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Abstract: Encoding a dictionary into another representation means that all the words can be stored in
the dictionary in a more efficient way. In this way, we can complete common operations in dictionaries,
such as (1) searching for a word in the dictionary, (2) adding some words to the dictionary, and
(3) removing some words from the dictionary, in a shorter time. Binary decision diagrams (BDDs)
are one of the most famous representations of such encoding and are widely popular due to their
excellent properties. Recently, some people have proposed encoding dictionaries into BDDs and
some variants of BDDs and showed that it is feasible. Hence, we further investigate the topic of
encoding dictionaries into decision diagrams. Tagged sentential decision diagrams (TSDDs), as one
of these variants based on structured decomposition, exploit both the standard and zero-suppressed
trimming rules. In this paper, we first introduce how to use Boolean functions to represent dictionary
files and then design an algorithm that encodes dictionaries into TSDDs with the help of tries and a
decoding algorithm that restores TSDDs to dictionaries. We utilize the help of tries in the encoding
algorithm, which greatly accelerates the encoding process. Considering that TSDDs integrate two
trimming rules, we believe that using TSDDs to represent dictionaries would be more effective, and
the experiments also show this.

Keywords: encode a dictionary; Boolean functions; decision diagrams

1. Introduction

A word is a string consisting of some symbols or characters, and a dictionary is a set
that includes numerous words. A large dictionary can consist of millions of words. With the
evolution of computer technology, in practical life, we use dictionaries in many places. For
example, teachers store the names of all students in the school on their computers; this list
of students is actually a dictionary, where each student’s name is a word. In order to solve
practical problems, we often need to perform some common operations in dictionaries,
three of which are, for example, (1) searching for a word in a dictionary, (2) adding words to
a dictionary, and (3) removing words from a dictionary. In general, the time complexity of
the above operations is O(n). When the size of a dictionary (that is, the number of words)
is too large, the above three operators are time-consuming and ineffective. Therefore,
designing an effective method for operations in dictionaries is worth investigating.

An effective method for operations in dictionaries is to encode the dictionary into an
efficient and compact representation. Some scholars have proposed a decision-diagram-
based method of operation for dictionaries [1]. However, they have not provided any
algorithms or implementations of the method. Following the above-mentioned idea, in
this paper, we represent large dictionaries in decision diagrams and solve the common
operations for dictionaries via operations in decision diagrams.
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Binary decision diagrams (BDDs) are unique canonical forms that adhere to specific
constraints, namely, ordering and reduction, ensuring that each Boolean function possesses
a distinct BDD representation. This characteristic minimizes the storage requirements
of BDDs and facilitates O(1) time equality tests on BDDs. After the emergence of the
BDD, a variant known as the zero-suppressed BDD (ZDD) was introduced in [2]. ZDDs
share similar characteristics with BDDs, such as canonicity and support for polynomial-
time Boolean operations. The primary distinction between BDDs and ZBDDs lies in their
respective reduction rules. Building on the applications of BDDs and ZBDDs, several
extensions have been developed, including tagged BDDs (TBDDs) [3], chain-reduced
BDDs (CBDDs) [1], chain-reduced ZDDs (CZDDs) [1], and edge-specified reduction BDDs
(ESRBDDs) [4]. These extensions, which integrate two reduction rules, offer more compact
representations compared to BDDs and ZDDs.

With the increasing maturity of decision diagram technology, people have begun to
focus on research on applying decision diagrams to many fields. In ref. [1], the researchers
successfully transformed a dictionary into BDDs and two variants of BDDs, CBDDs and
CZDDs. They started from the following three points: (1) A Boolean function can be used
to represent a binary number. (2) Decision diagrams can be used to represent Boolean
functions. (3) Characters and symbols can be encoded into binary codes. Then, they consid-
ered the possibility of using decision diagrams to represent characters and symbols and
implemented it. Finally, they encoded two dictionaries containing hundreds of thousands
of words into three decision diagrams and provided data on the node count and time
indicators. This confirms that encoding dictionaries into decision diagrams is a feasible
research direction.

Hence, in this paper, we focus on applying another type of decision diagram, tagged
sentential decision diagrams (TSDDs), into encoding dictionaries, and we first introduce
TSDDs. To introduce TSDDs, we first introduce sentential decision diagrams (SDDs), which
are decision diagrams based on structured decomposition [5], while BDDs are based on
Shannon decomposition [6]. While BDDs are characterized by a total variable order, SDDs
are defined by a variable tree (vtree), which is a complete binary tree with variables as
its leaves, and apply standard trimming rules. Furthermore, in ref. [7], the researchers
introduced the zero-suppressed variant of the SDD, known as the ZSDD, which also
utilizes structured decomposition and applies zero-suppressed trimming rules instead of
the standard trimming rules used in SDDs. ZSDDs offer a more compact representation for
sparse Boolean functions compared to SDDs, while SDDs are better suited for homogeneous
Boolean functions. To leverage the strengths of both SDDs and ZSDDs, ref. [8] devised
a new decision diagram, the TSDD, which combines the standard and zero-suppressed
trimming rules.

The contributions of our paper mainly include the following: (1) We propose an
algorithm for encoding dictionaries into decision diagrams. We first transform a dictionary
into a well-known data structure: the trie. With the help of tries, our algorithm can
encode a dictionary into a decision diagram more efficiently than the method without
tries. (2) We encoded 14 dictionaries into seven decision diagrams, i.e., BDDs, ZDDs,
CBDDs, CZDDs, SDDs, ZSDDs, and TSDDs, in four ways, and we believe that TSDDs are
the most suitable for representing dictionaries among all decision diagrams. We adopted
TSDDs to represent dictionaries, and the experimental results show that TSDDs are more
compact representations compared to other decision diagrams. (3) We also designed
an algorithm that decodes a decision diagram and obtains the original dictionary. Our
algorithm recursively restores each word in the dictionary and then saves these words
together to obtain the original dictionary. Moreover, our algorithm can quickly complete
the decoding process in most cases.

The rest of this paper is organized as follows. We first introduce the syntax and
semantics of SDDs and ZSDDs. Section 3 introduces the syntax of TSDDs and the binary
operation on TSDDs. In this section, we mainly introduce how to use a TSDD to denote a
Boolean function and the trimming rules of TSDDs. Ref. [8] proposed a related definition of
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TSDDs. However, the researchers used three different semantics to explain SDDs, ZSDDs,
and TSDDs. In fact, we believe that the difference in these decision diagrams mainly lies
in the different trimming rules. These three decision diagrams can be explained with the
same semantics. In this way, we can have a more intuitive understanding of these three
decision diagrams and theoretically understand why TSDDs are more effective than SDDs
and ZSDDs. Section 4 introduces how to use a Boolean function to represent a dictionary,
the process of encoding a dictionary with the help of tries, and the decoding algorithm.
An experimental evaluation comparing TSDDs with other decision diagrams appears in
Section 5. Finally, Section 6 concludes this paper.

2. Preliminaries

Throughout this paper, we use lowercase letters (e.g., x1, x2) for variables and bold
uppercase letters (e.g., X, Y) for sets of variables. For a variable x, we use x to denote the
negation of x. A literal is a variable or a negated one. A truth assignment over X is the
mapping σ : X 7→ {0, 1}. We let ΣX be the set of truth assignments over X. We say f is a
Boolean function over X, which is the mapping ΣX 7→ {0, 1}. We use 1 (resp. 0) for the
Boolean function that maps all assignments to 1 (resp. 0).

