑N
j=1
(
Xj
)2 .

Greedy K-Means++: This refines the K-means++ procedure with a sampling step (see
Algorithm 3). Except for the first medoid, any new medoid is selected by sampling S
candidates from the dataset, and by keeping the one which minimizes the SDM cost
function, evaluated according to the currently defined medoids.

Algorithm 3: The Greedy_K-Means++ seeding method

m1 ← Xj, j← uni f _rand(1..N) , M← 1
do{

costBest← ∞
candBest←?
repeat S times {

select a data object X∗ ∈ X with the K-Means++ procedure
partition X according to {m1, m2, . . . , mM, X∗}
cos t = SDM()
i f (cos t < cos tBest) {

candBest← X∗

costBest← cos t
}

}
M← M + 1
mM ← candBest

} while(M < K)

The value S is a trade-off between the improved seeding and the extra computational
due to the S ∗ (K− 1) attempts. We fix S = 2 + log K, as suggested in [17].

The K-medoids Algorithm 1 is used in this work in a repeated way, where a different
initialization of the medoids feeds each independent run. As for repeated K-means, the
higher the number of repetitions, the higher the chance to achieve a solution “near” to the
optimal one.

3.5. Accuracy Clustering Indexes

The proposed new distance functions in Section 3.1 make it possible to qualify the
accuracy of a clustering solution achieved by repeated K-medoids or random swaps, by
using some well-known internal or external indexes. For benchmark datasets provided
of ground truth partition labels (see also later in this paper), the external adjusted rand
index (ARI) (used in [8]) and the centroid index (CI) [12,25,26] can be used to qualify
the similarity degree between an obtained solution and the ground truth solution. The
ARI index ranges from 0 to 1, with 1 mirroring maximal similarity and 0 expressing the
maximal dissimilarity. The CI index ranges from 0 to K. A CI = 0 is a precondition for
a clustering solution to be structurally correct, with the found medoids which are very
close to the optimal positions. A CI > 0 indicates the number of medoids which were
incorrectly determined.

Algorithms 2023, 16, 349 8 of 17

In addition to the SDM function cost, in this work, the internal Silhouette index
(SI) [16,27] can be used for checking the degree of separation of the clusters. The SI
index ranges from −1 to 1 (see also [12]), with 1 mirroring well-separated clusters. An
SI = 0 indicates high overlapping among clusters. An SI toward −1 characterizes an
incorrect clustering.

3.6. Java Implementation

The following gives a flavor of the Java implementation based on parallel streams [12,
19,20] of the proposed clustering algorithms for sets. The dataset and medoids are repre-
sented by native arrays of DataObject instances. A DataObject holds a set of items (strings)
and provides the distance function (either Jaccard or cosine modified distance) and other
useful methods for stream management. A G_Sets class exposes some global parameters
such as the dataset dimension N, the number of clusters K, the number of distinct items L,
the name and location of the dataset file and so forth.

For generality, the implementation does not rely on the matrix of pairwise distances
which is difficult to manage in large datasets. Distances among data objects are, instead,
computed on demand and purposely exploit the underlying parallel execution framework.

In Algorithm 4, the SDM() method of G_Sets is shown. First, a stream is achieved
from the dataset, with the PARALLEL parameter which controls whether the stream must
be processed in parallel. Then, the stream is open. The intermediate map() operation works
on the stream by applying a Function〈T, R〉 lambda expression to each data object. The
lambda receives a T element and returns an R result. In Algorithm 4, T = R = DataObject.
map() receives a DataObject dO and accumulates in its field dist the sum of distances
from dO to every other object in the same cluster (controlled by the CID field of data
objects). Then, the modified dO is returned. The terminal reduce() operation adds all the
distances held in the data objects and returns a new DataObject spd whose dist contains
the required SDM.

