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Abstract: Rapid growth in the volume of transmitted information has lead to the emergence of
new wireless networking technologies with variable heterogeneous topologies. With limited radio
frequency resources, optimal routing problems arise, both at the network design stage and during
its operation. We propose an algorithm based on a minimum loss intensity (greedy-gradient al-
gorithm) to search for optimal routes of information transmission in telecommunication networks.
The relevance of the developed algorithm is determined by its practical use in data-transmitting
modeling systems. The proposed algorithm satisfies several requirements, such as the speed of the
calculations performed, the fulfillment of the conditions for its convergence, and its independence on
the selected loss probability function, as well as on the network topology. The idea of the algorithm
is a step-by-step recalculation of metrics based on derivatives of the loss intensity function with
simultaneous redistribution of information flows along the routes determined by the Floyd algorithm.
The comparative efficiency of the proposed algorithm is demonstrated by computational experiments
on various network topologies (up to 100 nodes) with various traffic intensities.

Keywords: telecommunication networks; traffic distribution; greedy algorithms; Floyd–Warshall
algorithm

1. Introduction

The efficiency of using communication-channel resources is one of the most important
problems of the telecommunication industry, since it enables us, on the one hand, to
maximize the use of network resources, thereby increasing the profitability of the services
provided, and, on the other hand, to ensure improved quality of service indicators by
reducing delay time and probability losses.

For the efficient use of network resources in telecommunication networks, routing
protocols dynamically alter the routes of information flows [1–4]. When developing a
routing protocol, two factors are essential: the choice of optimality criterion for the route
search method and the rate of changes in the network topology. The algorithm for finding
the optimum of the objective function (criterion) should be many times faster than chang-
ing the network topology. The classic optimality criterion can be considered an optimal
multipath routing according to the criterion of total delay time, described by the authors
of [5]. Firstly, the intention is to find a set of simple routes between each pair of ”Sources”
and ”Destinations”. Yen’s algorithm [6] is mostly used for this purpose as it enables the
search for k-shortest paths. The disadvantage of this approach is the necessity to find all
pairs of loopless routes between all pairs of ”Sources” and ”Destinations”, and that leads to
a rapid complication of the optimization problem due to an increase in the number of state
variables while providing an optimal solution. The situation can be improved by selecting
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only those routes satisfying certain criteria [7–11]. As a rule, such criteria are specified in
the form of graph weights that reflect certain characteristics of the channel; such algorithms
can also be used as independent ones. Another approach to the route selection is finding
routes that do not have common edges, or the set of common edges is minimal [12].

The optimality criterion in [5] is the total delay time due to delays in the network device
interface buffer. Based on the found routes of information flows, the total flow through
each communication channel is determined. Afterwards, using the delay time equation for
the M/M/1 queuing system, it is possible to estimate the objective function as the sum of
all delay times in all channels. This approach with various modifications is used in many
works, where a certain cost function is selected as an optimality criterion, which depends on
the total flow [13–15], thereby causing linear and nonlinear programming problems. Such
approaches are valid in the case of no information loss or in the case when the losses can be
neglected, since in such cases it is possible to obtain the objective function in an explicit
form with a linear set of constraints (inequalities). An alternative to mathematical models
based on routes are mathematical models based on flows in communication channels [16],
which, starting from a certain graph density, have a lower dimension (fewer number of
state variables) than models based on flows. The closest concepts to the algorithm proposed
in this paper have been presented in [17,18], which consider cell losses in the ATM network.

The relevance of the problem being solved is due to the emergence of new types of
wireless networks with variable topologies, where the solution of routing problems is
especially important due to limited radio frequency resources. Such networks include
FANAET and MANET, which are satellite networks in low and medium orbits. Such interest
in this area of communication systems is associated with the significant shortcomings of
existing routing algorithms used in traditional IP networks, which researchers are trying to
eliminate, for example:

- inefficient use of network resources [19–21];
- lack of prompt response to overloads when generating traffic and changing the net-

work topology in existing satellite routing protocols [1,22–30];
- inability to work with different types of traffic [19,31];
- focusing on a single criteria when solving optimization problems with multiple

objectives [19,21–31].

In addition to various problem settings for finding optimal routes, there are various
methods to find them: heuristic algorithms [19,28,29], greedy algorithms [21], gradient
methods [31], reinforcement learning [20], and neural networks [23]. In [3], the authors
discuss the importance of global adaptive routing in large-scale systems with a large
coverage area. For global adaptive routing, the choice of optimal routes is usually based
on local information, such as line occupancy and approximate overload of information.
However, existing heuristic-based adaptive routing algorithms often rely solely on local
information, which can lead to inefficient solutions of the routing problem. Many recent
papers are devoted to local routing, i.e., the route is determined for a single flow, without
considering its influence on others. Hybrid algorithms that combine heuristic approaches
with local search are also widely used for location problems [24–26], including location on
networks, and the application of similar algorithmic combinations for traffic routing seems
to be promising.

However, correct local actions do not always provide a proper solution from a global
point of view. Approaches to global routing were proposed in [3,14,17]. However, these
methods have several disadvantages. Since some of them are not sufficiently adapted for
satellite networks [3,14], significant attention is paid to the probability of failures and delay
time. Other authors [14,17] assume that there is a certain list of pre-defined routes for
information delivery. However, determining this list is not a trivial task and, in general, it
is difficult to specify in advance which routes will be used, and the total number of routes
is growing so quickly that it is difficult to use all of them. Some researchers believe that
the optimum of the unconstrained optimization problem is close to the optimum of the
conditional optimization problem [17], which is not always true.
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One of the main problems in finding optimal routes is the computational complexity
that increases with the number of nodes used in the network. Furthermore, existing
telecommunication networks often have a heterogeneous structure, which also complicates
the process of route optimization.

Ref. [32] provides an overview of a large list of protocols used in wireless ad-hoc
networks, and we can use them to solve the routing problem, since each of these protocols
would enable us to find a set of information transmission routes; based on these, it would
be possible to estimate the intensity of information loss.

We set a different goal for developing an optimization algorithm: finding routes
that minimize losses, rather than using a routing protocol and then estimating the result-
ing losses. Such a problem in global traffic routing in telecommunication systems, and
especially in satellite systems, had not yet been solved. Therefore, the development and ap-
plication of effective algorithms for optimal routes while minimizing losses is an important
issue. In this paper, we present a greedy-gradient algorithmic combination for solving such
a problem and investigate the efficiency of the new approach by computational experiment.