Let X and Y be two disjoint and non-empty sets of variables. We use f to denote
a Boolean function and use f (X) to denote a Boolean function over the variable set X.
We say the set {( f p

1 (X), f s
1(Y)), · · · , ( f p

n (X), f s
n(Y))} is an (X, Y)-decomposition of a Boolean

function f (X, Y) iff f = ( f p
1 (X) ∧ f s

1(Y)) ∨ · · · ∨ ( f p
n (X) ∧ f s

n(Y)), where every f p
i (X) (resp.

f s
i (Y)) is a Boolean function over X (resp. Y). A decomposition is compressed iff f s

i ̸= f s
j

for i ̸= j. An (X, Y)-decomposition is called an (X, Y)-partition iff (1) f p
i ̸= 0 for 1 ≤ i ≤ n,

(2) f p
i ∧ f p

j = 0 for i ̸= j, and (3) f p
i ∨ · · · ∨ f p

n = 1.
A vtree is a full binary tree whose leaves are labeled by variables, and we use T to

denote a vtree node. Then, we use Tl to denote the left subtree of T, while Tr denotes the
right subtree of T. The set of variables appearing in the leaves of T is denoted by v(T). In
addition, there is a special leaf node labeled by 0, which can be considered a child of any
vtree node, and v(0) = ∅. The notation T1 ≼ T2 denotes that T1 is a subtree of T2. In order
to unify the definition, we use a tuple to denote a decision diagram in this paper and give
the following definition.

Definition 1. A decision diagram is a tuple (T1, T2, α) s.t. T2 ≼ T1, which is recursively defined
as follows:

• α is a terminal node labeled by one of four symbols: 1, 0, ε, or ε̄;
• α is a decomposition node {(p1, s1), · · · , (pn, sn)} satisfying the following:

– Each pi is a decision diagram (T3, T4, β), where T4 ≼ T3 ≺ T2;
– Each si is a decision diagram (T5, T6, γ), where T6 ≼ T5 ≺ T2.

The size of α is denoted by |α|, and |α| = 0 when α is a terminal node and |α| = n when
α = {(p1, s1), · · · , (pn, sn)}. We use ⟨(T1, T2, α)⟩ to denote the Boolean function that this
decision diagram represents. Then, we give the definition of the syntax of decision diagrams.

Definition 2. Let T1 and T2 be two vtrees, and let T2 be a subtree of T1. The semantics of decision
diagrams is inductively defined as follows:

• ⟨(T1, T2, 1)⟩ = ∧
x∈v(T1)\v(T2)

x, ⟨(T1, T2, 0)⟩ = 0.

• ⟨(T1, T2, ε)⟩ = ∧
v(T1)

x, ⟨(T1, T2, ε)⟩ = ∧
x∈v(T1)\v(T2)

x ∧ ∨
x∈v(T2)

x.

• ⟨(T1, T2, {(p1, s1), . . . , (pn, sn)})⟩ =
∧

x∈v(T1)\v(T2)

x ∧
n∨

i=1
(⟨pi⟩ ∧ ⟨si⟩) and satisfies the

following conditions:
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– ⟨pi⟩ ̸= 0 for 1 ≤ i ≤ n.
– ⟨pi⟩ ∧ ⟨pj⟩ for i ̸= j.

–
n∨

i=1
⟨pi⟩ = 1.

A sentential decision diagram (SDD) (T1, T2, α) has the following further constraints
based on the above definition of a decision diagram:

• If α is a terminal node, then it must be one of the following:

– ⟨(0, 0, 1)⟩ = 1.
– ⟨(0, 0, 0)⟩ = 0.
– (T1, 0, 1), where T1 must be a leaf vtree node.
– (T1, T2, ε), where T1 must be a leaf vtree node and T1 = T2.

• If α is a decomposable node, then T1 = T2.

Suppose that (T1, T2, α) is an SDD; then, we know that T1 = T2 if α is a decomposable
node. Hence, we use (T, T, α) to denote an SDD in order to provide a more intuitive
definition of compression and trimming rules. The compression and trimming rules for
SDDs are proposed in [9], and we give them according to the above definition.

• Standard compression rule: if ⟨si⟩ = ⟨sj⟩, then replace (T, T, {(p1, s1), . . . , (pi, si),
. . . , (pj, sj), . . . , (pn, sn)}) with (T, T, {(p1, s1), . . . , (p′, si), . . . , (pn, sn)}), where ⟨p′⟩ =
⟨pi⟩ ∨ ⟨pj⟩.

• Standard trimming rules:

– Replace (T, T, {(p1, (0, 0, 1)), (p2, (0, 0, 0))}) with p1 (shown in Figure 1a).
– Replace (T, T, {(0, 0, 1), s)}) with s (shown in Figure 1b).
For Figure 1, we need to clarify the following content. For a decision diagram

(T1, T2, α), when α is a terminal node, the above three components are represented by
a square, where α is shown on the left side of the square, T1 is in the upper-right corner, and
T2 is in the lower-right corner. When α is a decomposition node, T1 and T2 are displayed
as circles with outgoing edges pointing to the elements. Each element (pi, si) is represented
by paired boxes, where the left box represents the prime pi, and the right box stands for the
sub si.

α

· 1 0p
α

2

T1

T1

T2

T3

T2

T3

0
0

0
0

(a) (b)

α

·1

T1

T1

T2

T3

0
0

α

T2

T3

α

· 1 0p
α

2

T1

T2

T1

T3

T2

T3

0
0
0

(c)

l

T2

r

α

·1 0p
α

2

T1
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T1
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0
0
0
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· 1 0p2
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0
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r · 1 0p2
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0
0
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0
0
0

0
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l

α

T3

T4
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0
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· 1 0p2

T1
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T4

0
0
0
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T2

r

·1

T1
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0
0

α
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T4

l r

·1 0p2
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0
0
0

T2

l ·1 0p2

T1

T2

0
0
0
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l

α

T3

T4

α

T3

T4

(e)

1

T1

T2

0
0 0 0

0

0 0
0

Figure 1. Trimming rules for TSDDs.

Compressed and trimmed SDDs were shown to be a canonical form of Boolean
functions in [9]. Then, we show the syntax and semantics of ZSDDs in our definition. A
ZSDD has different constraints based on the above definition of a decision diagram. First
of all, it should be noted that we use Troot to denote the root node of the whole vtree:

• If α is a terminal node, then it must be one of the following:

– ⟨(T, 0, 1)⟩ = ∧
v(T)

x.
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– ⟨(0, 0, 0)⟩ = 0.
– (Troot, T, ε), where T must be a leaf vtree node.
– (Troot, T, 1), where T must be a leaf vtree node.

The compression and trimming rules for ZSDDs are as follows:

• Zero-suppressed compression rule: if ⟨si⟩ = ⟨sj⟩, then replace (T1, T2,{(p1, s1), . . . ,
(pi, si), . . . , (pj, sj), . . . , (pn, sn)}) with (T1, T2,{(p1, s1), . . . , (p′, si), . . . , (pn, sn)}), where
⟨p′⟩ = ⟨pi⟩ ∨ ⟨pj⟩.