Algorithm 4: Stream based sum of distances to medoids (SDM) method

public static double SDM() {
Stream<DataObject> pStream =
(PARALLEL) ? Stream.of (dataset).parallel() : Stream.of (dataset);
DataObject sdm = pStream

.map(
dO ->{

int k = dO.getCID(); dO.setDist(0);
for(int i = 0; i<N; ++i) {

if(i! = dO.getID() && dataset[i].getCID() = = k) { //same cluster
dO.setDist(dO.getDist()+dO.distance(dataset[i]));

}
}
return dO;

}
)
.reduce(

new DataObject(),
(d1,d2)->{ DataObject d = new DataObject();

d.setDist(d1.getDist()+d2.getDist()); return d; }
);
return sdm.getDist();

}//SDM

An important issue in the realization in Algorithm 4 is that stream objects can be
processed in parallel using the built-in fork/join mechanism [19], which splits the dataset
into multiple segments and spawns a separate thread to process the data objects of a same

Algorithms 2023, 16, 349 9 of 17

segment. The various results are finally combined, in parallel, by the reduce() operation
which returns a new DataObject sdm containing the overall sum of distances.

The correctness and actual efficiency of the Java code in Algorithm 4 rests on the
designer, which must absolutely avoid modifications of shared objects during the parallel
execution of the lambda expressions. For example, the lambda of each map() operation
in Algorithm 4 purposely modifies only the received dO parameter object; thus, data
interferences are completely avoided.

The stream-based programming style shown in Algorithm 4 was also adopted in the
implementation of K-medoids, random swap, and in all the operations which can benefit
from a parallel execution.

Algorithm 5 shows an excerpt of the stream-based K-medoids algorithm.

Algorithm 5: An excerpt of the K-Medoids algorithm in Java

. . .
//clusters’ queues for saving belonging data objects
ConcurrentLinkedQueue<DataObject>[] clusters = new ConcurrentLinkedQueue[K];
for(int c = 0; c<K; ++c) clusters[c] = new ConcurrentLinkedQueue<>();

. . .
seeding(INIT_METHOD); //initialize medoids
do{

for(int c = 0; c<K; ++c) clusters[c].clear();
//partitioning step: assign data objects to clusters
Stream<DataObject> do_stream = Stream.of (dataset);
if(PARALLEL) do_stream = do_stream.parallel();
do_stream

.map(dO -> {
double md = Double.MAX_VALUE;
for(int k = 0; k<K; ++k) {

double d = dO.distance(medoids[k]);
if(d<md) { md = d; dO.setCID(k); }

}
clusters[dO.getCID()].add(dO); //add data object dO to its partition cluster
return dO;

})
.forEach(dO->{}); //only to trigger the map operation

//update medoids step
for(int h = 0; h<K; ++h) {

Stream<DataObject> c_stream = clusters[h].stream(); //open stream on cluster[h]
if(PARALLEL) c_stream = c_stream.parallel();
final int H = h; //turn h into an effective final variable H
DataObject neutral = new DataObject(); neutral.setDist(Double.MAX_VALUE);
DataObject best = c_stream

.map(dO->{
double c = 0D;
for(DataObject q: clusters[H]) { if(q! = dO) c = c+ dO.distance(q); }
dO.setDist(c); //save the distance sum to other objects of the cluster
return dO;

})
.reduce(neutral, (d1,d2)->{ if(d1.getDist()<d2.getDist()) return d1; return d2; });
newMedoids[h] = new DataObject(best); newMedoids[h].setN(clusters[h].size());

}//for(int h = 0; . . .
. . .

}while(!termination());
. . .

In the partitioning step (see also Algorithm 1), the nearest medoid to each data object
is determined and the label of the medoid (its index) is assigned to the data object. As

Algorithms 2023, 16, 349 10 of 17

part of the map() operation, references of all the objects which belong to the same cluster
are collected into distinct partition lists, to be used in the second step of medoids update.
A critical issue concerns the modification of a shared partition list. To avoid data race
conditions, partition lists are purposely realized as ConcurrentLinkedQueue lists which are
totally lock free and can be safely accessed simultaneously by multiple threads.

Partition lists can be processed in parallel in the update medoids step. As shown in
Algorithm 5, for each data object dO of a cluster, first, the sum of distances from dO to all
the remaining objects of the same cluster is accumulated in dO as part of a map() operation.
Then, a reduce() operation is used which identifies and returns the data object (best) which
has a minimal sum of distances to the other objects of the same cluster.

In Algorithm 5, new medoids are temporarily defined and are compared with current
medoids in the termination() method, which checks termination (by convergence or by
maximum number of executed iterations) and, finally, makes new medoids current medoids
for the next iteration.

