Comparing Direct Deliveries and Automated Parcel Locker Systems with Respect to Overall CO2 Emissions for the Last Mile
Abstract
:1. Introduction
- RQ1. What is the average CO2 emission through APLs compared to traditional DD?
- RQ2. How does this comparison change under different demand scenarios and different assumptions regarding customer behavior for picking up parcels?
2. Related Work
2.1. Vehicle Routing Problems
2.2. Facility Location Problems
3. System Configurations
4. Modeling Approaches to Assess the Costs for the Last Mile for Direct Deliveries
- Defining clusters of customers (to be served on a single tour),
- Defining the sequence in which the customers are served on the tours.
- estimation of the kilometers driven by a simple formula.
- estimation of the kilometers driven for (given) districts by solving instances of the TSP for each district.
- estimation of the kilometers driven by solving the overall VRP problem in one step (on the basis of the sweep or savings algorithm).
4.1. Estimation of the Kilometers Driven for Each Tour (Round Trip)
4.2. Solving the Underlying Traveling Salesman Problem per Area
- the determination of the number of tours per area (according to the capacity of the vehicles).
- the allocation of customers to tours according to the sweep approach (“collecting” customers until the maximum capacity of the vehicle is reached).
- the solving of all TSP-Instances with the construction method Farthest Insertion and the improvement method 2-Opt.
4.3. Solving the VRP for the Overall Problem
5. Modeling APL Systems
5.1. Facility Location Problem
5.2. Evaluation of the Transport Processes
5.3. Consideration of Customer Behavior
6. Computational Results and Discussion
6.1. Direct Deliveries
6.1.1. Area-Based Approaches
6.1.2. Solving VRP Instances for All Customers under Consideration
6.2. APL Systems
6.3. CO2 Results Comparison
7. Conclusions
8. Further Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Direct Deliveries and APL Systems: Comparative Results
Scenario | VKT Cust. Foot/Bike | VKT Cust. Pub. Transp. | VKT Cust. Vehicle | VKT Veh. C = 250 | VKT Veh. C = 500 | VKT Veh. DD | Dev C = 250 [%] | Dev C = 500 [%] |
---|---|---|---|---|---|---|---|---|
H–A1 | 9000 | 4082 | 10,324 | 11,297 | 10,663 | 1946 | 480 | 448 |
H–A2 | 8107 | 1399 | 3693 | 4654 | 4153 | 1946 | 139 | 113 |
H–A3 | 7452 | 1206 | 3115 | 4221 | 3646 | 1946 | 117 | 87 |
H–A4 | 6438 | 925 | 2231 | 3391 | 3028 | 1946 | 74 | 56 |
H–A5 | 5408 | 604 | 1552 | 2778 | 2340 | 1946 | 43 | 20 |
H–A6 | 4441 | 280 | 686 | 1987 | 1527 | 1946 | 2 | −22 |
S1–A1 | 13,002 | 5445 | 13,904 | 15,329 | 14,772 | 2483 | 517 | 495 |
S1–A2 | 11,279 | 1978 | 5009 | 6326 | 5813 | 2483 | 155 | 134 |
S1–A3 | 10,623 | 1592 | 4088 | 5505 | 4965 | 2483 | 122 | 100 |
S1–A4 | 9159 | 1261 | 3216 | 4712 | 3967 | 2483 | 90 | 60 |
S1–A5 | 7640 | 794 | 2146 | 3787 | 3018 | 2483 | 53 | 22 |