• Zero-suppressed trimming rules:

– Replace (T1, T2, {((T2
l , T3, α), (T2

r , 0, 1)), (p2, (0, 0, 0))}) with (T1, T3, α) (shown in
Figure 1c).

– Replace (T1, T2, {(T2
l , 0, 1), (T2

r , T3, α)), (p2, s2)}) with (T1, T3, α) (shown in
Figure 1d).

Similar to SDDs, compressed and trimmed ZSDDs were also proven to be a canonical
form of Boolean functions in [7]. SDDs are suitable to represent homogeneous Boolean
functions, while ZSDDs are suitable to represent Boolean functions with sparse values.

3. Tagged Sentential Decision Diagrams

In this section, we will first introduce the syntax and semantics of TSDDs and the
compression and trimming rules of TSDDs. Similar to SDDs and ZSDDs, we give the syntax
and semantics based on the syntax and semantics of decision diagrams in Section 2. Then,
we briefly introduce the binary operations on TSDDs and how to use these operations to
construct a Boolean function.

3.1. Syntax and Semantics

TSDDs have different constraints compared to SDDs and ZSDDs based on the syntax
and semantics of decision diagrams. Here, we give the following constraints.

Definition 3. Let T1 and T2 be two vtrees s.t. T2 ≼ T1 and (T1, T2, α) is a TSDD. Then,

• If α is a terminal node, then it must be one of the following:

– (0, 0, 0), and ⟨(0, 0, 0)⟩ = 0.
– (T1, 0, 1), and ⟨(T1, 0, 1)⟩ = ∧

v(T1)

x (specifically, if T1 = 0, then ⟨(0, 0, 1)⟩ = 1).

– (T1, T2, ε) and T2 must be a leaf vtree node, and ⟨(T1, T2, ε)⟩ = (
∧

v(T1)\v(T2)

x) ∧

(
∨

v(T2)

x).

• If α is a decomposition node, then T2 must not be a leaf vtree node.

We can see that for a TSDD (T1, T2, α), T2 must be a leaf vtree node or 0 if α is a
terminal node. We should note that we can directly construct some TSDDs. (1) The TSDDs
(0, 0, 0) and (0, 0, 1) can be constructed. (2) The TSDDs (T, 0, 1) and (T, T, ε), where T is a
leaf vtree node, can be constructed. These two kinds of TSDDs are special TSDDs; that is,
they are the foundation for constructing a TSDD to represent a Boolean function. For the
second type of TSDDs, we know that T is a leaf vtree node; that is, v(T) contains only one
variable. Suppose that v(T) = x; then, ⟨(T, 0, 1)⟩ = x and ⟨T, T, ε⟩ = x.

3.2. Canonicity

TSDDs, as a variant of SDDs, apply trimming rules that integrate the trimming rules
of SDDs and ZSDDs. Hence, the trimming rules of TSDDs include the trimming rules of
SDDs and ZSDDs that are shown in Figure 1a–d, and we do not introduce them in the
following definition. Hence, the trimming rules of TSDDs start from (e). In addition, these
rules also include five new rules. We then show the compression and trimming rules for
TSDDs as follows:
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• Tagged compression rule: if ⟨si⟩ = ⟨sj⟩, then replace (T1, T2, {(p1, s1), . . . , (pi, si), . . . ,
(pj, sj), . . . , (pn, sn)}) with (T1, T2, {(p1, s1), . . . , (p′, si), . . . , (pn, sn)}), where ⟨p′⟩ =
⟨pi⟩ ∨ ⟨pj⟩.

• Tagged trimming rules:

– If p = (0, 0, 1) and s = (0, 0, 0), then replace (T1, T2, {(p, s)}) with (0, 0, 0) (shown
in Figure 1e).

– If p1 = (T3, T4, α), s1 = (T2
r , 0, 1), s2 = (0, 0, 0), and T3 ≺ T2

l , then replace
(T1, T2, {(p1, s1), (p2, s2)}) with (T1, T2

l , {(p1, (0, 0, 1)), (p2, (0, 0, 0))}) (shown in
Figure 1f).

– If p1 = (T3, T4, α), s1 = (T2
r , 0, 1), s2 = (0, 0, 0), and T3 ≺ T2

r , then replace
(T1, T2, {(p1, s1), (p2, s2)}) with (T1, T2

l , {((0, 0, 1), p1)}) (shown in Figure 1g).
– If p1 = (T2

l , 0, 1), s1 = (T3, T4, α), s2 = (0, 0, 0), and T3 ≺ T2
l , then replace

(T1, T2, {(p1, s1), (p2, s2)}) with (T1, T2
r , {(p1, (0, 0, 1)), (p2, (0, 0, 0))}) (shown in

Figure 1h).
– If p1 = (T2

l , 0, 1), s1 = (T3, T4, α), s2 = (0, 0, 0), and T3 ≺ T2
r , then replace

(T1, T2, {(p1, s1), (p2, s2)}) with (T1, T2
r , {((0, 0, 1), p1)}) (shown in Figure 1i).

A TSDD is compressed (resp. trimmed) if no tagged compression (resp. trimming) rules
can be applied to it. The canonicity of compressed and trimmed TSDDs was proved in [8].

3.3. Operations on TSDDs

The main operations on TSDDs include conjunction (∧), disjunction (∨), and negation
(x). The algorithm of the binary operations conjunction (∧) and disjunction (∨) was shown
in [8]. Here, we show the negation algorithm on TSDDs in Algorithm 1.

Algorithm 1: Negate(F)
Input: F: a TSDD (T1, T2, α);
Output: H: The resulting TSDD (T3, T4, β).

if F = (0, 0, 0)(resp.(0, 0, 1)) then return H = (0, 0, 1)(resp.(0, 0, 0))
if F = (T1, 0, 1)(resp.(T1, T1, x)) and T1 is a leaf vtree node then return H = (T1, T1, x)(resp.(T1, 0, 1))
if F = (T1, 0, 1) and T1 is not a leaf vtree node then
F ← (T1, T1, {((T1

l , 0, 1), (T1
r , 0, 1)), (Negate((T1

l , 0, 1)), (0, 0, 0))})
γ← ∅

foreach element (pi , si) of F do
s← Negate(si)
add element (pi , s) to γ

H ← Trim(Compress(T5, T6, γ)))

return H

For special terminal nodes, which are the two kinds of TSDDs mentioned in Section 3.1,
we can directly compute the resulting TSDD (Lines 1–2). For the other terminal nodes,
we need to transform them into another form, namely, decomposable nodes (Line 3).
And then, we apply Negate(si) to every element and construct the following elements:
γ = {(p1, Negate(s1)), . . . , (pn, Negate(sn))}; the resulting TSDD is (T1, T2, γ) (Lines 4–7).
Finally, we apply compression and trimming rules to H (Line 8).