4. Experimental Setup

We use the 15 artificial datasets described in [8] for testing the algorithms. They are
all available in [22]. All datasets have N = 1200 data objects and vary in the size L of the
vocabulary of elementary items, the number K of clusters, the overlapping percentage o,
and the type t which specifies how balanced are the cluster sizes. The value t = 1 denotes
to equal cluster sizes. The datasets are named accordingly as data_N_L_K_o_t, see Table 1.

Table 1. Synthetic datasets for clustering sets.

Dataset Type 4 Big 12 Small

data_1200_100_16_5_1 1 75 75

data_1200_200_4_5_1 2 120 60

data_1200_200_8_5_1 3 150 50

data_1200_200_16_0_1 4 187–188 37–38

data_1200_200_16_5_1 5 210 30

data_1200_200_16_5_2

data_1200_200_16_5_3

data_1200_200_16_5_4

data_1200_200_16_5_5

data_1200_200_16_10_1

data_1200_200_16_20_1

data_1200_200_16_40_1

data_1200_200_32_5_1

data_1200_400_16_5_1

data_1200_800_16_5_1

Ground truth partitions are provided to measure the accuracy by the adjusted rand
index (ARI) and the centroid index (CI) [25,26] of a found clustering solution.

We cluster each dataset by repeated K-medoids using 1000 runs. For the initializa-
tion, we use uniform random, maximin, K-means++, and the greedy-K-means++ (G-K-
means++) seeding.

The following quantities were observed: The best value of the sum of distances to
medoids function cost SDM (indicated as bSDM) emerged from the various runs, and
the corresponding ARI (bARI), CI (bCI), and Silhouette (bSI) indexes. In addition, the
Success Rate (SR), that is the number of runs that terminated with a CI = 0, the average
ARI (aARI), and the average CI (aCI) estimated in the 1000 runs, were also registered.

Algorithms 2023, 16, 349 11 of 17

5. Clustering Results

The effects of the seeding methods were preliminarily studied using the data_ 1200_
100_ 16_ 5_ 1 dataset (see Table 1). The results are reported in Table 2.

Table 2. Results of repeated K-medoids (1000 runs) under different seeding methods, on the
data_1200_100_16_5_1 dataset with weighted Jaccard distance.

Seeding bSDM bARI bCI SR bSI aARI aCI

Uniform Random 1513 0.99 0 6.0% 0.71 0.72 2.71
Maximin 1513 0.99 0 17.5% 0.71 0.89 1.14
K-Means++ 1513 0.99 0 14.5% 0.71 0.86 1.50
G-K-Means++ 1513 0.99 0 39.6% 0.71 0.93 0.69

Simulation experiments were carried out on a Win11 Pro, Dell XPS 8940, Intel i7–10700
(8 physical cores), CPU@2.90 GHz, 32 GB Ram, and Java 17.

As one can see from Table 2, all the four seeding methods agree on the best SDM, ARI,
CI, and SI. However, they significantly differ in the success rate and the average ARI and
the average CI.

The best results follow from the careful seeding ensured by G-K-means++ where a
success rate of about 40%, an average ARI of 0.93, and an average CI of about 0.69 were
observed, although with an increased computational time. Table 2 also confirms that
maximin, after G-K-means++, is capable of offering better results than uniform random or
K-means++ seeding. The Silhouette index (SI) mirrors the limited overlapping percentage
(o = 5%) present in the dataset.

The dataset data_1200_100_16_5_1 was also studied by using the parallel version of the
implemented random swap algorithm (PRS) (see Algorithm 2) separately fed by each one
of the four seeding methods. At most, 100 swap iterations were set. The minimal number
of swaps required to detect the “best” solution (minimal SDM cost) and corresponding
ARI, CI, and SI indexes are reported in Table 3.

Table 3. Results of parallel random swap (max 100 iterations) under different seeding methods, on
the data_1200_100_16_5_1 dataset with weighted Jaccard distance.

Seeding SDM ARI CI SI Iterations

Uniform random 1513 0.99 0 0.71 26
Maximin 1513 0.99 0 0.71 4
K-means++ 1513 0.99 0 0.71 18
G-K-means++ 1513 0.99 0 0.71 4

From Table 3 it emerges that even with the uniform random seeding, PRS was able to
find the best solution with few iterations.

The effect of seeding methods on the data_1200_100_16_5_1 dataset was also observed
with the other datasets. Therefore, in the following, for simplicity, only the results gathered
by using repeated K-medoids and parallel random swap when seeded, respectively, by
uniform random and by G-K-means++ are reported in Tables 4–7.