S1–A6 | 6430 | 374 | 1006 | 2734 | 1981 | 2483 | 10 | −20 |
S2–A1 | 16,226 | 6947 | 17,701 | 19,470 | 18,063 | 2923 | 566 | 518 |
S2–A2 | 14,366 | 2374 | 5972 | 7711 | 7000 | 2923 | 164 | 140 |
S2–A3 | 13,280 | 2025 | 5146 | 6856 | 6092 | 2923 | 135 | 108 |
S2–A4 | 11,393 | 1566 | 4105 | 5826 | 5082 | 2923 | 99 | 74 |
S2–A5 | 9538 | 1042 | 2715 | 4698 | 3700 | 2923 | 61 | 27 |
S2–A6 | 8037 | 474 | 1213 | 3294 | 2448 | 2923 | 13 | −16 |
S3–A1 | 19,902 | 8145 | 21,622 | 23,761 | 21,498 | 3344 | 611 | 543 |
S3–A2 | 17,333 | 2919 | 7405 | 9471 | 8138 | 3344 | 183 | 143 |
S3–A3 | 15,965 | 2447 | 6366 | 8327 | 7328 | 3344 | 149 | 119 |
S3–A4 | 13,800 | 1929 | 4851 | 6774 | 6015 | 3344 | 103 | 80 |
S3–A5 | 11,502 | 1305 | 3236 | 5486 | 4426 | 3344 | 64 | 32 |
S3–A6 | 9755 | 583 | 1492 | 3949 | 2901 | 3344 | 18 | −13 |
Scenario | VKT to APLs VRP (C = 250) | VKT to APLs FTL (C = 250) | # Tours VRP (C = 250) | # Tours FTL (C = 250) | VKT to APLs VRP (C = 500) | VKT to APLs FTL (C = 500) | # Tours VRP (C = 500) | # Tours FTL (C = 500) |
---|---|---|---|---|---|---|---|---|
H–A1 | 295 | 678 | 10 | 36 | 339 | 92 | 12 | 8 |
H–A2 | 699 | 262 | 32 | 10 | 608 | 0 | 25 | 0 |
H–A3 | 893 | 213 | 38 | 10 | 641 | 0 | 26 | 0 |
H–A4 | 1160 | 0 | 50 | 0 | 667 | 0 | 26 | 0 |
H–A5 | 1226 | 0 | 50 | 0 | 714 | 0 | 25 | 0 |
H–A6 | 1300 | 0 | 50 | 0 | 806 | 0 | 25 | 0 |
S1–A1 | 327 | 1098 | 11 | 57 | 333 | 375 | 12 | 22 |
S1–A2 | 754 | 563 | 34 | 28 | 774 | 0 | 35 | 0 |
S1–A3 | 959 | 458 | 42 | 24 | 807 | 17 | 35 | 1 |
S1–A4 | 1362 | 134 | 60 | 8 | 888 | 0 | 38 | 0 |
S1–A5 | 1641 | 0 | 73 | 0 | 919 | 0 | 37 | 0 |
S1–A6 | 1729 | 0 | 73 | 0 | 998 | 0 | 36 | 0 |
S2–A1 | 302 | 1467 | 10 | 76 | 321 | 496 | 11 | 29 |
S2–A2 | 709 | 1030 | 31 | 49 | 791 | 54 | 36 | 2 |
S2–A3 | 963 | 747 | 43 | 38 | 880 | 74 | 39 | 3 |
S2–A4 | 1425 | 296 | 63 | 16 | 1048 | 0 | 45 | 0 |
S2–A5 | 1922 | 61 | 86 | 4 | 1104 | 0 | 47 | 0 |
S2–A6 | 2081 | 0 | 91 | 0 | 1179 | 0 | 45 | 0 |
S3–A1 | 290 | 1849 | 11 | 94 | 271 | 821 | 10 | 42 |
S3–A2 | 726 | 1340 | 32 | 66 | 789 | 170 | 35 | 8 |
S3–A3 | 1011 | 950 | 43 | 50 | 964 | 149 | 42 | 7 |
S3–A4 | 1495 | 428 | 66 | 25 | 1197 | 15 | 53 | 1 |
S3–A5 | 2113 | 137 | 94 | 8 | 1301 | 0 | 55 | 0 |
S3–A6 | 2456 | 0 | 110 | 0 | 1357 | 0 | 55 | 0 |
Scenario | Fuel Consumption (l/100 km) Veh. Sum. | CO2 Emissions (kg) Veh. Sum. | Fuel Consumption (l/100 km) DD | CO2 Emissions (kg) DD | Dev CO2 [%] |
---|---|---|---|---|---|
H–A1 | 868 | 2084 | 183 | 481 | 334 |
H–A2 | 295 | 863 | 183 | 481 | 79 |
H–A3 | 278 | 807 | 183 | 481 | 68 |
H–A4 | 234 | 700 | 183 | 481 | 46 |
H–A5 | 203 | 588 | 183 | 481 | 22 |
H–A6 | 163 | 445 | 183 | 481 | −7 |
S1–A1 | 902 | 2915 | 233 | 613 | 375 |
S1–A2 | 402 | 1225 | 233 | 613 | 100 |
S1–A3 | 361 | 1092 | 233 | 613 | 78 |
S1–A4 | 320 | 928 | 233 | 613 | 51 |
S1–A5 | 276 | 763 | 233 | 613 | 24 |