The rest of this paper is organized as follows. In Section 2, we formulate the problem
statement in a general form, and overview known methods of dynamic routing in the
telecommunication networks. In Section 3, we describe our approach to solve the stated
problem: the main optimization algorithm and supplementary algorithms. In Section 4,
we summarize the results of computational experiments that demonstrate the stability of
the proposed algorithm, its comparative efficiency, and capability of solving problems on
larger networks. In Section 5, we provide conclusions to our work.

2. Problem Statement and Background

In this paper, we focus on the minimization of total losses. The telecommunication
network is presented in the form of a directed graph, the parameters and keys of which are
given below:

- number of network nodes, N;
- channel bandwidth capacity, µij, from the ith node to the jth one;
- channel buffer size, Nij, from the ith node to the jth one.

Let us assume that µij = 0 if there is no communication channel between these nodes,
and µij = −1 if the probability of information loss in the corresponding channel is 0.
Therefore, e.g., if each node is connected to itself, there is no information loss.

The above-mentioned parameters characterize the network. Notion ”Target request” is
introduced to describe the network. Let the ”Target request” be marked by g denoting the
intensity of traffic transmitted from one node to another. Thus, e.g., writing g = [16; 7; 200]
means that one should deliver 200 units of information per second from the 16th to the
7th node.

We use the following notation:

- number of target requests, Y;
- matrix of target requests, G = [gi];
- a specific target request, gi = [starti; f inishi; Qi], where starti is the source node,

f inishi is the recipient node, and Qi is the traffic intensity transmitted from the source
node to the recipient node.

The intensity of losses when transmitting information over each channel can be deter-
mined using the following equation:

eijk = xijk p(xij, µij, Nij). (1)

The physical meaning of the variables in (1) is as follows: eijk is the intensity of losses
in the channel from the ith node to the jth one for the kth target request, xijk is the intensity
of information flow in the channel from the ith node to the jth one for the kth source, xij is
the total intensity of information flow in the corresponding channel, and p(xij, µij, Nij) is



Algorithms 2024, 17, 7 4 of 19

the probability of information loss for the channel from the ith node to the jth node, which
is usually a strictly increasing function due to physical fundamentals.

In this work, the objective function is defined as information losses when the required
amount of information is delivered according to the target request matrices.

Currently, there are two possible approaches to formulating the traffic loss optimiza-
tion problem [5,6,14–20]. According to the first approach, the information densities, xijk,
are considered as variables. In this regard, we obtain a system of restrictions:

ejk =
n

∑
i=1

xijk

(
1 − ∑t xijt

µij

)
1 −

(
∑t xijt

µij

)Nij+1

(
∑t xijt

µij

)Nij

 =
n

∑
i=1

xijk −
n

∑
i=1

xjik − ckj + inpjk. (2)

where ckj is the total information rate provided when delivering data from the kth node to
the jth one, inpjk are constants determined by the speed of information received from the
jth source, ejk is the intensity of losses in the channel from the jth node to the kth one, and
xijt is the intensity of information flow in the channel from the ith node to the jth node for
the tth source.

Obviously, the intensity of the information flow cannot be negative:

xijk ≥ 0. (3)

On the one hand, the advantages of this approach are its simplicity and a relatively
small number of variables, which can be approximately estimated as n3 − n2 + n for a
fully connected network. On the other hand, the large number of restrictions in the form of
equality, which can similarly be approximately estimated as n2, is its major disadvantage.

When the number of network nodes is n ≤ 5, the use of standard program libraries of
conditional optimization algorithms makes it possible to solve simple problems with an
acceptable runtime. However, calculation time becomes unacceptable without the use of
supercomputers for large network dimensions.

In accordance with the second approach, xij used as variables indicates the intensity of
the information flow supplied along the jth route for the ith target request. This approach
has two significant issues. First, the number of possible routes between two nodes increases
at a factorial rate. Therefore, in the case of a sufficiently large number of network nodes, n,
the complexity of the optimization problem increases unacceptably. Second, researchers
most often do not have an opportunity to present the objective function in an analytical
form. Therefore, the problem being solved equals a conditional optimization problem.

The goal of this work is to develop an optimization algorithm that enables us to solve
the problem of optimal information flow distribution in telecommunication networks of
various topologies up to a fully connected one according to the criterion of minimum
intensity of lost traffic.

For practical problems in our experiments, the network size did not exceed several
tens of nodes with an arbitrary connection density. We considered 1 min as a satisfactory
calculation time on a commodity personal computer (CPU Intel i5 12400). We suggest that
this time is usual for the structure change in the considered network.

It is important to note that the use of the well-known approaches discussed above
in solving the directly stated problem has significant drawbacks, which can be illustrated
by the following example. On the same network of 40 nodes, in the first approach the
number of variables is 62,440 and the number of nonlinear equality constraints is 1600.
In the second approach, the approximate number of variables is only 40.

3. Proposed Approach
3.1. Algorithm for the Objective Function Calculation

It is worth considering the algorithm for calculating the objective function in detail.
Therefore, for each target request, one needs to create a special list of routes.

We use the following notation:

- Li is the number of routes in the i-target request;
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- qij is the traffic intensity transmitted along the corresponding route;
- ωij is the weight in proportion to which Qi, for a fixed i, divided among all mij, where

mij is the sequence of nodes in the jth route for the ith target request (e.g., m23 = [1, 4, 3]
means that the third route in the list for the second target request consists of three
nodes and two edges, respectively);

- mij[t] is the tth node located on the corresponding route (e.g., m23[2] = 4);
- lij is the number of elements of vector mij. For m23 discussed above, the value l23 = 3.

For each target request, Qi, the traffic intensity, qij, is not optimized in terms of the
proportions or weights in which the total information flow, Qi, is distributed among
mij routes.

The quantities discussed above are related to each other in the following way:

qij =
ωij

∑Li
k=1 ωik

Qi. (4)

One should note that Equation (4) allows one to transmit from traffic intensity, qij, to
weights, ωij and, accordingly, not to meet the conditions of the normalization (5):

Li

∑
j=1

qij = Qi. (5)

Since it is not known in advance whether it is possible to transmit all the information
over the network, the parameter K is introduced. It is defined as part of the transmitted
information, e.g., if K = 0.5, the algorithm considers the network state in which only half
of all the information is transmitted. An algorithm for calculating the objective function of
the information loss rate is given below. This algorithm resembles the method of simple
iteration relating to variables xij and pij. However, it proves its convergence on the problems
being solved, if a solution exists.