Algorithms 2023, 16, 349 12 of 17

Table 4. Results of repeated K-medoids (1000 runs) with uniform random seeding on the datasets of
Table 1 with weighted Jaccard distance.

Dataset bSDM bARI bCI SR bSI aARI aCI

data_1200_100_16_5_1 1513 0.99 0 6.0% 0.71 0.72 2.71

data_1200_200_4_5_1 7986 1.0 0 85.5% 0.89 0.94 0.15

data_1200_200_8_5_1 4827 0.99 0 41.5% 0.79 0.86 0.74

data_1200_200_16_0_1 1419 1.0 0 2.2% 0.83 0.83 2.21

data_1200_200_16_5_1 3124 0.99 0 7.5% 0.68 0.72 2.68

data_1200_200_16_5_2 3320 0.99 0 5.1% 0.69 0.73 2.91

data_1200_200_16_5_3 3434 0.99 0 1.8% 0.70 0.77 3.24

data_1200_200_16_5_4 4110 0.98 0 0.6% 0.72 0.77 3.91

data_1200_200_16_5_5 5111 0.99 0 0.4% 0.72 0.79 3.62

data_1200_200_16_10_1 3262 0.99 0 4.1% 0.67 0.65 3.14

data_1200_200_16_20_1 3472 0.99 0 1.9% 0.64 0.56 3.54

data_1200_200_16_40_1 4628 0.89 1 0.0% 0.50 0.41 3.86

data_1200_200_32_5_1 2136 0.94 1 0.0% 0.55 0.54 7.32

data_1200_400_16_5_1 6016 1.0 0 8.8% 0.68 0.70 2.72

data_1200_800_16_5_1 10,285 0.99 0 21.8% 0.66 0.79 1.96

Table 5. Results of repeated K-medoids (1000 runs) with G-K-means++ seeding, on the datasets of
Table 1 with weighted Jaccard distance.

Dataset bSDM bARI bCI SR bSI aARI aCI

data_1200_100_16_5_1 1513 0.99 0 39.6% 0.71 0.93 0.69

data_1200_200_4_5_1 7986 1.0 0 99.1% 0.89 1.0 0.01

data_1200_200_8_5_1 4827 0.99 0 78.0% 0.79 0.95 0.22

data_1200_200_16_0_1 1419 1.0 0 45.5% 0.83 0.95 0.58

data_1200_200_16_5_1 3124 0.99 0 30.0% 0.68 0.91 0.88

data_1200_200_16_5_2 3320 0.99 0 31.7% 0.69 0.93 0.87

data_1200_200_16_5_3 3434 0.99 0 20.1% 0.70 0.93 1.10

data_1200_200_16_5_4 4110 0.98 0 12.9% 0.72 0.93 1.34

data_1200_200_16_5_5 4926 0.99 0 10.5% 0.72 0.91 1.47

data_1200_200_16_10_1 3262 0.99 0 21.5% 0.67 0.90 0.94

data_1200_200_16_20_1 3472 0.99 0 31.2% 0.64 0.89 0.93

data_1200_200_16_40_1 3460 0.99 0 13.0% 0.59 0.78 1.48

data_1200_200_32_5_1 1824 1.0 0 9.8% 0.59 0.90 1.73

data_1200_400_16_5_1 6016 1.0 0 43.0% 0.68 0.93 0.68

data_1200_800_16_5_1 10,285 0.99 0 59.0% 0.66 0.95 0.44

Algorithms 2023, 16, 349 13 of 17

Table 6. Results of parallel random swap (max 100 iterations) with uniform random seeding, on the
datasets of Table 1 with weighted Jaccard distance.