S1–A6 | 221 | 608 | 233 | 613 | −1 |
S2–A1 | 1143 | 3600 | 275 | 722 | 399 |
S2–A2 | 495 | 1549 | 275 | 722 | 115 |
S2–A3 | 447 | 1338 | 275 | 722 | 85 |
S2–A4 | 391 | 1173 | 275 | 722 | 62 |
S2–A5 | 340 | 973 | 275 | 722 | 35 |
S2–A6 | 266 | 735 | 275 | 722 | 2 |
S3–A1 | 1395 | 4309 | 314 | 826 | 422 |
S3–A2 | 606 | 1807 | 314 | 826 | 119 |
S3–A3 | 538 | 1622 | 314 | 826 | 96 |
S3–A4 | 451 | 1355 | 314 | 826 | 64 |
S3–A5 | 394 | 1113 | 314 | 826 | 35 |
S3–A6 | 318 | 862 | 314 | 826 | 4 |
Scenario | Fuel Consumption (l/100 km) Veh. Sum. | CO2 Emissions (kg) Veh. Sum. | Fuel Consumption (l/100 km) DD | CO2 Emissions (kg) DD | Dev CO2 [%] |
---|---|---|---|---|---|
H–A1 | 806 | 1950 | 183 | 481 | 306 |
H–A2 | 323 | 777 | 183 | 481 | 62 |
H–A3 | 286 | 691 | 183 | 481 | 44 |
H–A4 | 240 | 568 | 183 | 481 | 18 |
H–A5 | 189 | 456 | 183 | 481 | −5 |
H–A6 | 130 | 323 | 183 | 481 | −33 |
S1–A1 | 1114 | 2662 | 233 | 613 | 334 |
S1–A2 | 451 | 1073 | 233 | 613 | 75 |
S1–A3 | 388 | 940 | 233 | 613 | 53 |
S1–A4 | 314 | 784 | 233 | 613 | 28 |
S1–A5 | 244 | 598 | 233 | 613 | −2 |
S1–A6 | 168 | 427 | 233 | 613 | −30 |
S2–A1 | 1361 | 3378 | 275 | 722 | 368 |
S2–A2 | 540 | 1337 | 275 | 722 | 85 |
S2–A3 | 474 | 1153 | 275 | 722 | 60 |
S2–A4 | 401 | 972 | 275 | 722 | 35 |
S2–A5 | 299 | 751 | 275 | 722 | 4 |
S2–A6 | 206 | 510 | 275 | 722 | −29 |
S3–A1 | 1618 | 4061 | 314 | 826 | 392 |
S3–A2 | 625 | 1589 | 314 | 826 | 92 |
S3–A3 | 568 | 1414 | 314 | 826 | 71 |
S3–A4 | 474 | 1200 | 314 | 826 | 45 |
S3–A5 | 357 | 895 | 314 | 826 | 8 |
S3–A6 | 243 | 599 | 314 | 826 | −27 |
References
- Gevaers, R.; van de Voorde, E.; Vanelslander, T. Cost Modelling and Simulation of Last-mile Characteristics in an Innovative B2C Supply Chain Environment with Implications on Urban Areas and Cities. Procedia—Soc. Behav. Sci. 2014, 125, 398–411. [Google Scholar] [CrossRef]
- Vakulenko, Y.; Hellstrom, D.; Hjort, K. What’s in the Parcel Locker? Exploring Customer Value in E-commerce Last-mile delivery. J. Bus. Res. 2018, 88, 421–427. [Google Scholar] [CrossRef]
- Verlinde, S.; Rojas, C.; Buldeo Rai, H.; Kin, B.; Macharis, C. E-Consumers and their Perception of Automated Parcel Stations. In City Logistics 3: Towards Sustainable and Liveable Cities; Taniguchi, E., Thompson, R., Eds.; ISTE Ltd.: London, UK; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2018; pp. 147–160. [Google Scholar]
- McKinnon, A.C.; Tallam, D. Unattended Delivery to the Home: An Assessment of the Security Implications. Int. J. Retail. Distrib. Manag. 2003, 31, 30–41. [Google Scholar] [CrossRef]
- Deutsch, Y.; Golany, B. A Parcel Locker Network as a Solution to the Logistics Last Mile Problem. Int. J. Prod. Res. 2018, 56, 251–261. [Google Scholar] [CrossRef]
- Wang, X.; Yuen, K.F.; Wong, Y.D.; Teo, C.C. An Innovation Diffusion Perspective of E-consumers’ Initial Adoption of Self-collection Service via Automated Parcel Station. Sustainability 2018, 29, 237–260. [Google Scholar] [CrossRef]