The binary operation is represented by Apply(F, G, ◦), where ◦ represents ∧ or ∨,
as shown in [8]. With these three operations, we can construct TSDDs to represent any
Boolean function based on existing TSDDs. Here, we give an example. Given the Boolean
function f = (x1 ∨ x2)∧ (x2 ∨ x3), we have the following initial TSDDs: F(x1), F(x1), F(x2),
F(x2), F(x3), and F(x3), where ⟨F(x1)⟩ = x1 and so on. The steps are as follows: (1) Let
F = Apply(F(x1), F(x2),∨)). (2) Let F = Negate(F). (3) Let G = Apply(F(x2), F(x3),∨).
(4) Let F = Apply(F, G,∧). Finally, we obtain TSDD F, where ⟨F⟩ = f .

4. Encoding Dictionaries into TSDDs

A dictionary includes a large number of words, and we intend to transform it into
a decision diagram that stores the whole dictionary. In this way, we can complete some



Algorithms 2024, 17, 42 7 of 16

common operations in the dictionary just by performing some binary operations on decision
diagrams. When we want to verify whether a word exists in the dictionary, we just
need to compute the result Apply(F, G,∧), where F is the decision diagram representing
the dictionary, and G is the decision diagram representing the word. If the result is
f alse, then the word does not exist in the dictionary; otherwise, it exists in the dictionary.
When we want to remove some words from the dictionary, we just need to construct
the decision diagram G representing the set of words. And then, we compute the result
Apply(F, Negate(G),∧), where F represents the dictionary. Changing the traversal process
on dictionaries to several binary operations on decision diagrams can remove the traversal
process. This is why we encode dictionaries into decision diagrams.

In this section, we first introduce the process of encoding a dictionary into a decision
diagram in four different ways. Ref. [1] pointed out the use of tries when encoding
dictionaries into decision diagrams but did not provide a detailed description of the process.
Hence, we were inspired by them and designed our method of encoding dictionaries with
the help of tries, which greatly accelerated the compilation process. In the following, we
intend to explain in detail how to use tries to complete the encoding of a dictionary and
present the algorithm for decoding TSDDs.

4.1. Four Encoding Methods

The key to our method is to establish the correspondence between letters and numbers
so that we can use a string of numbers to represent a word. For example, the ASCII code, a
famous encoding system, uses a number ranging from 0 to 127 to represent 128 characters.
With the help of the ASCII code, we represent a letter with some variables by transforming
the code into its binary representation. As we know, the ASCII code of the letter ‘A’ is
65, whose binary representation is ‘1000001’ with 7 bits. We represent the letter ‘A’ by
7 variables, ‘x1x2x3x4x5x6x7’, and consider the variable to be ‘0’ when the value is false and
‘1’ when the value is true. Hence, a letter needs 7 variables to be represented in the ASCII
code. If a word consists of n letters, it needs 7*n variables in total to be represented.

However, there are many characters in the ASCII code that are often not used in most
dictionaries, which means that it will cause significant redundancy if we use 7 bits to
represent every letter. Suppose that a dictionary consists only of lowercase letters; that is,
there are only 26 different letters in this dictionary. We number each letter in alphabetical
order starting from 1, with the maximum number being 26, representing z. The number 26
just needs 5 bits to be represented, and its binary representation is ‘11010’, which means
that a letter needs 5 variables to be represented. In this way, we reduce the number of
variables required to represent a letter, and this code is called the compact code.

Compared with the ASCII code, the compact code can reduce the number of variables
required to represent a letter. However, we need to make a protocol that specifies the
correspondence between letters and numbers if we apply the compact code and records
this correspondence in a table. This table is necessary for both encoding and decoding.
Therefore, this table should be known as necessary information by all those who use com-
pact encoding. The ASCCI code is an international standard that does not require additional
space to store the correspondence between letters and codes. Hence, the universality of the
ASCCI code is better than that of the compact code.

We use binary numbers to represent both the ASCII code and compact code for each
letter, which means that the number of variables is the number of binary digits. Hence,
we call this the binary way of encoding dictionaries. If the maximum value of the code
is n, we can also use n variables to represent the code. For example, given the word zoo,
there are two different letters, ‘z’ and ‘o’, in this word, and the word consists of three
letters. Hence, we need six variables, x1, x2, x3, x4, x5, and x6, to represent it. x1 and x2
represent the first letter, and the first letter is ‘z’ if x1 = true and x2 = f alse, while it is ‘o’ if
x1 = f alse and x2 = true. The other variables have similar meanings. Therefore, the word
‘zoo’ is represented by x1x2x3x4x5x6 = 100101. We call this the one-hot way of encoding
the dictionary. A word consisting of m letters needs n*m variables in total to represent it
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in one-hot encoding, while it just needs ⌈log2n⌉ ∗m variables in total to represent it in a
binary way.

4.2. Encoding with Tries

We can first encode every word in the dictionary into a TSDD one by one and then
apply disjunction to these TSDDs to obtain the resulting TSDD that represents the whole
dictionary. However, the process of encoding takes too much time, which is unacceptable to
us. If the number of words in the dictionary exceeds 100,000, the encoding time will exceed
two hours. Therefore, we first transform the dictionary into a trie, which is a multibranch
tree, and then transform it into a TSDD. This can greatly accelerate the speed of encoding
a dictionary.

A trie is a multibranch tree whose every node saves a letter, except for two special
nodes. We know that a tree is a directed acyclic graph, and every node has its in- and
out-degrees. In general, the in- and out-degrees of each node in a trie are both greater than
0, and these nodes all save a letter in them. However, there are two special nodes, one with
an in-degree of 0 and the other with an out-degree of 0. We call the node with an in-degree
of 0 the head and the node with an out-degree of 0 the tail. Both nodes do not save any
letters. We can easily know that all paths in the trie must start from the head and end at the
tail. A path represents a word in the dictionary, which means that the number of paths is
the number of words in the trie.

We first introduce the algorithm for transforming a dictionary into a trie in Algorithm 2.
We need to initialize the two special nodes, that is, the head node h̃ and the tail node t̃, and
a node ṽ, which is an empty node (Line 1). Then, we traverse each word in the dictionary,
and in a loop, we let ṽ be the node h̃ (Lines 2–3). We perform the following operations on
the letters in the word in order. The operation Find(l, ṽ) means we look for a node from
successor nodes of ṽ that save the letter l. If such a node does not exist, we create a new
node with NewNode(l) and let it be the successor node of trace with Append(ṽ, ñ) (Lines
4–8), and then we let ṽ be the node ñ (Line 9). After all the letters have been accessed, we
let t̃ be the successor node of ṽ (Line 10). Finally, the node h̃ is the resulting trie.

Algorithm 2: ToTrie(D)

Input: D: A dictionary containing several words;
Output: P: The resulting Trie.

Init(h̃, t̃, ṽ)
foreach word w of D do

ṽ← h̃
foreach letter l of w do

ñ← Find(l, ṽ)
if ñ is an empty node then

ñ← NewNode(l)
Append(ṽ, ñ)

ṽ← ñ
Append(ṽ, t̃)

P← h̃
return P

After we obtain the trie, we need to compress it further. Firstly, the nodes in the trie
need to be assigned an important parameter: depth; we denote a node as P̃(d, l), where d
stands for depth and l stands for letter. We first give the following definition.

Definition 4. A trie node P̃(d, l) is defined as follows:

• d = 0 if the node P̃(l, d) is the node head.
• If P̃(d, l) is a node and P̃′(d′, l′) is one of its children, then d′ = d + 1.
• Letters that appear sequentially in the path from the root to the leaf form a word.