Dataset SDM ARI CI SI Iterations

data_1200_100_16_5_1 1513 0.99 0 0.71 26

data_1200_200_4_5_1 7986 1.0 0 0.89 5

data_1200_200_8_5_1 4825 0.99 0 0.79 51

data_1200_200_16_0_1 1419 1.0 0 0.83 2

data_1200_200_16_5_1 3124 0.99 0 0.68 10

data_1200_200_16_5_2 3320 0.99 0 0.69 16

data_1200_200_16_5_3 3434 0.99 0 0.70 42

data_1200_200_16_5_4 4202 0.98 0 0.72 27

data_1200_200_16_5_5 5000 0.99 0 0.72 99

data_1200_200_16_10_1 3262 0.99 0 0.67 60

data_1200_200_16_20_1 3480 0.99 0 0.64 14

data_1200_200_16_40_1 3467 0.99 0 0.59 63

data_1200_200_32_5_1 1825 0.99 0 0.59 85

data_1200_400_16_5_1 6016 1.0 0 0.68 13

data_1200_800_16_5_1 10287 0.99 0 0.66 9

Table 7. Results of parallel random swap (max 100 iterations) with G-K-means++ seeding, on the
datasets of Table 1 with weighted Jaccard distance.

Dataset SDM ARI CI SI Iterations

data_1200_100_16_5_1 1513 0.99 0 0.71 2

data_1200_200_4_5_1 7986 1.0 0 0.89 2

data_1200_200_8_5_1 4827 0.99 0 0.79 1

data_1200_200_16_0_1 1419 1.0 0 0.83 2

data_1200_200_16_5_1 3126 0.99 0 0.68 1

data_1200_200_16_5_2 3320 0.99 0 0.69 6

data_1200_200_16_5_3 3436 0.99 0 0.70 24

data_1200_200_16_5_4 4202 0.98 0 0.72 15

data_1200_200_16_5_5 5000 0.99 0 0.72 4

data_1200_200_16_10_1 3266 0.99 0 0.67 6

data_1200_200_16_20_1 3472 0.99 0 0.64 4

data_1200_200_16_40_1 3460 0.99 0 0.59 10

data_1200_200_32_5_1 1825 0.99 0 0.59 43

data_1200_400_16_5_1 6016 1.0 0 0.68 2

data_1200_800_16_5_1 10285 0.99 0 0.66 2

From the results in Tables 4 and 5, it emerges that for almost all the datasets, 1000 rep-
etitions of K-medoids with uniform random seeding are sufficient for obtaining a good
clustering solution. However, the use of G-K-means++ seeding not only enables a very
good solution to be achieved in all the cases, as reflected by the values of the ARI, CI, and
SI indexes, but it also increases significantly the Success Rate.

Only for the two datasets data_1200_200_16_40_1 and data_1200_200_32_5_1, 1000 rep-
etitions of K-medoids with uniform random seeding proved to be insufficient for generating

Algorithms 2023, 16, 349 14 of 17

a solution with minimal SDM, highest ARI, and CI = 0. This is due to the combination of
design factors of the datasets, i.e., the number of clusters and the overlapping degree.

By increasing the number of runs to 104, both the datasets were correctly handled by K-
medoids with uniform random seeding, with a resultant solution for data_1200_200_16_40_1
which has minimal SDM = 3460, ARI = 0.99, CI = 0, and SI = 0.58, and an average
ARI = 0.45, average CI = 3.85, and Success Rate = 8× 10−4.

For the dataset data_1200_400_16_5_1, the emerged best solution has minimal SDM
= 1824, ARI = 1.0, CI = 0, SI = 0.59, and average ARI = 0.53, average CI = 7.34, and
Success Rate = 7× 10−4.

The benefits of careful seeding are confirmed by all the results shown in Table 5.
The results in Tables 6 and 7 are the average of 10 repetitions of the parallel random

swap (PRS) algorithm. As one can see, the collected data agree with the results achieved by
repeated K-medoids under the same seeding method. PRS, though, was able to solve the
clustering problem (CI = 0) even under the uniform random initialization of medoids. In
addition, using G-K-means++ significantly reduces the number of iterations the clustering
solution requires to stabilize.

Separate experiments were executed by using the modified Otsuka–Ochiai cosine
distance. Except for the exact SDM values, which clearly depend on the specific distance
measure adopted, the bARI, bCI, and bSI results are identical to the case the modified
Jaccard distance was adopted, especially when the G-K-means++ seeding is used. Therefore,
such results are not reported for brevity.

For comparison purposes with the results documented in [8] and achieved by using
K-sets and K-swaps, Table 8 collects the achieved clustering results when the number of
clusters K varies from 4 to 32; Table 9 shows the results when the resolution L varies from
100 to 800; Table 10 reports the emerged data when the overlapping level o of clusters varies
from 0% to 40%; and finally, Table 11 illustrates the results when the type of clusters t is
varied from 1 to 5.