Target requests can have such values that the network is physically unable to transmit
the entire amount of arriving information. In this case, it is necessary to know the max-
imum value of parameter K at which information can be delivered by the routes under
consideration, as well as the corresponding network state. The amount of transmitted
information, K, can be found using a binary search (Algorithm 1). It takes only up to
eight iterations of Algorithm 2 (Calculate_Tra f f ic) and allows the determination of this
parameter with sufficient accuracy.

One should specify that such accuracy of calculation is important only for small values
of parameter K; otherwise, calculations can be performed with a smaller number of itera-
tions. If function Calculate_Tra f f ic (Algorithm 2) uses K3 instead of K (see step 5d and step
5e), the number of iterations of Algorithm 2 is reduced to five. Then, the grid of found values
is Krez = {0.02%; 0.20%; 0.76%; 1.56%; 3.05%; 5.27%; 8.37%; 12.50%; 17.80%; 24.41%; 32.50%;
42.19%; 53.64%; 66.99%; 82.40%}.

Since calculation of the Calculate_Tra f f ic function is a time-consuming process, the
algorithm for finding the maximum amount of transmitted information significantly affects
the algorithm operating time, and therefore such a step is justified. Thereby, the problem in
a specified objective function has been solved. Algorithm 1 can reduce the optimization
problem without using equality constraints. Moreover, the algorithm converges for any
function p(x, µ, N) monotonically increasing in x, which makes it possible for it to be used
for loss probability functions in an arbitrary way.
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Algorithm 1 Calculate_All_Tra f f ic

1. Assign K = 1. // amount of information
2. Assign dK = 0.5. // varying step K
3. Call Calculate_Tra f f ic(K).
4. If f lag = 1, then return (Krez = 1, Prez = P, Xrez = X). // all the information was

successfully transferred
5. For t = 0, 6:

(a) If f lag = 0, then set K = K − dK, // if failed to transmit then try to transmit less
(b) otherwise, K = K + dK. // try to transmit more
(c) Set dK = dK/2. // reduce the varying step K
(d) Call Calculate_Tra f f ic(K).
(e) If f lag = 1, then set Krez = K, Prez = P, Xrez = X.

6. STOP and return Krez, Prez, Xrez.

Algorithm 2 Calculate_Tra f f ic

1. Required: K: amount of transmitted information.
2. Assign k = 0. // iteration number
3. Assign e > 0. // the stopping criterion
4. Assign pmax. // the second stopping criterion

5. Assign p(k)i,j = 0 ∀i, j. // as probability of losses in the corresponding channel at the current
iteration

6. Start an infinite loop:

(a) Assign x(k)i,j = 0 ∀i, j. // total intensity of the information flow through the corre-
sponding channel at the kth iteration

(b) For y = 1, Y: // for each target request

• For h = 1, Ly: // for each route in the target request

– For t = 1, lyh − 1: // for each node in the route

* Add the part of information included in the corresponding chan-
nel at the current iteration:

qyh =
ωyh

∑
Ly
z=1 ωyz

Qy, (6)

x(k)myh [t],myh [t+1] =
Kqyh

∏
lyh−1
j=t

(
1 − p(k)myh [j],myh [j+1]

) . (7)

(c) Calculate p(k+1)
i,j = p(x(k)i,j , µi,j, Ni,j) ∀i, j. // probability of losses in the correspond-

ing channel at the next iteration
(d) If ∀i, j : |p(k+1)

ij − p(k)ij | < e, then STOP the algorithm and return the triple{
f lag = 1; xrez = {x(k)ij }; prez = {p(k+1)

ij }
}

as the result.

(e) If ∃i, j : p(k+1)
ij > pmax, then STOP and return the triple

{ f lag = 0; xrez = None, prez = None}. // the algorithm did not converge, there is
no solution

(f) If none of the criteria are satisfied, then assign k = k + 1 and move on to the
next iteration of the loop.
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3.2. Discussion of Simple Heuristic Approaches that Seem Obvious

Let us study the possibilities of using simple heuristics to create an optimization
algorithm. Therefore, the use of a simple example (Figure 1) shows that many ”logical”
heuristics lead away from the optimum.

Figure 1. Example of a simple network.

A network with a pair of nodes (Figure 1) is under study. There are two channels
for transmitting information from the first node to the second node. The first channel has
parameters µ1 and N1, while x1 units of information per second are delivered through them.
The second channel has parameters µ2 and, similarly, x2 units of information per second
are delivered through them. It is necessary to increase the amount of information delivered
by ∆x information units per second. One must determine which of the two channels should
be increased in its load so that losses in the network are minimal.

To solve this problem in a general way, one should analyze three hypotheses:

- the most efficient decision is to increase the channel load for which x is less, because it
delivers less information;

- the most efficient decision is to increase the channel load for which the loss probability
is less, due to the assumption that it may have more free capacity than another;

- the most efficient decision is to to increase the channel load for which µ − x is greater,
since it has a larger bandwidth capacity.

Using this simple example, it is possible to show that solving the flow optimization
problem, even in a simple network, is not always intuitive. It is worth considering the
hypotheses one by one.

The first hypothesis is not true in general. Let us demonstrate it using the following
example. Let network parameters be as follows: x1 = 2 units of information/second,
µ1 = 1000 units of information/second, N1 = 5 and x2 = 1 unit of information/second,
µ2 = 2 units of information/second, N2 = 5. According to the hypothesis, the first channel
delivers twice as much information, so it is worth loading the second channel, although it
is not correct, since its bandwidth capacity is too small.

It is possible to prove that the second hypothesis is also wrong. Let us examine the
graph in Figure 2. Axis X indicates the channel bandwidth capacity resource (informa-
tion units/second), and axis Y indicates the change in the intensity of information loss
(information units/second). In our calculations, the following network parameters are
used: µ1 = 30 units of information/s, N1 = 3 (blue curve in Figure 2) and µ2 = 60 units
of information/sec., N2 = 9 (red curve in Figure 2). The figure shows that when the
useful information capacity resource reaches two units, it is preferable to load the second
channel, and after four units it is preferable to load the first one. Therefore, it is impossible
to determine which route is preferable for loading according to the remaining supply of
useful information.