The step of compressing the trie entails merging two nodes that have the same depth
and meet certain conditions into one node. The conditions are as follows: (1) The two nodes
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save the same letter. (2) The two nodes have the same children nodes. We group all nodes
by depth and merge nodes by group, starting from the deepest group.

Here, we give an example using a dictionary that contains six words: aco, cat, dot,
purple, ripple, and zoo. The tries before and after merging the nodes are shown in Figure 2.
There are two special nodes in the graph, namely, the root node with a depth of 0 and the
tail node represented by a solid circle without a depth. Except for these two nodes, each
other node stores a letter, and we stipulate that all paths representing words start at the root
node and end at the tail node. Except for the tail node, all other nodes have a depth, and
the maximum depth on a path is the number of letters in the word represented by that path.
After we merge the nodes, we can see that the number of nodes has significantly decreased.

(a) Trie without merging (b) Trie with merging
Figure 2. Trie.

We then transform this trie into a TSDD, and the algorithm is shown in Algorithm 3.
We first compute the number of variables in the TSDD and suppose that the maximum
length of all words in the dictionary is n and the number of different letters in the dictionary
is m. The number of variables is 128*n if we use the ASCII code in a one-hot way and 7*n
if we use the ASCII code in a binary way. The number of variables is m*n if we use the
compact code in a one-hot way and ⌈log2m⌉ ∗ n if we use the compact code in a binary way.
Here, we explain the method that transforms a trie node into a TSDD node by using the
ASCII code in a binary way, and we save the corresponding TSDD in the trie node. There
are three steps in total. Let P̃ be a trie node. The steps are as follows: (1) We access each
node ñ(d, l) from bottom to top and compute the result of applying disjoin on all the TSDDs
that are saved in the successor nodes of ñ(d, l) and record this result as G, and Successor(ñ)
represents all the successor nodes of the trie node ñ (Lines 1–4). (2) We compute the TSDD
GetTSDD(ñ), which represents the letter saved in the trie node (Line 5). For example, if the
letter l is ‘a’, the binary representation of the letter is ‘1100001’, and the related variables
are x(d−1)∗7+1, x(d−1)∗7+2, x(d−1)∗7+3, x(d−1)∗7+4, x(d−1)∗7+5, x(d−1)∗7+6, x(d−1)∗7+7. Of these
variables, the variables that are marked as ‘1’ are x(d−1)∗8+1, x(d−1)∗8+2, x(d−1)∗8+7. We need
to construct the TSDD G that represents the Boolean function f = x(d−1)∗7+1 ∧ x(d−1)∗7+2 ∧
x(d−1)∗7+3) ∧ x(d−1)∗7+4 ∧ x(d−1)∗7+5 ∧ x(d−1)∗7+6 ∧ x(d−1)∗7+7. (3) We compute the TSDD
G = Apply(G, GetTSDD(ñ),∧) (Line 5). Then, we save this TSDD G in the trie node (Line
6). Similarly, we group all trie nodes based on depth and transform the nodes into TSDDs
in the group in descending order of depth. We should note that if P̃ is the tail trie node,
the TSDD saved in it is not fixed. The TSDD saved in the tail trie node is decided based on
the depth of its parent node. Let the depth of the parent node be d and the TSDD saved in

the tail node be G; then, ⟨G⟩ =
n∧

i=d∗7+1
x. In addition, not all words consist of n letters. If a
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word consists of fewer than n letters, we use null characters to supplement the remaining
positions. For the above example, if the letter saved in the trie node is a null character, then
the Boolean function in step 2 is f = x(d−1)∗7+1 ∧ x(d−1)∗7+2 ∧ x(d−1)∗7+3 ∧ x(d−1)∗7+4) ∧
x(d−1)∗7+5 ∧ x(d−1)∗7+6 ∧ x(d−1)∗7+7. Finally, the TSDD saved in the head trie node is the
TSDD that represents the whole dictionary (Line 7).

Algorithm 3: ToTSDD(P̃)

Input: P̃: A Trie;
Output: F: The resulting TSDD.

foreach node ñ of P̃ do
TSDD G ← (0, 0, 1)
foreach node m̃ of Successor(ñ) do

G ← Apply(G, TSDDAt(m̃),∨)
G ← Apply(G, GetTSDD(ñ),∧)
Save(ñ, G)

return TSDDAt(Head(P̃))

For the other three encoding methods, the process is also similar, with only differences
in the relevant variables. Similarly, it is necessary to perform a conjunction operation on
the variables marked as 1 and the negation of variables marked as 0. The TSDD saved in
the head trie node is what we want. At this point, the process of encoding a dictionary
is complete.

4.3. Decoding

We use one code to represent a letter and then multiple codes to represent an entire word.
On the contrary, we can also restore a word from a code string. The process of decoding a
TSDD means restoring a string of code from the TSDD and then obtaining the corresponding
words. After restoring all strings of codes, we can obtain the original dictionary.

Before explaining the decoding algorithm, we first introduce some operations. Given a
depth d, we use List(d) to denote the set of all possible TSDDs, that is, the TSDDs represent-
ing the possible letters. In Section 4.1, we gave an example of how to represent the word zoo
with six variables by using the compact code in a binary way. Now, we continue to use this
example to illustrate the decoding process. In addition, the variables denote a null charac-
ter when both x1 and x2 are assigned the value ’false’. Hence, there are three cases when
the depth is 1. List(1) = {F1, F2, F3}, where F1, F2, and F3 are TSDDs, and ⟨F1⟩ = x1 ∧ x2,
⟨F2⟩ = x1 ∧ x2, and ⟨F3⟩ = x1 ∧ x2. We also use Letter(F) to denote the letter that the TSDD F
represents; that is, Letter(F1) is a null character, Letter(F2) = ‘z’, and Letter(F3) = ‘o’. Given
the word ‘zo’, we stipulate that Push(‘zo’,‘o’) = ‘zoo’ and Pop(‘zoo’) = ‘zo’. We use dmax to
denote the max depth in the dictionary. The algorithm is shown in Algorithm 4.

The initial inputs for this algorithm are the TSDD to be decoded, the empty word w,
the empty dictionary D, and the depth d = 1. Then, we make the operation Apply(F, G,∧),
where G represents the letter that may appear in the word in order (Lines 1–2). If the
result of Apply(F, G,∧) is not false, we recursively add the next possible letter until we
encounter a null character or reach the maximum depth (Lines 3–10). After the algorithm is
completed, the dictionary D is the result we want.

However, this algorithm is suitable for decision diagrams with fewer variables. We
can decode decision diagrams that are encoded in a binary way but not decision diagrams
that are encoded in a one-hot way. This is because the time for decoding a decision
diagram that is encoded in a one-hot way exceeds one hour when the dictionary includes
over 10,000 words. Hence, we need another effective algorithm to decode such decision
diagrams. In this study, we did not conduct decoding-related experiments.
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Algorithm 4: Decode(F, w, D, d)
Input: F: a TSDD (T1, T2, α); w: a word; D: a dictionary; d: an integer number representing depth

foreach G of List(d) do
F′ ← Apply(F, G,∧)
if ⟨F′⟩ ̸= f alse then

if Letter(G) is a null character then add w to D
else

w← Push(w, Letter(G))
if d = dmax then add w to D
else

Decode(F′, w, D, d + 1)

w← Pop(w)

5. Experimental Results

In this section, we first compare the speed of encoding a dictionary with and without
tries to demonstrate the acceleration effect of tries on encoding a dictionary. We then encode
14 dictionaries into BDDs, ZDDs, CBDDs, CZDDs, SDDs, ZSDDs, and TSDDs with tries
and compare the node count of decision diagrams and the time required for encoding
the dictionaries into decision diagrams. All experiments were carried out on a machine
equipped with an Intel Core i7-8086K 4 GHz CPU and 64 GB RAM. We used four encoding
methods to conduct all experiments: compact code in a one-hot way, compact code in a
binary way, ASCII code in a one-hot way, and ASCII code in a binary way.