Table 8. ARI vs. the number of clusters K.

Algorithm K = 4 K = 8 K = 16 K = 32 Average

K-medoidsGKM++ 1.0 0.99 0.99 1.0 1.0
PRSGKM++ 1.0 0.99 0.99 0.99 0.99
K-sets 1.0 1.0 0.92 0.88 0.95
K-swaps 1.0 1.0 1.0 0.99 1.0

Table 9. ARI vs. the resolution L.

Algorithm L = 100 L = 200 L = 400 L = 800 Average

K-medoidsGKM++ 0.99 0.99 1.0 0.99 0.99
PRSGKM++ 0.99 0.99 1.0 0.99 0.99
K-sets 0.91 0.92 0.92 0.93 0.92
K-swaps 0.99 1.0 0.99 0.99 0.99

Table 10. ARI vs. the overlapping level o.

Algorithm o = 0% o = 5% o = 10% o = 20% o = 40% Average

K-medoidsGKM++ 1.0 0.99 0.99 0.99 0.99 0.99
PRSGKM++ 1.0 0.99 0.99 0.99 0.99 0.99
K-sets 0.86 0.92 0.86 0.91 0.92 0.89
K-swaps 1.0 1.0 0.99 0.99 0.99 0.99

Algorithms 2023, 16, 349 15 of 17

Table 11. ARI vs. the cluster types t.

Algorithm t = 1 t = 2 t = 3 t = 4 t = 5 Average

K-medoidsGKM++ 0.99 0.99 0.99 0.98 0.99 0.99
PRSGKM++ 0.99 0.99 0.99 0.98 0.99 0.99
K-sets 0.92 0.86 0.80 0.85 0.85 0.86
K-swaps 1.0 0.99 0.99 1.0 0.99 0.99

The table results were confirmed by K-medoids and parallel random swap (PRS)
under G-K-means++ seeding (GKM++).

Since in [8] the CI and SI indexes were not reported, the table results show only the
best-achieved ARI and the average ARI calculated along the values in a table row.

In light of the data shown in Tables 8–11, the algorithms proposed in this paper for
clustering sets are capable of generating solutions with the same accuracy as the approach
described in [8], and in some cases can deliver better performance.

Time Efficiency

The time complexity of the implemented K-medoids algorithm is O
(

N2KTl
)
, where

N is the number of the data objects (sets) of the dataset, K is the number of medoids, T is
the number of iterations, and l is the average length of a set.

In the following, some information is provided to determine the time computational
benefits that can be gathered from using Java parallel streams. The experimental results
reported in Tables 4–11 were all achieved by executing the proposed K-medoids or random
swap algorithms in parallel (parameter PARALLEL = true).

Table 12 reports the results of 2000 repetitions of K-medoids, with G-K-means++
seeding and modified Jaccard distance, on the data_1200_200_32_5_1 dataset, separately, in
sequential, and in parallel mode. The elapsed time ET (in msec) and the total number of
completed iterations (IT) were also measured. Then, the average elapsed time per iteration,
aETi = ET

IT , was computed.

Table 12. Results of 2000 repetitions of K-medoidsG-K-Means++ with weighted Jaccard distance on the
data_1200_200_32_5_1 dataset (8 physical cores).

Execution
Mode SDM ARI CI SR ET (msec) IT aETi (msec)

Sequential 1824 1.0 0 8.9% 4,425,118 10,551 442

Parallel 1824 1.0 0 9.8% 639,585 10,872 63

Then, the speedup was estimated as follows:

speedup =
Sequential

(
aETi)

Parallel
(
aETi

) .

From the results in Table 12, we can calculate a speedup of 442/63 = 7.02. This
corresponds to a parallel efficiency (eight physical cores) of 7.02/8 = 87.8%.

Note that the clustering algorithm executes the same computational steps in sequential
and parallel modes. Despite the small value of the dataset size, and then of the clusters’
size, the speedup value reflects a good exploitation of the parallelism in the partitioning
and the medoids update steps of K-medoids (see Algorithm 1), as well as in the recurrent
calculations of the SDM and of the Silhouette clustering index SI.

6. Conclusions

This paper proposes a novel approach to clustering variable-sized sets of elementary
items. An example of such data occurs in medical applications where patient diagnoses

Algorithms 2023, 16, 349 16 of 17

can be clustered to help discover a patient’s risk of contracting a future illness due to its
similarity with other patients.