According to the third hypothesis, it is necessary to load the channel with a lower
probability of losses. An example will demonstrate this. Let the first channel have the
following parameters: µ1 = 30, N1 = 3, and x1 = 13. The parameters of the second channel
are µ2 = 60, N2 = 9, and x2 = 50. The calculated loss probability in the first and second
channels are p1 = 5.57% and p2 = 5.25%, respectively. According to the third hypothesis,
it is necessary to “load” the second channel, and the losses will be equal to 3.57 units of
information per second. However, when “loading” the first channel, the losses will be
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equal to 3.54 units of information per second, i.e., it is better to use the first channel, even
considering the higher probability of losses. Therefore, the third hypothesis is also wrong.

Figure 2. Dependence of channel bandwidth capacity on changes in the intensity of information loss.
Blue curve—the 1st channel, red curve—the 2nd channel.

Thus, the use of obvious heuristics does not guarantee correct redistribution of in-
formation flows between two channels. However, it can be performed using derivatives
evaluation of the information loss intensity function (8):

∂E
∂x

= lim
x→0

Loss(x + ∆x)− Loss(x)
∆x

, (8)

where Loss(x) is the intensity of losses in the channel, under the condition that x units of
information/sec. are delivered. The physical meaning of this value is as follows: it allows
estimating the increased amount of information loss when adding an information flow,
∆x (units per second). In fact, the two streams are compared according to the criterion of
minimum losses. This allows us to state the optimality of using the channel for which the
derivative of losses in stream has the smallest value. This conclusion is of great importance
and will be used further in this study. At the same time, finding the value of the function
Loss(x) in analytical form is impossible, so there is pseudo-code in the algorithm for finding
Loss(x) using the numerical method (Algorithm 3).

Algorithm 3 Loss(Q)

1. Required: µ: channel bandwidth capacity, N: size of the channel buffer, Q: intensity
of the information flow that must reach the output.

2. Assign k = 0. // iteration number
3. Assign e > 0. // stopping criterion
4. Assign pmax. // second stopping criterion
5. Assign p(k) = 0. // estimated probability of losses at the current iteration
6. Start an endless loop:

(a) Calculate x(k) = Q
(1−p(k))

. // intensity of the information flow sent to the input (based
on the estimated probability of losses)

(b) Calculate p(k+1) = p(x(k), µ, N). // real probability of losses at the current iteration
(c) If |p(k+1) − p(k)| < e, then STOP and return the pair { f lag = 1; xrez = x(k+1)}.

// the algorithm has converged, there is a solution
(d) If p(k+1) > pmax, then STOP and return the pair { f lag = 0; xrez = None}. // the

algorithm does not converge, and there is no solution
(e) If none of the criteria are satisfied, then set k = k + 1 and move on to the next

iteration of the loop.
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3.3. Estimating Partial Derivatives

The dependence of variables on the probability of losses for the entire telecommunica-
tion network in accordance with changes of information flow at any edge of its graph by
the value ∆x are under study. Let us consider the network shown in Figure 3.

The figure shows three routes connecting nodes: 1-2-4-5 (green arrows), 2-4-6-8 (brown
arrows), 3-4-6-7 (blue arrows).

It is necessary to increase the data transfer rate for the information flow in the channel
from the 6th node to the 7th by the amount ∆x67. It is obvious that the probability of
p67 loss has also increased. Since a certain amount of information is delivered along the
route highlighted in blue (Figure 3), the incoming information flow to the 6th node must
be increased by a certain amount, ∆x46, in order to compensate for the increase in the
probability of information flow losses.

An increase in the channel load from the sixth node to the seventh node will lead to
an increase in the load from the fourth node to the sixth node. Obviously, this, in turn,
increases the load on the channel from the 3rd to the 4th nodes.

Figure 3. Example of a network with eight nodes and three information routes (colored arrows).

Analysis of the data shows that the load has increased along the entire route up to the
seventh node, which is highlighted in blue. This leads to increased losses along the route
highlighted in red in the channel from the fourth to the sixth node. These losses need to be
compensated, so the load on the channel increases from the second node to the fourth node.
Therefore, there are losses in the information flow along the route highlighted in green,
which also need to be compensated.

In fact, since there are many more routes in a real network, and they intensively
intersect with one another, a change in one channel load unpredictably increases the load
in almost the entire network.

In practice, buffer sizes often start with 100–1000 packets. Figure 4a shows a graph of
the relationship between changes in the intensity of information flows in channels between
nodes 4 and 6 and 6 and 7 on the load of the channel between nodes 4 and 6. Figure 4b
shows a similar graph, but with a buffer size of 1000 packets and a load of up to 99%. It can
be seen that the amount of emerging additional information flows is no more than 2.5% of
the main increase in ∆x.
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Figure 4. Dependence of information intensity flow changes in channels. (a) N = 100, (b) N = 1000.

Therefore, the value of the derivative of the total information losses in the network
with respect to the information flow in a particular channel only slightly exceeds the value
of the derivative of the information losses in the channel with respect to the information
flow in the same channel.

In other words, one can obtain the value of the derivative of the objective function by
the information flow in the channel using the Loss(Q) algorithm. Let the derivative value
be marked as ∂Loss

∂xij
for the corresponding channel from the ith node to the jth one.

Moreover, some modifications of Floyd’s algorithm (see Algorithm 4) make it possible
to find a route with the best derivative value for each target request.

Algorithm 4 Modified Floyd algorithm

1. Required: the matrix of partial derivatives dL = { ∂Loss
∂xij

}, the loss probability matrix

p = {pij}.

2. Assign dLij =
dLij

1−pij
∀i, j.

3. For i = 1, n:

(a) For u = 1, n:

i. For v = 1, n:

A. Assign dnew = dL[u][i]
(1−p[u][i]) + dL[i][v]. // new distance

B. if dnew < dL[u][v] then: // if the distance is better remember the new
route
• Set dL[u][v] = dnew,
• p[u][v] = p[u][i] + p[i][v]− p[u][i]× p[i][v],
• next[u][v] = next[u][i].

The result of executing Floyd’s algorithm is the matrix, which stores information about
the shortest routes. Algorithm 5 allows obtaining route vectors in the form of a sequence
of vertices.

3.4. Proposed Optimization Algorithm

The main idea of the optimization algorithm is to continue the coordinate descent along
the promising directions found by the modified Floyd algorithm. We propose Algorithm 6
to determine the optimal distribution of traffic along the routes.