The dictionaries we used are the English words in the file /usr/shar/dict/words on
a MacOS system with 235,886 words with a length of up to 24 from 54 symbols, a password
list with 979,247 words with a length of up to 32 from 79 symbols [10], and other word
lists from the website at [11]. To compare the time for encoding dictionaries into TSDDs
with and without tries, we separated the first 20,000, 30,000, and 40,000 words from the
dictionary words to form four new dictionaries and encoded them into TSDDs. This is
because, without the help of a trie, the encoding time would exceed two hours when the
number of words exceeds 40,000. We used the same right linear vtree to complete the first
experiment. Hence, the size and node count of TSDDs must be the same in this experiment
with the same encoding method, and we only compared the encoding time. The results are
shown in Table 1.

Table 1. The time (secs.) for encoding dictionaries with and without tries.

Word Count Compact, One-Hot Compact, Binary ASCII, One-Hot ASCII, Binary

20,000 with trie 3.527 2.228 4.23 3.119
without trie 251.86 412.156 292.52 842.622

30,000 with trie 5.509 3.326 5.084 3.702
without trie 650.39 994.768 677.524 1511.209

40,000 with trie 7.141 3.927 7.677 5.503
without trie 1125.327 1682.585 1100.168 2500.582

We can see that all the experiments were completed within 10 s with the help of tries
for these three dictionaries. When we did not rely on the help of tries, even the minimum
encoding time reached 251.86 s (the compact code in a one-hot way for the dictionary with
20,000 words). When the number of words reaches 40,000, it even takes over 1000 s to
encode the dictionary, which exceeds the time required for encoding the dictionary with
the help of tries by more than a hundred times. It can be inferred that for dictionaries with
more words, encoding them will take more time, which we cannot tolerate. Therefore, we
can see that tries have excellent acceleration effects when we encode a dictionary, and it is
necessary to rely on the help of tries when encoding dictionaries.
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Then, the second experiment is as follows. Ref. [1] encoded two dictionaries, words
and password, into four decision diagrams, i.e., BDDs, ZDDs, CBDDs, and CZDDs, in four
ways and gave the number of nodes of decision diagrams and the encoding times for some
data. Here, we use their data and record them in Table 2. For the other 12 dictionaries, they
did not conduct any relevant experiments. Therefore, we extended their experiment by
encoding the remaining twelve dictionaries into BDDs, ZDDs, CBDDs, and CZDDs in four
ways and recording the node count and encoding time. We also encoded the 14 dictionaries
into SDDs, ZSDDs, and TSDDs in four ways and then compared all decision diagrams
using two categories of benchmarks: node count, the node count of decision diagrams, and
time, the time for encoding a dictionary. The initial vtrees are all right linear trees. To reduce
the node count of decision diagrams, we designed minimization algorithms for ZSDDs and
TSDDs and applied them once to SDDs, ZSDDs, and TSDDs when over half of the words in
the dictionary were encoded. The results of this experiment are shown in Table 2. Columns
1–2 report the names of the dictionaries and the word counts of the dictionaries. The names
of the decision diagrams that represent the dictionaries are reported in column 3. Then,
columns 4–11 report the node counts of decision diagrams and the encoding times using the
four encoding methods. In our experiment, each dictionary contained over 100,000 words.
In addition, we use ’–’ in place of data if the encoding time exceeded one hour.

Table 2. The comparison of SDDs, ZSDDs, and TSDDs over 2 categories of benchmarks.

Dictionary Word
Count

Decision
Diagram

Compact, One-Hot Compact, Binary ASCII, One-Hot ASCII, Binary

Node
Count Time/s Node

Count Time/s Node
Count Time/s Node

Count Time/s

words 235,886

BDD 9,701,439 770.114 1,117,454 102.74 23,161,501 2583.639 1,464,773 116.729
ZDD 297,681 48.78 723,542 13.11 297,681 173.56 851,580 14.4

CBDD 626,070 97.671 1,007,868 69.721 626,071 96.365 1,277,640 117.756
CZDD 297,681 15.04 723,542 9.7 297,681 21.84 851,580 10.2
SDD 9,560,113 745.614 300,235 235.774 23,106,545 2011.952 536,433 260.563

ZSDD 298,995 221.506 443,883 224.212 305,323 225.827 740,462 248.558
TSDD 358,778 233.301 215,588 109.899 360,797 228.642 191,762 209.041

password 979,247

BDD 49,231,085 3513.906 4,422,292 1061.895 79,014,931 3582.56 4,943,940 963.165
ZDD 1,130,729 713.15 2,506,088 52.52 1,130,729 658.21 2,875,612 50.77

CBDD 2,321,572 1734.869 3,597,474 710.504 2,321,792 1466.674 4,307,614 1466.614
CZDD 1,130,729 46.73 2,506,088 30.62 1,130,729 57.81 2,875,612 30.33
SDD - - 3,648,973 1074.062 - - 3,979,717 1348.212

ZSDD 1,146,448 432.112 1,744,536 562.329 1,188,576 440.762 2,866,480 919.113
TSDD 1,356,869 1316.681 1,101,669 510.276 1,366,130 927.079 2,426,472 792.076

Ashley-
Madison 375,853

BDD – – 2,111,727 364.746 – – 2,082,848 280.353
ZDD 548,365 103.033 922,478 154.342 547,753 112.371 1,326,746 220.22

CBDD 548,724 498.307 1,033,895 199.4 695,493 427.79 1,435,585 3301.287
CZDD 548,365 83.179 922,475 131.328 547,753 102.695 1,326,745 200.374
SDD - - 1,671,665 525.145 - - 1,656,556 518.945

ZSDD 560,898 273.59 923,129 273.59 564,650 297.303 1,280,338 423.104
TSDD 596,396 351.467 420,810 228.901 595,493 369.138 965,362 333.126

cain-and
-abel 306,706

BDD 10,056,981 887.681 1,158,528 100.348 23,800,813 2660.446 1,298,518 116.788
ZDD 317,745 35.482 623,053 68.525 317,519 43.817 873,020 93.901

CBDD 318,014 102.549 623,083 84.873 317,768 99.385 872,924 122.171
CZDD 317,675 32.672 623,033 58.034 317,394 38.553 872,958 80.506
SDD 9,919,042 1006.302 494,076 286.032 23,665,165 2860.691 693,425 312.641

ZSDD 319,387 235.417 623,169 274.117 323,398 227.594 789,973 289.935
TSDD 382,102 253.088 233,681 219.508 383,978 271.741 221,983 225.274

dutch
_wordlist 679,006

BDD – – 1,532,202 283.513 – – 1,497,917 270.681
ZDD 434,264 111.298 730,174 159.714 416,140 119.327 977,282 221.458

CBDD 434,853 649.243 730,142 236.863 416,667 520.259 976,921 332.901
CZDD 434,264 100.395 730,103 131.916 416,140 102.627 977,208 205.869
SDD - - 1,113,678 484.359 - - 1,124,797 469.573

ZSDD 462,359 275.034 665,840 322.585 449,766 271.683 977,282 432.675
TSDD 521,416 648.479 315,129 276.333 504,568 603.326 273,022 310.324
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Table 2. Cont.