- Mangiaracina, R.; Perego, A.; Seghezzi, A.; Tumino, A. Innovative Solutions to Increase Last-mile Delivery Efficiency in B2C E-commerce: A Literature Review. Int. J. Phys. Distrib. Logist. Manag. 2018, 49, 901–920. [Google Scholar] [CrossRef]
- Ranieri, L.; Digiesi, S.; Silvestri, B.; Roccotelli, M. A Review of Last-mile logistics Innovations in an Externalities Cost Reduction Vision. Sustainability 2018, 10, 782. [Google Scholar] [CrossRef]
- van Duin, J.H.R.; Wiegmans, B.W.; van Arem, B.; van Amstel, Y. From Home Delivery to Parcel Lockers: A Case Study in Amsterdam. Transp. Res. Procedia 2020, 16, 37–44. [Google Scholar] [CrossRef]
- Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Chao, I.-M.; Golden, B.L.; Wasil, E.A. The Team Orienteering Problem. Eur. J. Oper. Res. 1996, 88, 464–474. [Google Scholar] [CrossRef]
- Cattaruzza, D.; Absi, N.; Feillet, D.; González-Feliu, J. OR Vehicle Routing Problems for City Logistics. EURO J. Transp. Logist. 2017, 6, 1–38. [Google Scholar] [CrossRef]
- Hall, R.; Partyka, J. Vehicle Routing Software Survey: Higher Expectations Drive Transformation. ORMS-Today 2016, 43, 40–44. [Google Scholar]
- Erdoğan, G. An Open Source Spreadsheet Solver for Vehicle Routing Problems. Comput. Oper. Res. 2017, 84, 62–72. [Google Scholar] [CrossRef]
- Melo, M.T.; Nickel, S.; Saldanha-da-Gama, F. Facility Location and Supply Chain Management—A Review. J. Oper. Res. 2009, 196, 401–412. [Google Scholar] [CrossRef]
- Palacios-Argüello, L.; Gonzalez-Feliu, J.; Gondran, N.; Badeig, F. Assessing the Economic and Environmental Impacts of Urban Food Systems for Public School Canteens: Case Study of Great Lyon Region. Eur. Transp. Res. Rev. 2018, 10, 37. [Google Scholar] [CrossRef]
- Reyes, D.; Savelsbergh, M.; Toriello, A. Vehicle Routing with Roaming Delivery Locations. Transp. Res. Part C Emerg. Technol. 2017, 80, 71–91. [Google Scholar] [CrossRef]
- Zhou, L.; Baldacci, R.; Vigo, D.; Wang, X. A Multi-depot Two-echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution. Eur. J. Oper. Res. 2017, 265, 765–778. [Google Scholar] [CrossRef]
- Orenstein, I.; Raviv, T.; Sadan, E. Flexible Parcel Delivery to Automated Parcel Lockers: Models, Solution Methods and Analysis. EURO J. Transp. Logist. 2019, 8, 683–711. [Google Scholar] [CrossRef]
- Sitek, P.; Wikarek, J. Capacitated Vehicle Routing Problem with Pick-up and Alternative Delivery (CVRPPAD): Model and Implementation Using Hybrid Approach. EURO Ann. Oper. Res. 2019, 273, 257–277. [Google Scholar] [CrossRef]
- Mancini, S.; Gansterer, M. Vehicle Routing with Private and Shared Delivery Locations. Comput. Oper. Res. 2021, 133, 105361. [Google Scholar] [CrossRef]
- Schwerdfeger, S.; Boysen, N. Optimizing the Changing Locations of Mobile Parcel Lockers in Last-mile Distribution. Eur. J. Oper. Res. 2020, 285, 1077–1094. [Google Scholar] [CrossRef]