The computational efficiency of our approach is based on the limitation by a finite num-
ber of routes for each target request (there is no need to know all the routes). The validity
of this assumption is demonstrated in the next section.
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Algorithm 5 The shortest routes

1. Set the starting vertex u.
2. Set the ending vertex v.
3. Obtain the matrix of the shortest distances dL by Floyd’s algorithm.
4. Obtain the matrix of loss probabilities p by Floyd’s algorithm .
5. If p[u][v] = 1 then STOP. // the route does not exist, stop the algorithm
6. Assign c = u.
7. Until c ̸= v:

(a) Add vertex c to the route.
(b) c = next[c][v].

8. Add vertex v to the route.
9. STOP.

Algorithm 6 Optimization algorithm

1. Set ∆ω = 1. // the step making changes in weights
2. Set kω > 1. // in practice we use 1.015
3. Set V = 400. // number of algorithm iterations
4. Find the shortest routes using Floyd’s algorithm.
5. Add the found route with weight ∆ω to the archive of each target request.
6. For v = 1, V:

(a) Calculate network traffic loss Calculate_All_Tra f f ic.
(b) Find the shortest routes using modified Floyd’s algorithm.
(c) ∆ω∗ = kω.
(d) For each target request:

i. If the shortest route is already in the archive, then increase its weight
by ∆ω.

ii. Otherwise, add the shortest route with weight ∆ω to the archive.
7. Generate a report

4. Computational Experiments
4.1. Stability of the Results

Local descent algorithms have a significant disadvantage. They converge to the nearest
local optimum of the objective function. Therefore, it is necessary to investigate the extent
to which the values of the resulting solutions depend on the starting points. For this reason,
in the first iteration of the optimization algorithm random routes should be used, rather
than the shortest ones.

The developed algorithm was tested on data of a network consisting of 40 nodes and
2000 target requests. The network structure was fully connected. During the first iteration, a
route consisting of approximately 25 nodes was added to the archive of each target request.
Such a length of the route is sufficient, since the route length will not exceed 4 nodes in the
optimal solution (if we discard unimportant routes). The starting routes can contain loops
and channels with low bandwidth capacity.

Having carrying out 1000 numerical experiments on our algorithm with starting routes
of random length, we obtained the results presented in the histogram (Figure 5).

From Figure 5, the diversity of values within the objective function is approximately
0.1% of its average value. When using the shortest starting routes, the value approaches
the average obtained value of the objective function.
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Figure 5. Histogram of the distribution of objective function values.

The objective function may have numerous local optima with similar values. For
each solution, the part of ”important” routes located in the main solution is calculated.
We define ”important” as a route transmitting more than 5% of all information of the target
request. The distribution of the ratio of the matching routes is presented in Figure 6. It can
be seen from the figure that the main solution, obtained with the shortest routes taken
as the starting ones, forms 92–94% of the resulting solution. The slight difference in the
compared routes can be explained by the fact that a small part of them in the framework of
the algorithm may be defined as ”important” or as ”unimportant” routes. This is caused by
data oscillations observed at the end of the algorithm and the fixed step of gradient descent.

Figure 6. Distribution of matching route parts.

It is important to mention that the optimization algorithm proposed in this work
consists of two parts. The first is estimating derivatives (finding the gradient), and the
second is finding the shortest routes using Floyd’s algorithm, which belongs to the category
of greedy algorithms. Therefore, the proposed algorithm can be classified as a greedy-
gradient algorithm.

4.2. Comparative Results

Let us compare the results of the developed optimization algorithm with those of the
coordinate descent algorithm. Therefore, in both cases two test problems with arbitrary
input parameters are used.

Test task #1, initial data:



Algorithms 2024, 17, 7 13 of 19

- number of nodes: 12;
- number of target requests: 1000.

The value of the objective function obtained by the developed optimization algorithm
is 37,606; the value of the objective function obtained by coordinate descent is 37,342, i.e.,
the difference is 0.702%.

Test task #2, initial data:

- number of nodes: 40;
- number of target requests: 2000.

The value of the objective function obtained by the developed optimization algorithm
is 81,191; the value of the objective function obtained by coordinate descent is 80,768, i.e.,
the difference is 0.52%.

Since in the solutions obtained by the proposed optimization algorithm, the length of
the optimal routes, did not exceed three nodes, all the routes with a length of no more than
4 nodes were used in the search space for the coordinate descent optimization algorithm.
Therefore, the solutions obtained are quite close to optimal in terms in the value of the
objective function, since additional optimization does not allow improvement of the value
of the objective function by more than 1%. As coordinate descent frequently requires more
calculations of the objective function, further complication of the optimization algorithm is
of no use.

For low-dimensional problems (up to four nodes), the following algorithms were
compared: the modified Gallagher’s method [20] and the greedy-gradient algorithm.
The research results are presented in Table 1.

Table 1. Comparative results of optimization algorithms.

Task No. Number of Nodes Number of Targeted
Requests Loss of Information

Modified
Gallagher’s Method

Greedy-Gradient
Algorithm

The Coordinate
Descent Algorithm

in a New
Search Space

1 4 12 6.85 6.84 -
2 4 12 308 308 -
3 4 12 11,762 9520 -
4 4 12 3 233 3237 -
5 4 12 23.08 23.08 -
6 4 12 9206 8154 -
7 12 1000 - 37,606 37,342
8 40 2000 - 81,191 80,768

When comparing the modified Gallagher’s method and the greedy-gradient algorithm,
the network structure was unchanged, whereas the values of the target queries varied.
The results obtained by these two algorithms either coincide with each other or differ
significantly, which is explained by the multi-extremal nature of the objective function.
At the same time, solving high-dimensional tasks using the modified Gallagher’s method
is impractical, as the traditional optimization methods are not fast.

When solving large-dimensional problems (more than ten nodes), the following algo-
rithms were compared: the greedy-gradient algorithm and the coordinate descent algorithm
in a new search space. The results obtained using these two algorithms differ by no more
than 1%.

For low-dimensional problems, with the use of the modified Gallagher’s method
implemented in MATLAB, the calculation time does not exceed one minute on a com-
modity single-processor system. For the greedy-gradient algorithm implemented in the
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C++ programming language, the calculation time does not exceed 0.1 s using the same
computer capability.

For high-dimensional problems, the calculation time of the greedy-gradient algorithm
implemented in the same programming language, and with the same computer capability,
does not exceed 10 s. For the coordinate descent algorithm in the new search space,
implemented in the C++ programming language, using the same computer capability, the
calculation time is does not exceed 30 h.