The new approach is based on medoids. Two algorithms (K-medoids and random
swap) were implemented to work with the well-known Jaccard or Otsula–Ochiai cosine
distance measures adjusted to exploit some application-sensitive information concerning
the global frequency of elementary items in the dataset.

The proposal makes it possible to compute the distance between any pair of sets or
data objects. This enables the centroid/medoid of a cluster to be any data object of the
dataset. This differs from the inspiring work by [8], where the representative of a cluster is
a histogram of the uses of the items in the cluster, and a distance measure is introduced
between a data object and the cluster histogram.

The new approach proves to be effective in generating reliable clustering solutions.
In addition, an efficient implementation in Java based on parallel streams [12,19,20] was
realized to cope with the O

(
N2) computational cost related to computing the all pairwise

distances in K-medoids and in the evaluation of some clustering accuracy indexes.
This paper demonstrates the benefits of the proposed approach by applying it to

15 synthetic datasets [22] which were also used in [8]. The experimental results confirm
the achievement of high-quality clustering solutions, which can outperform the results
reported in [8].

Future research aims at improving the Java implementation of the algorithms; applying
the algorithms to realistic datasets such as clustering healthcare records as in [8]; and
exploiting the approach in other clustering methods. In addition, considering the problems
discussed in [28] about weaknesses of medoids when averaging GPS trajectories, which
in general can also be problems in clustering sets, another future issue of this work will
concern a possible replacement of medoids by some specific definition of the mean of the
data objects of a cluster.

Author Contributions: Both in methodology and Java implementation code. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data is available in the on-line repository [22].

Acknowledgments: The authors are grateful to the referees for their comments which allowed
improvement of this paper’s presentation. The Java software can be accessed from the link: https:
//bit.ly/3pGVLPZ (accessed on 13 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lloyd, S.P. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [CrossRef]
2. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [CrossRef]
3. Fränti, P.; Sieranoja, S. K-means properties on six clustering benchmark datasets. Appl. Intell. 2018, 48, 4743–4759. [CrossRef]
4. Fränti, P.; Sieranoja, S. How much can k-means be improved by using better initialization and repeats? Pattern Recognit. 2019, 93,

95–112. [CrossRef]
5. Hautamäki, V.; Pöllänen, A.; Kinnunen, T.; Lee, K.A.; Li, H.; Fränti, P. A comparison of categorical attribute data clustering

methods. In Structural, Syntactic, and Statistical Pattern Recognition, Proceedings of the Joint IAPR International Workshop, S+ SSPR,
Joensuu, Finland, 20–22 August 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 53–62.

6. Jubran, I.; Tukan, M.; Maalouf, A.; Feldman, D. Sets clustering. In Proceedings of the International Conference on Machine
Learning, Virtual, 13–18 July 2020; pp. 4994–5005.

7. He, Z.; Xu, X.; Deng, S.; Dong, B. K-Histograms: An efficient clustering algorithm for categorical dataset. arXiv 2005,
arXiv:cs/0509033.

8. Rezaei, M.; Fränti, P. K-sets and k-swaps algorithms for clustering sets. Pattern Recognit. 2023, 139, 109454. [CrossRef]
9. Kaufman, L.; Rousseeuw, P.J. Clustering by Means of Medoids. Statistical Data Analysis Based on the L1–Norm and Re-

lated Methods. 1987. Available online: https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-
clusteringbymedoids-l1norm-1987.pdf (accessed on 13 July 2023).

10. Park, H.-S.; Jun, C.-H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [CrossRef]
11. Fränti, P. Efficiency of random swap clustering. J. Big Data 2018, 5, 13. [CrossRef]

https://bit.ly/3pGVLPZ
https://bit.ly/3pGVLPZ
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1007/s10489-018-1238-7
https://doi.org/10.1016/j.patcog.2019.04.014
https://doi.org/10.1016/j.patcog.2023.109454
https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-clusteringbymedoids-l1norm-1987.pdf
https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-clusteringbymedoids-l1norm-1987.pdf
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1186/s40537-018-0122-y

Algorithms 2023, 16, 349 17 of 17

12. Nigro, L.; Cicirelli, F.; Fränti, P. Parallel Random Swap: A reliable and efficient clustering algorithm in Java. Simul. Model. Pract.
Theory 2023, 124, 102712. [CrossRef]

13. Zahrotun, L. Comparison Jaccard similarity, Cosine Similarity and Combined Both of the Data Clustering with Shared Nearest
Neighbor Method. Comput. Eng. Appl. J. 2016, 5, 11–18. [CrossRef]

14. Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms. 2007. Available online: https://ilpubs.stanford.edu:8090/778/ (accessed on 13 July 2023).