- Wen, J.; Li, Y. Vehicle Routing Optimization of Urban Distribution with Self-pick-up Lockers. In Proceedings of the 2016 International Conference on Logistics, Informatics, and Service Sciences (LISS), Sydney, NSW, Australia, 24–27 July 2016. [Google Scholar]
- Balinski, M.L. Integer Programming: Methods, Uses, Computations. Manag. Sci. 1965, 12, 253–313. [Google Scholar] [CrossRef]
- Laporte, G.; Nickel, S.; Saldanha da Gama, F. Location Science; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Heckmann, I.; Nickel, S.; Saldanha-da-Gama, F. Facility Location and Supply Chain Risk Analytics. In Uncertainty in Facility Location Problems; Eiselt, H.A., Marianov, V., Eds.; Springer: Cham, Switzerland, 2023; pp. 155–181. [Google Scholar]
- De Armas, J.; Juan, A.; Marquès, J.M.; Pedroso, J.P. Solving the Deterministic and Stochastic Uncapacitated Facility Location Problem: From a Heuristic to a Simheuristic. J. Oper. Res. Soc. 2017, 68, 1161–1176. [Google Scholar] [CrossRef]
- Absi, N.; Feillet, D.; Garaix, T.; Guyon, O. The City Logistics Facility Location Problem. In Proceedings of the ODYSSEUS 2012, Fifth International Workshop on Freight Transportation and Logistics, Mykonos Island, GR, USA, 21–25 May 2012. [Google Scholar]
- Pamučar, D.; Vasin, L.; Atanasković, P.; Miličić, M. Planning the City Logistics Terminal Location by Applying the Green-median Model and Type-2 Neurofuzzy Network. Comput. Intell. Neurosci. 2016, 2016, 6972818. [Google Scholar] [CrossRef]
- Sopha, B.M.; Asih, A.M.S.; Pradana, F.D.; Gunawan, H.E.; Karuniawati, Y. Urban Distribution Center Location: Combination of Spatial Analysis and Multi-Objective Mixed-Integer Linear Programming. Int. J. Eng. Bus. Manag. 2016, 8, 1847979016678371. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Novellani, S. A Two-echelon Facility Location Problem with Stochastic Demands for Urban Construction Logistics: An Application within the SUCCESS Project. In Proceedings of the 2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Bari, Italy, 18–20 September 2017; pp. 90–95. [Google Scholar]
- Gan, M.; Li, D.; Wang, M.; Zhang, G.; Yang, S.; Liu, J. Optimal Urban Logistics Facility Location with Consideration of Truck-related Greenhouse Gas Emissions: A Case Study of Shenzhen City. Math. Probl. Eng. 2018, 2018, 8439582. [Google Scholar] [CrossRef]
- Nataraj, S.; Ferone, D.; Quintero-Araujo, C.; Juan, A.; Festa, P. Consolidation Centers in City Logistics: A Cooperative Approach Based on the Location Routing Problem. Int. J. Ind. Eng. Comput. 2018, 10, 393–404. [Google Scholar] [CrossRef]
- Herrmann, E.; Kunze, O. Facility Location Problems in City Crowd Logistics. Transp. Res. Procedia 2019, 41, 117–134. [Google Scholar] [CrossRef]