4.3. Efficiency of the Algorithm on Problems of Higher Dimension

Communication networks, including satellite ones, are becoming more complex.
In this regard, the behavior of the prepositional algorithm and the time it takes for more
cumbersome network topologies is interesting. Comparison with known methods in this
case is difficult due to their unacceptable computational complexity. Therefore, in this
subsection the behavior of the algorithm is studied depending on the complexity of the
problems being solved.

For the experiments, a computer with the following characteristics was used: CPU
Intel Core i5-12400F, RAM: DDR5, 32 GB, 4800 MHz, motherboard: Gigabyte B760M DS3H.
Only one processor core was used.

The algorithm efficiency was estimated as follows: calculations for each version of the
initial data were repeated 10 times and the results were averaged. The tested topologies
were randomly generated with the following parameters: the number of nodes was 100,
with an average of 20 edges outgoing from each node. Let us define the network density as
the ratio of the number of outgoing edges to the number of nodes. In our case, the density
was 0.2. The buffer size of each channel was 50. The number of target requests varied from
10 to 100 in steps of 10. The request intensity changed from 1 to 50 in steps of 0.1.

As a result, 4900 various data sets were generated. The entire modeling process can be
divided into 10 parts; each part is characterized by a set of target queries from 10 to 100 in
steps of 10. Thus, 490 experiments were generated within each part. All experiments can
be divided into 2 parts: successful and unsuccessful. Successful experiments are those that
resulted in the transfer of the entire planned amount of data required by the target requests.
Each target request varied from 1 to 50 packets per second in steps of 0.1. The numbers of
pairs of source and receiver nodes were randomly generated for each request.

Figure 7 shows the second part, in which 20 requests were transmitted. As can be seen
from the graphs, the execution time of the algorithm for finding the optimal distribution
varies in proportion to the number of routes involved. An abrupt change in the number of
routes corresponds to an abrupt change in the calculation time. It is also seen from Figure 8
that the maximum achievable request intensity is up to 28.1 packets per second. When it
reaches a maximum of 50 packets/second during the experiment (Figure 7), this value
corresponds to experiment 762 in Figure 7 and the extreme point.

Note that the maximum number of routes at which the possibility of transmitting all
the data is granted does not exceed 23. This means that the generated topology and the
selected sender and recipient nodes for each request are not selected in the most successful
places in the topology. Since at least 20 routes are required to transmit data for 20 requests,
in this case this means that only three additional routes were found, along which some
of the requests managed to redistribute information flows. Figure 7 shows that with an
increase in the intensity of requests, the algorithm managed to find 37 alternative routes
for all requests. However, it was not possible to deliver all the required information to
recipients, as can be seen after experiment 762.
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Figure 7. Modelling results for 20 target requests. Request intensity varies from 1 to 50 in steps
of 0.1. All results are shown. S<4> (red): target request flow rate, S<6> (blue): transmission ratio,
S<7> (black): number of routes, S<8> (pink): calculation time (ms).

Figure 8. Modelling results for 20 target requests. Request intensity varies from 1 to 50 in steps of 0.1.
Only results with granted transfer of all the requests are shown. Q<4> (red): target request flow rate,
Q<7> (blue): number of routes, Q<8> (black): calculation time (ms).

Note that the criterion for stopping the algorithm was the objective function change at
the next iteration not exceeding 10–8, if it finds a solution for transmitting all the traffic,
or 40 iterations of the main algorithm if it is impossible to transmit the entire amount
of information. Note that the authors followed certain goals for which this algorithm
was developed, and these criteria for stopping were selected empirically for the problem
being solved. Obviously, this criterion may not be suitable for all possible topological
configurations and is the subject of further research.
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Let us analyze the average time for calculating the result for cases when it was possible
to transmit all requests with the required intensity. We evaluated the algorithm performance
in three modes. In the first mode, the ratio of the number of routes to the number of requests
is in the range from 1 to 1.2 (Figure 9). The average running time of the algorithm for one
experiment was 11.061 ms, the minimum time was 7 ms, and the maximum time was 18.5
ms. The number of experiments falling within this range was 1957.

Figure 9. Change in calculation time and the number of total number of routes when the condition
of the 1st mode is met. M1<3> (red): number of target requests, M1<7> (blue): number of routes,
M1<8> (black): calculation time.

In the second mode, the ratio of the number of routes to the number of requests was
in the range from 1.2 to 1.5 (Figure 10). The average running time of the algorithm for one
experiment was 17.236 ms, the minimum time was 13.3 ms, and the maximum time was
68.3 ms. The number of experiments falling within this range was 216.

Figure 10. Change in calculation time and the number of total number of routes when the condition
of the 2nd mode is met. M1<3> (red): number of target requests, M1<7> (blue): number of routes,
M1<8> (black): calculation time.
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In the third mode, the ratio of the number of routes to the number of requests exceeded
1.5 (Figure 11). The average operating time was 23.009 ms, the minimum time was 19 ms,
and the maximum time was 34.8 ms. The number of such experiments was 42.

Figure 11. Change in calculation time and the number of total number of routes when the condition
of the 3rd mode is met. M1<3> (red): number of target requests, M1<7> (blue): number of routes,
M1<8> (black): calculation time.

If we consider the worst of the results obtained before averaging for all 4900 experi-
ments, for this experiment the algorithm execution time was 334 ms. In this experiment,
a network was simulated in an overloaded state and the algorithm was unable to find
the transmission routes for all the information. However, even this comparatively large
amount of time is more than acceptable for modeling and control systems.

5. Conclusions

In this paper, we proposed a heuristic greedy-gradient route searching method to
find the optimal distribution of traffic in telecommunication networks according to loss-
minimizing criteria. This algorithm is capable of finding data transmission routes for the
initial set of target requests and to distribute all network traffic among them according to
the criterion of minimizing losses. To solve this problem, the Floyd–Warshall algorithm is
used, in which the derivatives of the loss functions in the channel corresponding to each
edge are used as the weights of the directed graph. Accordingly, the problem of traffic
distribution along the resulting routes is solved.

The algorithm finds the same optimum regardless of the starting point of descent in the
new search space. Despite the inaccuracies in calculating derivative estimates, the solution
obtained is very close to the optimum in terms of the value of the objective function.

When solving high-dimensional test tasks, the developed algorithm is approximately
10,000 times faster than the coordinate descent algorithm in the new search space and at
the same time corresponds to it in terms of the accuracy of the results obtained within 1%.