Dictionary Word
Count

Decision
Diagram

Compact, One-Hot Compact, Binary ASCII, One-Hot ASCII, Binary

Node
Count Time/s Node

Count Time/s Node
Count Time/s Node

Count Time/s

honeynet2 226,928

BDD 16,684,568 1805.869 1,153,693 123.618 20,820,911 2822.858 1,135,440 121.942
ZDD 290,592 45.767 507,574 62.566 287,032 44.778 737,354 103.399

CBDD 290,974 181.046 507,561 81.879 287,392 136.038 737,267 121.531
CZDD 290,542 40.384 507,515 54.568 286,975 37.238 737,280 99.295
SDD 16,498,545 2618.111 365,332 541.942 - - 338,896 509.53

ZSDD 306,700 425.001 492,636 496.043 306,572 426.833 738,166 523.851
TSDD 375,037 563.074 224,538 284.982 376,022 557.861 193,971 407.62

honeynet 226,081

BDD 16,678,501 1832.591 1,154,555 132.447 20,820,787 2878.694 1,135,434 124.669
ZDD 289,337 56.012 481,969 69.611 287,033 44.508 737,354 105.59

CBDD 289,719 185.336 481,947 78.524 287,392 132.029 737,267 123.408
CZDD 289,337 47.135 481,888 60.258 287,033 40.667 737,280 100.879
SDD - - 332,475 516.381 - - 336,096 521.902

ZSDD 302,318 424.39 481,176 475.143 304,772 424.651 672,556 492.475
TSDD 374,666 955.063 200,047 322.606 373,872 710.177 207,326 430.065

honeynet-
withcount 226,928

BDD 19,411,188 1912.06 1,340,803 130.746 24,073,981 2877.532 1,314,007 129.876
ZDD 323,725 50.566 584,377 63.843 320,206 54.416 847,306 124.843

CBDD 324,089 173.293 584,351 86.678 320,558 141.628 847,198 128.246
CZDD 323,725 46.186 584,317 58.419 320,206 47.772 847,220 107.445
SDD 19,037,012 2176.356 383,858 562.195 - - 438,056 555.949

ZSDD 338,609 436.965 585,246 475.067 340,241 432.563 822,046 530.876
TSDD 416,101 438.361 214,368 405.273 417,684 426.115 214,044 425.736

mssql-
passwords 172,696

BDD 6,033,921 538.622 445,940 24.096 7,852,025 827.749 430,156 23.884
ZDD 96,032 6.446 217,338 14.304 95,379 7.727 266,125 18.321

CBDD 96,393 40.944 217,329 18.009 95,743 33.264 266,086 23.042
CZDD 96,038 6.468 217,332 13.276 95,385 7.668 266,106 17.458
SDD 5,996,363 733.865 86,651 103.127 7,843,567 917.801 86,137 118.743

ZSDD 110,101 392.158 133,880 325.367 118,332 436.18 673,709 876.657
TSDD 124,794 222.714 85,109 44.981 127,391 237.564 80,504 52.27

phpbb-
cleaned-up 184,364

BDD 19,685,391 2767.214 1,473,949 176.6 – – 1,466,049 178.394
ZDD 344,154 58.099 646,617 84.216 344,382 50.182 905,808 125.349

CBDD 344,488 247.555 626,625 116.836 344,681 210.924 905,717 162.292
CZDD 344,154 53.096 626,588 83.761 344,382 49.099 905,750 120.685
SDD 19,570,745 2092.278 773,398 380.189 - - 790,332 374.249

ZSDD 352,559 233.575 626,852 281.159 358,112 232.441 905,946 320.189
TSDD 446,421 447.709 277,164 220.467 444,665 394.971 231,022 261.902

phpbb 184,388

BDD 19,915,225 2623.845 1,475,978 186.136 – – 1,467,977 169.521
ZDD 344,468 56.859 627,422 72.915 344,680 56.34 906,562 120.612

CBDD 344,800 226.646 627,429 95.844 344,976 190.775 906,471 138.621
CZDD 344,468 54.703 627,393 88.244 344,680 55.07 906,504 120.922
SDD 19,637,384 2196.641 775,524 376.349 - - 791,935 375.543

ZSDD 353,976 239.4 627,657 281.859 358,506 273.315 906,699 312.853
TSDD 445,432 369.997 278,763 255.027 448,969 418.608 236,446 241.572

phpbb-
withcount 184,389

BDD 21,291,701 2903.687 1,584,038 205.257 – – 1,573,792 202.202
ZDD 365,847 70.259 695,364 99.788 365,573 84.197 972,290 147.415

CBDD 366,120 260.719 695,356 137.425 365,835 234.62 972,220 194.979
CZDD 365,847 72.25 695,303 106.178 365,573 79.704 972,236 133.168
SDD - - 800,791 387.881 - - 774,597 355.65

ZSDD 374,969 240.648 692,190 277.569 379,074 239.707 972,429 318.899
TSDD 473,851 355.424 302,141 195.59 477,819 366.837 481,863 301.143

walk-
the-line 279,616

BDD 22,526 1.716 3882 0.19 90,111 14.994 4730 0.223
ZDD 880 0.042 1764 0.019 880 0.136 2415 0.081

CBDD 892 0.101 1794 0.03 892 0.266 2439 0.099
CZDD 892 0.059 1794 0.046 892 0.127 2439 0.078
SDD 5980 30.196 1384 0.659 71,458 195.537 1913 1.066

ZSDD 2016 1.093 1198 0.165 5202 2.099 1421 0.25
TSDD 1627 1.912 1175 0.33 4187 6.281 1269 1.634
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Table 2. Cont.