- Farahani, R.Z.; Fallah, S.; Ruiz, R.; Hosseini, S.; Asgari, N. OR Models in Urban Service Facility Location: A Critical Review of Applications and Future Developments. Eur. J. Oper. Res. 2019, 276, 1–38. [Google Scholar] [CrossRef]
- Veenstra, M.; Roodbergen, K.J.; Coelho, L.C.; Zhu, S.X. A Simultaneous Facility Location and Vehicle Routing Problem Arising in Health Care Logistics in the Netherlands. Eur. J. Oper. Res. 2018, 268, 703–715. [Google Scholar] [CrossRef]
- Kedia, A.; Kusumastuti, D.; Nicholson, A. Locating Collection and Delivery Points for Goods’ Last-mile Travel: A Case Study in New Zealand. Transp. Res. Procedia 2018, 46, 85–92. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Lee, L.H.; Chew, E.P. Profit-maximizing Parcel Locker Location Problem under Threshold Luce Model. Transp. Res. Part E Logist. Transp. Rev. 2022, 157, 102541. [Google Scholar] [CrossRef]
- Zalando. Zalando Goes Carbon Neutral. 2019. Available online: https://corporate.zalando.com/en/our-impact/zalando-goes-carbon-neutral (accessed on 31 July 2023).
- Prandtstetter, M.; Seragiotto, C.; Braith, J.; Eitler, S.; Ennser, B.; Hauger, G.; Hohenecker, N.; Schodl, R.; Steinbauer, M. On the Impact of Open Parcel Lockers on Traffic. Sustainability 2021, 13, 755. [Google Scholar] [CrossRef]
- Schnieder, M.; Hinde, C.; West, A. Sensitivity Analysis of Emission Models of Parcel Lockers vs. Home Delivery Based on HBEFA. Int. J. Environ. Res. Public Health 2021, 18, 6325. [Google Scholar] [CrossRef]
- Moroz, M.; Polkowski, Z. The Last Mile Issue and Urban Logistics: Choosing Parcel Machines in the Context of the Ecological Attitudes of the Y Generation Consumers Purchasing Online. Transp. Res. Procedia 2016, 16, 378–393. [Google Scholar] [CrossRef]
- Iwan, S.; Kijewska, K.; Lemke, J. Analysis of Parcel Lockers’ Efficiency as the Last-mile delivery Solution—The Results of the Research in Poland. Transp. Res. Procedia 2016, 12, 644–655. [Google Scholar] [CrossRef]
- Lemke, J.; Iwan, S.; Korczak, J. Usability of the Parcel Lockers from the Customer Perspective—The Research in Polish Cities. Transp. Res. Procedia 2016, 16, 272–287. [Google Scholar] [CrossRef]
- Carotenuto, P.; Gastaldi, M.; Giordani, S.; Rossi, R.; Rabachin, A.; Salvatore, A. Comparison of various Urban Distribution Systems Supporting E-commerce. Point-to-point vs Collection-point-based Deliveries. Transp. Res. Procedia 2018, 30, 188–196. [Google Scholar] [CrossRef]
- Jiang, L.; Chang, H.; Zhao, S.; Dong, J.; Lu, W. A Travelling Salesman Problem with Carbon Emission Reduction in the Last-mile delivery. IEEE 2019, 7, 61620–61627. [Google Scholar] [CrossRef]
- Giuffrida, M.; Mangiaracina, R.; Perego, A.; Tumino, A. Home delivery vs Parcel Lockers: An Economic and Environmental Assessment. In Proceedings of the 21st Summer School Francesco Turco, Naples, Italy, 13–15 September 2016; pp. 225–230. [Google Scholar]