A feature of our new algorithm is the need to know the number of routes required to
solve the optimization problem, which makes it similar to greedy algorithms and brings it
closer in speed to them. On the other hand, computing pseudoderivatives to iteratively
compute graph weights makes it akin to gradient algorithms. Another feature of this
approach is that there is no need to explicitly compose the objective function and the
constraints, as is required by streaming algorithms. In fact, the new algorithm solves a
constrained optimization problem with a large number of equality-type constraints, which
makes it difficult to solve by gradient methods. In the proposed approach, the constraints
are taken into account when calculating the weight coefficients.

The considered example of modeling on a network of 100 nodes with a density of
0.2 demonstrates the capability of our new algorithm to simulate data transfer processes
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in real time, both during preliminary modeling and in communication network control
systems. In this example, the largest number of target requests was equal to the number of
nodes (each network node was assumed to be a source of information). Using mass-market
computer equipment for such a network, the worst-case simulation took approximately
70 ms. The quality of the resulting solution ensured the delivery of all information. For
overloaded networks, when it is impossible to find routes that ensure the delivery of all data
the operating time of the algorithm did not exceed 340 ms, which is also quite acceptable.

In total, we carried out approximately 5000 experiments with the new algorithm, and
the resulting time costs allow us to assert that the new algorithm is capable of effective
modeling and control of any type of network due to the higher rate of operation of the
algorithm compared to the rate of topology changes.

Our new algorithm is heuristic and does not guarantee the global optimality of the
results. However, further research aimed at analyzing and clarifying the stopping criteria of
the algorithm depending on the network structure seems to be promising and may further
reduce the computation time. The use of the derivative of the loss probability function as
a communication-channel metric in dynamic routing protocols depending on the state of
the communication channel also seems promising, since preliminary experiments in this
direction have shown good results.

Author Contributions: Conceptualization, K.G., D.T. and S.K.; methodology, K.G. and L.K.; software,
D.T.; validation, K.G., L.K., D.M. and A.P.; formal analysis, N.S.; investigation, D.T. and D.M.;
resources, S.K.; data curation, D.T.; writing—original draft preparation, K.G.; writing—review and
editing, S.K and L.K.; visualization, D.T.; supervision, A.P.; project administration, L.K.; funding
acquisition, L.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Ministry of Science and Higher Education of the Russian
Federation, State Contract FEFE-2023–0004.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://levk.info/DE_Topology_Data.zip.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yan, D.; Guo, J.; Wang, L.; Zhan, P. SADR: Network status adaptive QoS dynamic routing for satellite networks. In Proceedings of

the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 1186–1190.
[CrossRef]

2. Smirnov, D.V. Modified Gallagher model of infocommunication networks taking into account losses. In Proceedings of the XXII
All-Russian Scientific and Technical Conference (Modern Problems of Radioelectronics), Russia, Krasnoyarsk, 14–15 May 2020;
pp. 253–257.

3. Kasan, H.; Kim, J. The Case for Dynamic Bias in Global Adaptive Routing. IEEE Comput. Archit. Lett. 2021, 20, 38–41. [CrossRef]
4. Chakrabarty, S.; Engels, A.W.; Thathapudi, S. Black SDN for the Internet of Things. In Proceedings of the IEEE 12th International

Conference on Mobile Ad Hoc and Sensor Systems, Dallas, TX, USA, 19–22 October 2015; pp. 190–198. [CrossRef]
5. Bertsekas, D.P.; Gallager, R.G. Data Networks; Prentice Hall: Upper Saddle River, NJ, USA, 1992; p. 556.
6. Yen, J.Y. Finding the K Shortest Loopless Paths in a Network. Manag. Sci. 1971, 17, 712–716. [CrossRef]
7. Arbelaez, A.; Mehta, D.; O’Sullivan, B.; Quesada, L. A Constraint-Based Local Search for Edge Disjoint Rooted Distance-

Constrained Minimum Spanning Tree Problem. In Integration of AI and OR Techniques in Constraint Programming; CPAIOR 2015.
Lecture Notes in Computer Science; Michel, L., Ed.; Springer: Cham, Switzerland, 2015. [CrossRef]

8. Kuipers, F.; Van Mieghem, P.; Korkmaz, T.; Krunz, M. An overview of constraint-based path selection algorithms for QoS routing.
IEEE Commun. Mag. 2002, 40, 50–55. [CrossRef]

9. Shcherba, E.V.; Litvinov, G.A. On an optimal solution for multi-constrained routing problem in the over-constrained case.
In Proceedings of the 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 14–16
March 2018. [CrossRef]

10. Chen, X.; Cai, H.; Wolf, T. Multi-criteria Routing in Networks with Path Choices. In Proceedings of the 2015 IEEE 23rd
International Conference on Network Protocols (ICNP), San Francisco, CA, USA, 10–13 November 2015. [CrossRef]

11. Mezni, A.; Dumitrescu, E.; Niel, E.; Ahmed, S.B. Multi Criteria Automatic Generation of Optimal Routing for WSN. In Proceedings
of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29
June 2018. [CrossRef]

http://levk.info/DE_Topology_Data.zip
http://doi.org/10.1109/ICSP.2016.7878015
http://dx.doi.org/10.1109/LCA.2021.3061408
http://dx.doi.org/10.1109/MASS.2015.100
http://dx.doi.org/10.1287/mnsc.17.11.712
http://dx.doi.org/10.1007/978-3-319-18008-3_3
http://dx.doi.org/10.1109/MCOM.2002.1106159
http://dx.doi.org/10.1109/mwent.2018.8337249
http://dx.doi.org/10.1109/icnp.2015.36
http://dx.doi.org/10.1109/iwcmc.2018.8450311


Algorithms 2024, 17, 7 19 of 19

12. Taft-Plotkin, N.; Bellur, B.; Ogier, R. Quality-of-service routing using maximally disjoint paths. In Proceedings of the 1999 Seventh
International Workshop on Quality of Service IWQoS’99 (Cat. No.98EX354), Perth, Australia, 23–25 June 1999. [CrossRef]

13. Huang, G.M.; Hsieh, W.-L. A parallel textured algorithm for optimal routing in data network. In Proceedings of the IEEE Global
Telecommunications Conference GLOBECOM ’91: Countdown to the New Millennium. Conference Record, Phoenix, AZ, USA,
2–5 December 1991. [CrossRef]