Dictionary Word
Count

Decision
Diagram

Compact, One-Hot Compact, Binary ASCII, One-Hot ASCII, Binary

Node
Count Time/s Node

Count Time/s Node
Count Time/s Node

Count Time/s

xato-net-
10-million 755,995

BDD – – 3,055,697 760.534 – – 3,022,307 659.394
ZDD 853,731 499.188 1,372,273 270.62 850,452 198.032 1,944,759 396.952

CBDD 854,287 1364.918 1,372,115 467.862 850,973 1130.453 1,944,325 678.649
CZDD 853,731 492.349 1,372,123 262.815 850,452 236.005 1,944,387 664.089
SDD - - 2,409,752 1056.438 - - 2,313,320 1,074.787

ZSDD 859,361 538.169 1,358,287 662.663 860,536 570.875 1,877,647 793.756
TSDD 1,055,763 1537.339 665,174 629.051 1,052,745 1745.605 1,279,015 776.298

In general, the number of variables used in one-hot encoding is much larger than
that in binary encoding, and the Boolean functions encoded in a one-hot way are more
sparse than those encoded in a binary way when representing the same dictionary. For each
dictionary, the node count of the decision diagram with the minimum node count among
all decision diagrams for each encoding method is highlighted in bold so that readers can
intuitively see which decision diagram performs the best in node count. We first consider
the decision diagrams that are encoded with the compact code in a one-hot way. Taking
the dictionary phpbb as an example, we can see that the ZDD and CZDD have the same
and minimum node counts, while the CBDD has the second-smallest node count among all
decision diagrams. The node count of the CBDD is 344,800, which is just 332 more than
that of the BDD and CZDD. The node count of the ZSDD is larger than that of the ZDD,
CZDD, and CBDD, and hence, it has the third-smallest node count. The node count of the
TSDD is larger than that of the above decision diagrams. However, the node count still
does not exceed 1.5 times the minimum value (the node count of ZDD or CZDD), that is,
446,421/344,468 = 1.29 < 1.5. The node counts of the SDD and BDD are much larger than
those of the other decision diagrams, and the node count of the SDD is slightly smaller than
that of the BDD. Hence, we can conclude that for the node count, among all the decision
diagrams, the ZDD and CZDD have the best performance, and the performance of the
CBDD, ZSDD, and TSDD is slightly inferior to that of the ZDD and CZDD, while the SDD
and BDD perform the worst among all decision diagrams. For the encoding time, the
performance of these decision diagrams is similar to that for the node count. We believe
that the ZDD and CZDD take the minimum time to encode the dictionary. TSDDs perform
worse than ZDDs and CZDDs in encoding time, while they are better than BDDs and SDDs.
Although the performance of TSDDs is not very good when we encode in a one-hot way,
it is not much worse than the best decision diagrams (ZDDs and CZDDs), and we can
tolerate this drawback.

For the other 13 dictionaries, the performance of these decision diagrams for node
count and time is similar to that for phpbb. We believe that the Boolean function that
represents the dictionary in a one-hot way is a spare Boolean function, which makes the
performance of ZDDs, CZDDs, CBDDs, ZSDDs, and TSDDs better than that of SDDs and
BDDs. The decision diagrams that are encoded by the ASCII code in a one-hot way include
more variables than those that are encoded by the compact code in a one-hot way. Because
they are both encoded in a one-hot way, they have similar performance for the node count
and encoding time.

For the decision diagrams that are encoded in a binary way, we focus on the perfor-
mance of TSDDs. We can easily find that TSDDs have the minimum node count among all
decision diagrams if we encode the same dictionary in a binary way, regardless of whether
we use the compact code or ASCII code. Moreover, the node count of TSDDs may even
be much smaller than that of other decision diagrams. For example, the node count of the
TSDD that represents dutch-wordlist with the ASCII code in a binary way is 273,022, while
the second-smallest node count is 976,921, which is more than 3 times larger than that of
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the TSDD. Although the encoding time of the TSDD is not the smallest among all decision
diagrams, we believe that it is worth taking more time to encode the dictionaries into the
TSDD, which has the minimum node count. Hence, we conclude that TSDDs are the most
suitable decision diagrams for representing dictionaries in a binary way.

Finally, we make the following conclusions: (1) There is no decision diagram that
has the minimum node count and encoding time for all dictionaries with all encoding
methods. (2) TSDDs must have the minimum node count if we encode in a binary way,
and the node count of TSDDs can be much smaller than those of other decision diagrams.
(3) The node count of the TSDD is not more than 1.5 times that of the minimum node count
for all dictionaries, except for walk-the-line, if we encode in the one-hot way. (4) Although
the encoding time of TSDDs is not the best, for all dictionaries, we can encode them into
TSDDs in four ways within half an hour, while it may take more than one hour for some
dictionaries if we want to encode them into BDDs or SDDs in a one-hot way. Based on
point 1, we find that there is no decision diagram that can perform better than all other
decision diagrams in our experiments. Therefore, we need to find a decision diagram
that is suitable for representing dictionaries among the seven decision diagrams. Based
on points 2 and 3, we believe that, overall, TSDDs have the best performance in terms
of the node count among all decision diagrams. Based on point 4, we believe that it is
worthwhile to exchange some time for excellent performance in terms of the node count,
which means that we intend to take more time to encode dictionaries into a more compact
representation. In addition, we know that the number of variables of Boolean functions
representing dictionaries encoded in a one-hot way is much larger than that in a binary
way. With the increase in the word length, the number of variables will increase quickly.
When we need to represent a large number by a Boolean function, a lot of variables are
required if we represent it in a one-hot way. If a large number is represented in a binary
way, only a small number of variables are required. Too many variables not only make
management difficult but also require a lot of space to store. In general, people tend to
represent large numbers in a binary way. We can see that TSDDs are the decision diagrams
with the minimum node count and a suitable encoding time among the seven decision
diagrams. Hence, we believe that TSDDs are more suitable for representing dictionaries.

6. Conclusions

In this paper, we have unified the definitions of semantics and syntax for SDDs, ZSDDs,
and TSDDs based on Boolean functions, and our contributions are as follows: (1) We first
propose an algorithm that encodes dictionaries into decision diagrams with the help of
tries. To transform a dictionary into a decision diagram, we first transform the dictionary
into a trie and then compress the trie, which can reduce the nodes of the trie. Then, we
transform the trie into a decision diagram. Because we compress the trie, the number
of operations on decision diagrams can be effectively reduced, which greatly accelerates
the encoding speed. We have demonstrated through experiments that tries are of great
help to our algorithm. (2) We then show that TSDDs are the decision diagrams that are
more suitable for representing dictionaries. TSDDs had the smallest node count in our
experiment when we encoded in a binary way and had a node count that was no more than
1.5 times that of the minimum node count among all decision diagrams in our experiments
when we encoded in a one-hot way. In addition, the encoding time of TSDDs did not
perform the best among all decision diagrams. However, we believe that it is worthwhile
to exchange some encoding time for a smaller number of nodes. Hence, we believe that
TSDDs are more suitable for representing dictionaries. (3) We also designed a decoding
algorithm that transforms a decision diagram into the original dictionary. However, the
decoding algorithm cannot decode decision diagrams encoded in a one-hot way.

By using TSDDs to represent the dictionary, we can complete common operations used
on a dictionary with some binary operations on TSDDs. Hence, encoding dictionaries into
TSDDs is very meaningful. Our study proposes an algorithm that transforms dictionaries
into decision diagrams. However, our algorithm can still be further improved. In the future,
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we can continue our research in the following three directions: (1) We can search for a more
compact way to represent symbols and characters by Boolean functions so as to reduce the
number of variables. In this way, we can make the node count of decision diagrams smaller.
(2) We can further improve the algorithms for reducing the node count and encoding
time. If the node count of decision diagrams can be made small enough and the encoding
time can be made short enough, decision diagrams will play a vital role in representing
dictionaries. For example, we can use less storage space to store data consisting of symbols
and characters by transforming them into decision diagrams. (3) On the other hand, our
decoding algorithm needs to be improved so that it can decode decision diagrams encoded
in a one-hot way in a short time. We believe that studying how to encode decision diagrams
into dictionaries more efficiently will be very valuable in the future.
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