- Kiousis, V.; Nathanail, E.; Karakikes, I. Assessing Traffic and Environmental Impacts of Smart Lockers Logistics Measure in a Medium-Sized Municipality of Athens. In Proceedings of the 4th Conference on Sustainable Urban Mobility, Skiathos Island, Greece, 24–25 May 2019; pp. 614–621. [Google Scholar]
- Song, L.; Cherrett, T.; McLeod, F.; Guan, W. Addressing the Last Mile Problem: Transport Impacts of Collection and Delivery Points. Transp. Res. Rec. 2009, 2097, 9–18. [Google Scholar] [CrossRef]
- Song, L.; Guan, W.; Cherrett, T.; Li, B. Quantifying the Greenhouse Gas Emissions of Local Collection-and-Delivery Points for Last-Mile Deliveries. Transp. Res. Rec. 2013, 2340, 66–73. [Google Scholar] [CrossRef]
- Edwards, J.; McKinnon, A.; Cherrett, T.; McLeod, F.; Song, L. Carbon Dioxide Benefits of Using Collection–Delivery Points for Failed Home Deliveries in the United Kingdom. Transp. Res. Rec. 2010, 2191, 136–143. [Google Scholar] [CrossRef]
- Peppel, M.; Spinler, S. The Impact of Optimal Parcel Locker Locations on Costs and the Environment. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 324–350. [Google Scholar] [CrossRef]
- Bonomi, V.; Mansini, R.; Zanotti, R. Last-mile delivery with Parcel Lockers: Evaluating the Environmental Impact of Eco-conscious Consumer Behavior. IFAC-Pap. 2022, 55, 72–77. [Google Scholar] [CrossRef]
- Niemeijer, R.; Buijs, P. A Greener Last Mile: Analyzing the Carbon Emission Impact of Pickup Points in Last-Mile Parcel Delivery. Renew. Sustain. Energy Rev. 2022, 186, 113630. [Google Scholar] [CrossRef]
- Laporte, G.; Stefan, R.; Thibaut, V. Heuristics for the Vehicle Routing Problem. In Vehicle Routing: Problems, Methods, and Applications, 2nd ed.; Toth, P., Vigo, D., Eds.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2014; pp. 87–116. ISBN 978-1-61197-358-7. [Google Scholar]
- Gillett, B.E.; Miller, L.R. A Heuristic Algorithm for the Vehicle-dispatch Problem. Oper. Res. 1978, 22, 340–349. [Google Scholar] [CrossRef]
- Clarke, G.; Wright, J.W. Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Oper. Res. 1964, 3, 568–581. [Google Scholar] [CrossRef]
- Stein, D.M. An Asymptotic, Probabilistic Analysis of a Routing Problem. Math. Oper. Res. 1978, 3, 89–101. [Google Scholar] [CrossRef]
- Figliozzi, M.A. Planning Approximations to the Average Length of Vehicle Routing Problems with Varying Customer Demands and Routing Constraints. Transp. Res. Rec. 2008, 2089, 1–8. [Google Scholar] [CrossRef]
- Stadt Dortmund. Masterplan “Nachhaltige Mobilität für die Stadt”. 2018. Available online: https://bmdv.bund.de/SharedDocs/DE/Anlage/K/Masterplaene-Green-City/dortmund.pdf?__blob=publicationFile (accessed on 24 October 2023).
- Hermes. Heiße Phase in der “Geschenke”-Saison: Das sind die Paket-Hotspots in Deutschlands Metropolen. 2019. Available online: https://newsroom.hermesworld.com/paketradar2019-18655/ (accessed on 22 October 2023).