14. Huang, G.M.; Zhu, S. A fast distributed optimal routing algorithm for multicommodity large data networks. In Proceedings of
the 9th International Parallel Processing Symposium, Santa Barbara, CA, USA, 25–28 April 1995; pp. 551–555. [CrossRef]

15. Toyoda, K.; Okamoto, T.; Koakutsu, S. An optimal routing search method on the network routing problem using the sequential
minimal optimization. In Proceedings of the 2017 56th Annual Conference of the Society of Instrument and Control Engineers of
Japan (SICE), Kanazawa, Japan, 19–22 September 2017. [CrossRef]

16. Jain, A.; Chaudhari, N.S. Genetic Algorithm for Optimizing Network Load Balance in MPLS Network. In Proceedings of the 2012
Fourth International Conference on Computational Intelligence and Communication Networks, Mathura, India, 3–5 November
2012. [CrossRef]

17. Zhu, S.; Huang, G.M. A new packet-loss minimization routing algorithm for ATM high-speed data networks. In Proceedings of
the 35th IEEE Conference on Decision and Control, Kobe, Japan, 13 December 1996; pp. 287–292. [CrossRef]

18. Wang, X.; Li, T.; Qiu, J.; Diao, W. High Performance Inter-satellite Routing Design of Terahertz Interface. In Proceedings of
the 2023 4th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), Guangzhou, China,
12–14 May 2023; pp. 112–118. [CrossRef]

19. Zhang, M.; Cheng, H.; Yang, P.; Dong, C. Adaptive Routing Design for Flying Ad Hoc Networks: A Joint Prediction Approach.
IEEE Trans. Veh. Technol. 2023, 26, 1–12. [CrossRef]

20. Dong, D.; Li, C. LARE: A Linear Approximate Reinforcement Learning Based Adaptive Routing for Network-on-Chips. In Pro-
ceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023.

21. Xu, X.; Liu, X.; Qian, L.; Zhang, N.; Wu, J. Multi-Criteria Path Finding Using Multi-Queues Based Bidirectional Search for Multiple
Target Nodes in Networks. IEEE Access 2023, 11, 101799–101812. [CrossRef]

22. Shruthi, S. Proactive routing protocols for a MANET—A review. In Proceedings of the 2017 International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 10–11 February 2017; pp. 821–827. [CrossRef]

23. Perepelkin, D.; Ivanchikova, M. Research of Neural Network Architectures for Solving Adaptive Routing Problems in Multi-
provider Networks of Distributed Data Centers. In Proceedings of the 9th Mediterranean Conference on Embedded Computing
(MECO), Budva, Montenegro, 8–11 June 2020; pp. 1–5. [CrossRef]

24. Kazakovtsev, L.A.; Orlov, V.; Stupina, A.A.; Kazakovtsev, V. Modied Genetic Algorithm with Greedy Heuristic for Continuous
and Discrete p-Median Problems. Facta Universitatis. Ser. Math. Inform. 2015, 30, 89–106.

25. Yaghini, M.; Karimi, M.; Rahbar, M. A hybrid metaheuristic approach for the capacitated p-median problem. Appl. Soft Comput.
2013, 13, 3922–3930. [CrossRef]

26. Kazakovtsev, L.; Rozhnov, I. Application of Algorithms with Variable Greedy Heuristics for k-Medoids Problems. Informatica
2020, 44, 55–61. [CrossRef]

27. Liu, J.; Huang, J.; Li, W.; Wang, J.; He, T. Asymmetry-Aware Load Balancing With Adaptive Switching Granularity in Data Center.
IEEE/ACM Trans. Netw. 2023, 31, 1145–1158. [CrossRef]

28. Wang, F.; Jiang, D.; Qi, S. An adaptive routing algorithm for integrated information networks. China Commun. 2019, 16, 195–206.
[CrossRef]

29. He, Y.; Pelagatti, S. CRT: An Adaptive Routing Protocol for LEO Satellite Networks. In Proceedings of the 2006 2nd International
Conference on Information & Communication Technologies, Damascus, Syria, 24–28 April 2006; pp. 2496–2501. [CrossRef]

30. Huang, Y.; Cao, W.; Liu, X.; Jiang, X.; Yang, J.; Yang, F. An Adaptive Multipath Routing for LEO Satellite Network. In Proceedings
of the 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference
(IMCEC), Chongqing, China, 18–20 June 2021; pp. 1536–1541. [CrossRef]

31. Xu, X.; Tang, H.; Wu, J.; Zeng, H.; Qian, L.; Liu, X. Hybrid Path Selection and Overall Optimization for Traffic Engineering.
In Proceedings of the 2022 International Communication Engineering and Cloud Computing Conference (CECCC), Nanjing,
China, 28–30 October 2022; pp. 42–47. [CrossRef]

32. Mammeri, Z. Reinforcement Learning Based Routing in Networks: Review and Classification of Approaches. IEEE Access 2019, 7,
55916–55950. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/iwqos.1999.766485
http://dx.doi.org/10.1109/glocom.1991.188654
http://dx.doi.org/10.1109/IPPS.1995.395985
http://dx.doi.org/10.23919/sice.2017.8105653
http://dx.doi.org/10.1109/cicn.2012.119
http://dx.doi.org/10.1109/CDC.1996.574317
http://dx.doi.org/10.1109/ICECAI58670.2023.10176766
http://dx.doi.org/10.1109/TVT.2023.3317311
http://dx.doi.org/10.1109/ACCESS.2023.3316211
http://dx.doi.org/10.1109/I-SMAC.2017.8058294
http://dx.doi.org/10.1109/MECO49872.2020.9134253
http://dx.doi.org/10.1016/j.asoc.2013.04.009
http://dx.doi.org/10.31449/inf.v44i1.2737
http://dx.doi.org/10.1109/TNET.2022.3208201
http://dx.doi.org/10.23919/JCC.2019.07.015
http://dx.doi.org/10.1109/ICTTA.2006.1684799
http://dx.doi.org/10.1109/IMCEC51613.2021.9482379
http://dx.doi.org/10.1109/CECCC56460.2022.10069947
http://dx.doi.org/10.1109/ACCESS.2019.2913776

	Introduction
	Problem Statement and Background
	Proposed Approach
	Algorithm for the Objective Function Calculation
	Discussion of Simple Heuristic Approaches that Seem Obvious
	Estimating Partial Derivatives
	Proposed Optimization Algorithm

	Computational Experiments
	Stability of the Results
	Comparative Results
	Efficiency of the Algorithm on Problems of Higher Dimension

	Conclusions
	References