15. Celebi, M.E.; Kingravi, H.A.; Vela, P.A. A comparative study of efficient initialization methods for the k-means clustering
algorithm. Expert Syst. Appl. 2013, 40, 200–210. [CrossRef]

16. Vouros, A.; Langdell, S.; Croucher, M.; Vasilaki, E. An empirical comparison between stochastic and deterministic centroid
initialisation for K-means variations. Mach. Learn. 2021, 110, 1975–2003. [CrossRef]

17. Baldassi, C. Recombinator K-Means: A Population-Based Algorithm that Exploits K-Means++ for Recombination; Artificial Intelligence
Lab, Institute for Data Science and Analytics, Bocconi University: Milan, Italy, 2020.

18. Baldassi, C. Recombinator-k-Means: An Evolutionary Algorithm That Exploits k-Means++ for Recombination. IEEE Trans. Evol.
Comput. 2022, 26, 991–1003. [CrossRef]

19. Urma, R.G.; Fusco, M.; Mycroft, A. Modern Java in Action; Manning, Shelter Island, Simon Schuster: New York, NY, USA, 2019.
20. Nigro, L. Performance of Parallel K-Means Algorithms in Java. Algorithms 2022, 15, 117. [CrossRef]
21. ICD-10 Version: 2019. Available online: https://icd.who.int/browse10/2019/en#/XVIII (accessed on 13 July 2023).
22. Repository of Datasets. 2023. Available online: https://cs.uef.fi/sipu/datasets/ (accessed on 13 July 2023).
23. Rezaei, M.; Franti, P. Set Matching Measures for External Cluster Validity. IEEE Trans. Knowl. Data Eng. 2016, 28, 2173–2186.

[CrossRef]
24. Gates, A.J.; Ahn, J.-J. The impact of random models on clustering similarity. J. Mach. Learn. Res. 2017, 18, 1–28.
25. Fränti, P.; Rezaei, M.; Zhao, Q. Centroid index: Cluster level similarity measure. Pattern Recognit. 2014, 47, 3034–3045. [CrossRef]
26. Fränti, P.; Rezaei, M. Generalized centroid index to different clustering models. In Proceedings of the Workshop on Structural,

Syntactic, and Statistical Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2016; pp. 285–296. [CrossRef]
27. Bagirov, A.M.; Aliguliyev, R.M.; Sultanova, N. Finding compact and well-separated clusters: Clustering using silhouette

coefficients. Pattern Recognit. 2023, 135, 109144. [CrossRef]
28. Jimoh, B.; Mariescu-Istodor, R.; Fränti, P. Is Medoid Suitable for Averaging GPS Trajectories? ISPRS Int. J. Geo-Inf. 2022, 11, 133.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.simpat.2022.102712
https://doi.org/10.18495/comengapp.v5i1.160
https://ilpubs.stanford.edu:8090/778/
https://doi.org/10.1016/j.eswa.2012.07.021
https://doi.org/10.1007/s10994-021-06021-7
https://doi.org/10.1109/TEVC.2022.3144134
https://doi.org/10.3390/a15040117
https://icd.who.int/browse10/2019/en#/XVIII
https://cs.uef.fi/sipu/datasets/
https://doi.org/10.1109/TKDE.2016.2551240
https://doi.org/10.1016/j.patcog.2014.03.017
https://doi.org/10.1007/978-3-319-49055-7_26
https://doi.org/10.1016/j.patcog.2022.109144
https://doi.org/10.3390/ijgi11020133

	Introduction
	Related Work
	Example
	K-Sets and K-Swaps

	Medoid-Based Approaches
	New Distance Functions
	K-Medoids Algorithm for Sets
	Random Swap Algorithm for Sets
	Medoids Initialization and Seeding Methods
	Accuracy Clustering Indexes
	Java Implementation

	Experimental Setup
	Clustering Results
	Conclusions
	References