- Rabe, M.; Gonzalez-Feliu, J.; Chicaiza-Vaca, J.; Tordecilla, R.D. Simulation-Optimization Approach for Multi-Period Facility Location Problems with Forecasted and Random Demands in a Last-Mile Logistics Application. Algorithms 2021, 14, 41. [Google Scholar] [CrossRef]
- DAT. Leitfaden über den Kraftstoffverbrauch, die CO2-Emissionen und den Stromverbrauch neuer Personenkraftwagen. 2022. Available online: https://www.dat.de/co2/ (accessed on 30 September 2023).
- Statista. Durchschnittlicher Kraftstoffverbrauch der in Deutschland Zugelassenen Pkw in den Jahren von 2011 bis 2021. 2023. Available online: https://de.statista.com/statistik/daten/studie/484054/umfrage/durchschnittsverbrauch-pkw-in-privaten-haushalten-in-deutschland/ (accessed on 25 October 2023).
- Statista. Anzahl der Personenkraftwagen mit Dieselmotor in Deutschland von 2013 bis 2023. 2023. Available online: https://de.statista.com/statistik/daten/studie/251779/umfrage/bestand-von-pkws-mit-diesel-motor-in-deutschland/ (accessed on 25 October 2023).
- co2online. CO2 Ausstoß und Klimabilanz von Pkw. 2023. Available online: https://www.co2online.de/klima-schuetzen/mobilitaet/auto-co2-ausstoss/#c131031 (accessed on 22 October 2023).
- Serrano-Hernandez, A.; Martinez-Abad, S.; Ballano, A.; Faulin, J.; Rabe, M.; Chicaiza-Vaca, J. A hybrid modeling approach for automated parcel lockers as a last-mile delivery scheme: A case study in Pamplona (Spain). In Proceedings of the 2021 Winter Simulation Conference, Phoenix, AZ, USA, 12–15 December 2021; Kim, S., Feng, B., Smith, K., Masoud, S., Zheng, Z., Szabo, C., Loper, M., Eds.; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar] [CrossRef]
Until km | % Foot or Bike | % Public Transport | % Individual Tour | fdt |
---|---|---|---|---|
0.3 | 100 | - | - | - |
1.5 | 50 | 28 | 50 | 30 |
else | 10 | 28 | 50 | 30 |
Demand Scenario | Number of Tours | VKT DC to the Center of the Districts and Back |
---|---|---|
H | 49 | 946 |
S1 | 71 | 1358 |
S2 | 88 | 1698 |
S3 | 106 | 2069 |
Scenario | VKT Sum (Approx.) | VKT Sum (TSP)/RAND | VKT Sum (TSP)/OSM | VKT Sweep OSM | VKT Savings OSM |
---|---|---|---|---|---|
H | 2314 | 2735 | 2122 | 1946 | 1982 |
S1 | 3003 | 3491 | 2685 | 2692 | 2483 |
S2 | 3540 | 4090 | 3116 | 3236 | 2923 |
S3 | 4088 | 4687 | 3562 | 3820 | 3344 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutenschwager, K.; Rabe, M.; Chicaiza-Vaca, J. Comparing Direct Deliveries and Automated Parcel Locker Systems with Respect to Overall CO2 Emissions for the Last Mile. Algorithms 2024, 17, 4. https://doi.org/10.3390/a17010004
Gutenschwager K, Rabe M, Chicaiza-Vaca J. Comparing Direct Deliveries and Automated Parcel Locker Systems with Respect to Overall CO2 Emissions for the Last Mile. Algorithms. 2024; 17(1):4. https://doi.org/10.3390/a17010004
Chicago/Turabian StyleGutenschwager, Kai, Markus Rabe, and Jorge Chicaiza-Vaca. 2024. "Comparing Direct Deliveries and Automated Parcel Locker Systems with Respect to Overall CO2 Emissions for the Last Mile" Algorithms 17, no. 1: 4. https://doi.org/10.3390/a17010004
APA StyleGutenschwager, K., Rabe, M., & Chicaiza-Vaca, J. (2024). Comparing Direct Deliveries and Automated Parcel Locker Systems with Respect to Overall CO2 Emissions for the Last Mile. Algorithms, 17(1), 4. https://doi.org/10.3390/a17010004